Mechanical Performance of 3D-Printed Cornstarch–Sandstone Sustainable Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Starch–Sand-Based Paste
2.2.2. Geometric Characteristics of Cellular Structures
2.2.3. Specimen Fabrication
2.2.4. Drying Process
2.2.5. Mechanical Properties
2.2.6. Morphology of the Samples
3. Results and Discussion
3.1. Mechanical Properties of Cylinder Specimens
3.2. Mechanical Properties of Honeycomb Samples
3.3. Morphology of the Samples
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Liu, X. Modeling of additive manufacturing process relevant feature in layer based manufacturing process planning. J. Shanghai Jiaotong Univ. (Sci.) 2012, 17, 241–244. [Google Scholar] [CrossRef]
- Gibson, D.R.; Stucker, B. Additive Manufacturing Technologies: 3D Printing, 2nd ed.; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Zocca, A.; Colombo, P.; Gomes, C.M.; Günster, J. Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J. Am. Ceram. Soc. 2015, 98, 1983–2001. [Google Scholar] [CrossRef]
- Peng, E.; Zhang, D.; Ding, J. Ceramic robocasting: Recent achievements, potential, and future developments. Adv. Mater. 2018, 30, 1802404. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Panda, B.; Paul, S.C.; Noor Mohamed, N.A.; Tan M., J.; Leong, K.F. 3D printing trends in building and construction industry: A review. Virt. Phys. Prototyp. 2017, 12, 261–276. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Jones, S.Z.; Kalantar, N.; Pei, Z.; Vickers, J.; Wangler, T.; Zavattieri, P.; Zou, N. Additive manufacturing processes for infrastructure construction: A review. J. Manuf. Sci. Eng. 2019, 141, 910109. [Google Scholar] [CrossRef]
- Hou, S.; Duan, Z.; Xiao, J.; Ye, J. A review of 3D printed concrete: Performance requirements, testing measurements and mix design. Constr. Build. Mater. 2021, 273, 121745. [Google Scholar] [CrossRef]
- Weißa, M.; Sälzler, P.; Willenbacher, N.; Koosa, E. 3D-Printed lightweight ceramics using capillary suspensions with incorporated nanoparticles. J. Eur. Ceram. Soc. 2020, 40, 3140–3147. [Google Scholar] [CrossRef]
- Chan SL, S.; Pennings, R.M.; Edwards, L.; Franks, G.V. 3D printing of clay for decorative architectural applications: Effect of solids volume fraction on rheology and printability. Addit. Manuf. 2020, 35, 101335. [Google Scholar] [CrossRef]
- Danforth, S. Fused Deposition of Ceramics: A New Technique for the Rapid Fabrication of Ceramic Components, Mater Technol. Adv. Perform. Mater. 1995, 10, 144–146. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Moini, M.; Olek, J.; Youngblood, J.P.; Magee, B.; Zavattieri, P.D. Additive manufacturing and performance of architectured cement-based materials. Adv. Mater. 2018, 30, 1802123. [Google Scholar] [CrossRef]
- Tan, C.; Toh, W.Y.; Wong, G.; Li, L. Extrusion-based 3D food printing—Materials and machines. Int. J. Bioprint. 2018, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Pakhomova, C.; Popov, D.; Maltsev, E.; Akhatov, I.; Pasko, A. Software for Bioprinting. Int. J. Bioprint. 2020, 6, 279. [Google Scholar] [CrossRef] [PubMed]
- Spillane, D.R.; Meisel, N.A. A Voxel-Based Design Approach for Creating Functionally Graded Structures via Material Extrusion Additive Manufacturing. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, New York, NY, USA, 26–29 August 2018. [Google Scholar]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Law, R.; Gibb AG, F.; Thorpe, T. Hardened properties of high-performance printing concrete. Cem. Concr. Res. 2012, 42, 558–566. [Google Scholar] [CrossRef]
- Panda, B.; Lim, J.H.; Tan, M.J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos. B Eng. 2019, 165, 563–571. [Google Scholar] [CrossRef]
- Mansour, G.; Zoumaki, M.; Marinopoulou, A.; Raphaelides, S.N.; Tzetzis, D.; Zoumakis, N. Investigation on the Effects of Glycerol and Clay Contents on the Structure and Mechanical Properties of Maize Starch Nanocomposite Films. Stärke 2020, 72, 1900166. [Google Scholar] [CrossRef]
- Zoumaki, M.; Tzetzis, D.; Mansour, G. Development and characterization of starch—Based nanocomposite materials. IOP Conf. Ser. Mater. Sci. Eng. 2019, 564, 12037. [Google Scholar] [CrossRef]
- Mansour, G.; Zoumaki, M.; Marinopoulou, A.; Tzetzis, D.; Prevezanos, M.; Raphaelides, S. Characterization and properties of non-granular thermoplastic starch—Clay biocomposite films. Carbohydr. Polym. 2020, 245, 116629. [Google Scholar] [CrossRef]
- Mansour, G.; Zoumaki, M.; Tsongas, K.; Tzetzis, D. Starch-sandstone materials in the construction industry. Results Eng. 2020, 8, 100182. [Google Scholar] [CrossRef]
- Mansour, G.; Zoumaki, M.; Tzetzis, D. Starch Sandstones in Building Bio-materials. MATEC Web Conf. 2020, 318, 1046. [Google Scholar] [CrossRef]
- Zoumaki, M.; Tsongas, K.; Tzetzis, D.; Mansour, G. Corn Starch-Based Sandstone Sustainable Materials: Sand Type and Water Content Effect on Their Structure and Mechanical Properties. Sustainability 2022, 14, 8901. [Google Scholar] [CrossRef]
- Zoumaki, M.; Mansour Michel, T.; Tsongas, K.; Tzetzis, D.; Mansour, G. Mechanical Characterization and Finite Element Analysis of Hierarchical Sandwich Structures with PLA 3D-Printed Core and Composite Maize Starch Biodegradable Skins. J. Compos. Sci. 2022, 6, 118. [Google Scholar] [CrossRef]
- Mansour, G.; Zoumaki, M.; Tsongas, K.; Tzetzis, D. Microstructural and Finite Element Analysis—Assisted Nanomechanical Characterization of Maize Starch Nanocomposite Films. Mater. Res. 2021, 24, 1–11. [Google Scholar] [CrossRef]
- Chivrac, F.; Pollet, E.; Dole, P.; Averous, L. Starch-based nanobiocomposites: Plasticizer impact on the montmorillonite exfoliation process. Carbohydr. Polym. 2010, 79, 941–947. [Google Scholar] [CrossRef]
- Marinopoulou, A.; Papastergiadis, Ε.; Raphaelides, S. An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures. Int. Food Res. J. 2016, 90, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Raphaelides, S.N.; Georgiadis, N. Effect of fatty acids on the rheological behaviour of maize starch dispersions during heating. Carbohydr. Polym. 2006, 65, 81–92. [Google Scholar] [CrossRef]
- Assaad, J.J. Correlating thixotropy of self-consolidating concrete to stability, formwork pressure, and multilayer casting. J. Mater. Civ. Eng. 2016, 28, 401610710. [Google Scholar] [CrossRef]
- Wael, A.M.A.K. Bond strength in multilayer casting of self-consolidating concrete. ACI Mater. J. 2017, 114, 467–476. [Google Scholar]
- Nerella, V.N.; Hempel, S.; Mechtcherine, V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusionbased 3D-printing. Constr. Build. Mater. 2019, 205, 586–601. [Google Scholar] [CrossRef]
- Marchment, T.; Sanjayan, J. Method of enhancing interlayer bond strength in 3D concrete printing. Cham 2019, 19, 148–156. [Google Scholar]
- Marchment, T.; Sanjayan, J.; Xia, M. Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification. Mater. Des. 2019, 169, 107684. [Google Scholar] [CrossRef]
- Hosseini, E.; Zakertabrizi, M.; Korayem, A.H.; Xu, G. A novel method to enhance the interlayer bonding of 3D printing concrete: An experimental and computational investigation. Cem. Concr. Compos. 2019, 99, 112–119. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Pierre, A. Structural built-up of cement-basedmaterials used for 3D-printing extrusion techniques. Mater. Struct. 2016, 4, 1213–1220. [Google Scholar] [CrossRef]
- Ding, T.; Xiao, J.; Qin, F.; Duan, Z. Mechanical behavior of 3D printed mortar with recycled sand at early ages. Constr. Build. Mater. 2020, 248, 118654. [Google Scholar] [CrossRef]
- Wolfs RJ, M.; Bos, F.P.; Salet, T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Wolfs RJ, M.; Bos, F.P.; Salet, T.A.M. Triaxial compression testing on early age concrete for numerical analysis of 3D concrete printing. Cem. Concr. Compos. 2019, 104, 103344. [Google Scholar] [CrossRef]
- Ma, G.; Li, Z.; Wang, L.; Wang, F.; Sanjayan, J. Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing. Constr. Build. Mater. 2019, 202, 770–783. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, J.; Wang, L.; Li, Z.; Sun, J. Mechanical characterization of 3D printed anisotropic cementitious material by the electromechanical transducer. Smart Mater. Struct. 2018, 27, 75036. [Google Scholar] [CrossRef]
- Ma, G.; Wang, L.; Ju, Y. State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction. Sci. China Technol. Sci. 2018, 61, 475–495. [Google Scholar] [CrossRef]
- Wu, L.; Farzadnia, N.; Shi, C.; Zhang, Z.; Wang, H. Autogenous shrinkage of high performance concrete: A review. Constr. Build. Mater. 2017, 149, 62–75. [Google Scholar] [CrossRef]
- Zhutovsky, S.; Kovler, K. Effect of internal curing on durability-related properties of high performance concrete. Cem. Concr. Res. 2012, 42, 20–26. [Google Scholar] [CrossRef]
- Lu, B.; Weng, Y.; Li, M.; Qian, Y.; Leong, K.F.; Tan, M.J.; Qian, S. A systematical review of 3D printable cementitious materials. Constr. Build. Mater. 2019, 207, 477–490. [Google Scholar] [CrossRef]
- Maurath, J.; Willenbacher, N. 3D printing of open-porous cellular ceramics with high specific Strength. J. Eur. Ceram. Soc. 2017, 37, 4833–4842. [Google Scholar] [CrossRef]
- Bai, G.; Wang, L.; Guowei, M.; Sanjayan, J.; Bai, M. 3D printing eco-friendly concrete containing under-utilised and waste solids as aggregates. Cem. Concr. Compos. 2021, 120, 104037. [Google Scholar] [CrossRef]
- Wu, C.; Luo, Y.; Cuniberti, G.; Xiao, Y.; Gelinsky, M. Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strengthand mineralization ability. Acta Biomater. 2011, 7, 2644–2650. [Google Scholar] [CrossRef]
- Bhattacherjee, S.; Basavaraj, S.A.; Rahul, A.V.; Santhanam, M.; Gettu, R.; Panda, B.; Schlangen, E.; Chen, Y.; Copuroglu, O.; Ma, G.; et al. Sustainable materials for 3D concrete printing. Cem. Concr. Compos. 2021, 122, 104156. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, G.; Papageorgiou, V.; Zoumaki, M.; Tsongas, K.; Mansour, M.T.; Tzetzis, D. Mechanical Performance of 3D-Printed Cornstarch–Sandstone Sustainable Material. Sustainability 2023, 15, 8681. https://doi.org/10.3390/su15118681
Mansour G, Papageorgiou V, Zoumaki M, Tsongas K, Mansour MT, Tzetzis D. Mechanical Performance of 3D-Printed Cornstarch–Sandstone Sustainable Material. Sustainability. 2023; 15(11):8681. https://doi.org/10.3390/su15118681
Chicago/Turabian StyleMansour, Gabriel, Vasileios Papageorgiou, Maria Zoumaki, Konstantinos Tsongas, Michel T. Mansour, and Dimitrios Tzetzis. 2023. "Mechanical Performance of 3D-Printed Cornstarch–Sandstone Sustainable Material" Sustainability 15, no. 11: 8681. https://doi.org/10.3390/su15118681
APA StyleMansour, G., Papageorgiou, V., Zoumaki, M., Tsongas, K., Mansour, M. T., & Tzetzis, D. (2023). Mechanical Performance of 3D-Printed Cornstarch–Sandstone Sustainable Material. Sustainability, 15(11), 8681. https://doi.org/10.3390/su15118681