Removal of Cs-137 from Liquid Alkaline High-Level Radwaste Simulated Solution by Sorbents of Various Classes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorbents
- -
- Axionit RCs, the sample was synthesized and provided for experiments by JSC “Axion—Rare and Noble metals”. Two batches of RFR, synthesized in 2017 (Axionit RCs 2017) and 2022 (Axionit RCs 2022), respectively, were used in the study.
- -
- RFR-i is an experimental laboratory sample, synthesized and provided for testing by the Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences (Vladivostok, Russia).
- -
- RFR-Ca is an experimental laboratory sample with a porous surface morphology, synthesized and provided for testing by the Institute of Chemistry of the Far Eastern branch of the Russian Academy of Sciences (Vladivostok, Russia).
- -
- Sorbent of the Fersal brand, an inorganic composite sorbent based on modified nickel ferrocyanide. According to the X-ray fluorescence analysis data, the sorbent contains %: N—24.38; O—56.83; Si—9.46; K—0.20; Fe—1.87; Ni—2.86; Cs—3.65. It is supplied in the K+—form. The cesium sorption proceeds through the exchange of K+ ions in the sorbent phase with the Cs+ ions in the solution. The sorbent is manufactured by the LEMER PAX Innovative company, France. A sample for tests was provided by the official distributor of this sorbent in Russia—Komfinservis LLC (Russia).
- -
- Sorbent of the Clevasol® brand, a macroporous inorganic polymer. According to the X-ray fluorescence analysis data, the sorbent contains %: B—83.0; O—6.27; Na—0.46; S—6.86; Cl—3.44. It is supplied in the H+—form. The cesium sorption proceeds through the exchange of H+ ions in the sorbent phase by the Cs+ ions in the solution. The sorbent is manufactured by the LEMER PAX Innovative company, France. A sample for testing was provided by the official distributor of this sorbent in Russia—Komfinservis LLC (Russia).
2.2. Compositions of Model Solutions
- NaNO3 solutions of concentrations at 0.5, 1.0, 2.0, and 3.0 mol/dm3, pH = 13. pH adjustment was carried out with NaOH solution;
- KNO3 solutions of concentrations at 0.1, 0.25, 0.5, and 1.0 mol/dm3, pH = 13. pH adjustment was carried out with NaOH solution;
- NaOH + NaNO3 solutions with constant sums of concentrations of NaOH + NaNO3 = 3.5 mol/dm3, containing 0.1, 0.25, 0.50, 1.0, 1.5, and 2.0 mol/dm3 of NaOH and 3.4, 3.25, 3.0, 2.5, 2.0, and 1.5 mol/dm3 of NaNO3;
- Model solution simulating the clarified phase of HLW storage tanks of the Mayak Production Association with the following composition, g/dm3: NaOH—100, NaNO3—128, Al(NO3)3 × 9H2O—82.5 (6.0 by Al), K2CrO4—7.72, CsNO3—0.0733 (0.050 by Cs), density—1.190 g/cm3 [1].
2.3. Evaluation of Sorption Characteristics under Static Conditions
2.4. Evaluation of Sorption Characteristics under Dynamic Conditions
2.5. Desorption of Cs-137 and Regeneration of Sorbents
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kozlov, P.V.; Kazadaev, A.A.; Makarovskii, R.A.; Remizov, M.B.; Verbitskii, K.V.; Logunov, M.V. Development of a Process for Cesium Recovery from the Clarified Phase of High-Level Waste Storage Tanks of the Mayak Production Association with a Ferrocyanide Sorbent. Radiochemistry 2016, 58, 295–301. [Google Scholar] [CrossRef]
- Milyutin, V.V.; Mikheev, S.V.; Gelis, V.M.; Kozlitin, E.A. Sorption of Cesium on Ferrocyanide Sorbents from Highly Saline Solutions. Radiochemistry 2009, 51, 298–300. [Google Scholar] [CrossRef]
- Fiskum, S.K.; Pease, L.F.; Peterson, R.A. Review of Ion Exchange Technologies for Cesium Removal from Caustic Tank Waste. Solvent Extr. Ion Exch. 2020, 38, 573–611. [Google Scholar] [CrossRef]
- Aleman, S.; Hamm, L.; Smith, F. Ion Exchange Modeling Of Cesium Removal From Hanford Waste Using Spherical Resorcinol-Formaldehyde Resin; Technical Report WSRC-STI-2007-00030; Washington Savannah River Site (SRS): Aiken, SC, USA, 2007.
- Fiskum, S.K.; Blanchard, D.L.; Arm, S.T.; Peterson, R.A. Cesium Removal from Simulated and Actual Hanford Tank Waste Using Ion Exchange. Sep. Sci. Technol. 2005, 40, 51–67. [Google Scholar] [CrossRef]
- Milyutin, V.V.; Zelenin, P.G.; Kozlov, P.V.; Remizov, M.B.; Kondrutskii, D.A. Sorption of Cesium from Alkaline Solutions onto Resorcinol-Formaldehyde Sorbents. Radiochemistry 2019, 61, 714–718. [Google Scholar] [CrossRef]
- Tokar, E.; Tutov, M.; Kozlov, P.; Slobodyuk, A.; Egorin, A. Effect of the Resorcinol/Formaldehyde Ratio and the Temperature of the Resorcinol–Formaldehyde Gel Solidification on the Chemical Stability and Sorption Characteristics of Ion-Exchange Resins. Gels 2021, 7, 239. [Google Scholar] [CrossRef]
- Miller, H.S.; Kline, G.E. Reactions of Cesium in Trace Amounts with Ion-Exchange Resins. J. Am. Chem. Soc. 1951, 73, 2741–2743. [Google Scholar] [CrossRef]
- Kargov, S.I.; Shelkovnikova, L.A.; Ivanov, V.A. The Nature of Ion Exchange Selectivity of Phenol-Formaldehyde Sorbents with Respect to Cesium and Rubidium Ions. Russ. J. Phys. Chem. A 2012, 86, 860–866. [Google Scholar] [CrossRef]
- Samanta, S.K.; Misra, B.M. Ion Exchange Selectivity of a Resorcinol-Fqrmaldehyde Polycondensate Resin for Cesium in Relation to Other Alkali Metal Ions. Solvent Extr. Ion Exch. 1995, 13, 575–589. [Google Scholar] [CrossRef]
- Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Bryan, S.A.; Hallen, R.T.; Brown, G.N.; Bray, L.A.; Linehan, J.C. Synthesis, Structural Characterization, and Performance Evaluation of Resorcinol-Formaldehyde (R-F) Ion-Exchange Resin; Technical Report PNL-10744; Pacific Northwest Laboratory: Richland, WA, USA, 1995.
- Duignan, M.R.; Nash, C.A. Removal of Cesium from Savannah River Site Waste with Spherical Resorcinol Formaldehyde Ion Exchange Resin: Experimental Tests. Sep. Sci. Technol. 2010, 45, 1828–1840. [Google Scholar] [CrossRef]
- Adamson, D.J. Pilot-Scale Hydraulic Testing of Resorcinol Formaldehyde Ion Exchange Resin. In Proceedings of the Fluids Engineering Division Summer Meeting, Vail, CO, USA, 2–6 August 2009; Volume 43727, pp. 545–553. [Google Scholar] [CrossRef]
- Duignan, M.R.; Nash, C.A.; Punch, T.M. High Aspect Ratio Ion Exchange Resin Bed—Hydraulic Results for Spherical Resin Beads. Sep. Sci. Technol. 2008, 43, 2943–2979. [Google Scholar] [CrossRef]
- Brooks, K.P.; Augspurger, B.S.; Blanchard, D.L.; Cuta, J.M.; Fiskum, S.K.; Thorson, M.R. Hydraulic Testing of Ion Exchange Resins for Cesium Removal from Hanford Tank Waste. Sep. Sci. Technol. 2006, 41, 2391–2408. [Google Scholar] [CrossRef]
- Fiskum, S.K.; Augspurger, B.S.; Brooks, K.P.; Buchmiller, W.C.; Russell, R.L.; Schweiger, M.J.; Snow, L.A.; Steele, M.J.; Thomas, K.K.; Wallace, D.E.; et al. Comparison Testing of Multiple Resorcinol-Formaldehyde Resins for the River Protection Project—Waste Treatment Plant; Technical Report PNWD-3387 WTP-RPT-103, Rev 0; Savannah River Technology Center, Department of Energy 1000 Independence Ave.: Washington, DC, USA, 2004; p. 2978.
- Clevasol®—A Novel Cation Exchange Resin for Isotope Capture. Available online: https://www.lemerpax.com/en/products/clevasol-en/ (accessed on 25 April 2023).
- Yakushev, A.; Turler, A.; Dvorakova, Z.; Bremen, K. CLEVASOL, a Novel Radiation Hard Cation Exchanger Suitable for Treatment of Liquid Radioactive Waste with High Salinity. In Proceedings of the APSORC’13—5th Asia-Pacific Symposium on Radiochemistry Kanazawa, Kanazawa, Japan, 22–27 September 2013; p. 133. [Google Scholar]
- Lin, M.; Kajan, I.; Schumann, D.; Türler, A.; Fankhauser, A. Selective Cs-Removal from Highly Acidic Spent Nuclear Fuel Solutions. Radiochim. Acta 2020, 108, 615–626. [Google Scholar] [CrossRef]
- Chaplin, J.D.; Berillo, D.; Purkis, J.M.; Byrne, M.L.; Tribolet, A.D.C.C.M.; Warwick, P.E.; Cundy, A.B. Effective 137Cs+ and 90Sr2+ Immobilisation from Groundwater by Inorganic Polymer Resin Clevasol® Embedded within a Macroporous Cryogel Host Matrix. Mater. Today Sustain. 2022, 19, 100190. [Google Scholar] [CrossRef]
- Haas, P.A. A Review of Information on Ferrocyanide Solids for Removal of Cesium from Solutions. Sep. Sci. Technol. 1993, 28, 2479–2506. [Google Scholar] [CrossRef]
- Loos-Neskovic, C.; Fedoroff, M. Fixation Mechanisms of Cesium on Nickel and Zinc Ferrocyanides. Solvent Extr. Ion Exch. 1989, 7, 131–158. [Google Scholar] [CrossRef]
- Lee, E.F.T.; Streat, M. Sorption of Caesium by Complex Hexacyanoferrates. v. a Comparison of Some Cyanoferrates. J. Chem. Tech. Biotechnol. 1983, 33, 333–338. [Google Scholar] [CrossRef]
- Milyutin, V.V.; Nekrasova, N.A.; Kozlov, P.V.; Markova, D.V.; Feoktistov, K.A. Extraction of cesium from model solutions of highly active alkaline wastes on an inorganic ferrocyanide sorbent of the brand Fersal. Vopr. Radiatsionnoy Bezop. 2022, 3, 22–27. (In Russian) [Google Scholar]
- Milyutin, V.V.; Gelis, V.M.; Leonov, N.B. Study of the Sorption Kinetics of Cesium and Strontium Radionuclides by Sorbents of Different Classes. Radiochemistry 1998, 40, 418–420. (In Russian) [Google Scholar]
- Sanders, J. Veusz—A Scientific Plotting Package. Available online: https://veusz.github.io/ (accessed on 25 April 2023).
- Hubler, T.L.; Shaw, W.J.; Brown, G.N.; Linehan, J.C.; Franz, J.A.; Hart, T.R.; Hogan, M.O. Chemical Derivation to Enhance the Chemical/Oxidative Stability of Resorcinol-Formaldehyde (R-F); Resin Technical Report No. PNNL--11327; Pacific Northwest National Laboratory: Richland, WA, USA, 1996.
- Russell, R.L.; Fiskum, S.K.; Smoot, M.R.; Rinehart, D.E. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations; Technical Report PNNL-25277; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2016.
- Kim, M.G.; Wu, Y.; Amos, L.W. Polymer Structure of Cured Alkaline Phenol–Formaldehyde Resol Resins with Respect to Resin Synthesis Mole Ratio and Oxidative Side Reactions. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 3275–3285. [Google Scholar] [CrossRef]
- Christiansen, A.W. Resorcinol-Formaldehyde Reactions in Dilute Solution Observed by Carbon-13 NMR Spectroscopy. J. Appl. Polym. Sci. 2000, 75, 1760–1768. [Google Scholar] [CrossRef]
- Pretsch, E.; Clerc, T.; Seibl, J.; Simon, W. Tables of Spectral Data for Structure Determination of Organic Compounds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-662-10207-7. [Google Scholar]
- Werstler, D.D. Quantitative 13C n.m.r, Characterization of Aqueous Formaldehyde Resins: 2. Resorcinol- Formaldehyde Resins. Polymer 1986, 27, 757–764. [Google Scholar] [CrossRef]
- Hubler, T.L.; Franz, J.A.; Shaw, W.J.; Hogan, M.O.; Hallen, R.T.; Brown, G.N.; Linehan, J.C. Structure/Function Studies of Resorcinol-Formaldehyde (R-F) and Phenol-Formaldehyde (P-F) Copolymer Ion-Exchange Resins; Technical Report PNNL-11347 Richland; Pacific Northwest National Laboratory: Washington, WA, USA, 1996.
- Pratt, L.M.; Szostak, R.; Khan, I.M. Alkaline degradation of resorcinol- formaldehyde resins: Solid-State nmr, thermal adsorption and desorption analysis, and molecular modeling. J. Macromol. Sci. Part A Pure Appl. Chem. 1997, 34, 281–289. [Google Scholar] [CrossRef]
- Arm, S.T.; Blanchard, D.L. Pre-Conditioning and Regeneration Requirements of Ground Gel Resorcinol Formaldehyde Ion Exchange Resin; Technical Report WTP-RPT-104, PNWD-3390; Battelle–Pacific Northwest Division, Richland: Washington, DC, USA, 2004. [Google Scholar]
- Fiskum, S.K.; Colburn, H.A.; Rovira, A.M.; Allred, J.R.; Smoot, M.R.; Peterson, R.A.; Landon, M.R.; Colosi, K.A. Cesium Removal from AP-105 Hanford Tank Waste Using Spherical Resorcinol Formaldehyde Resin. Sep. Sci. Technol. 2019, 54, 1932–1941. [Google Scholar] [CrossRef]
- Shelkovnikova, L.A.; Gavlina, O.T.; Ivanov, V.A. Stability of Phenol-Formaldehyde Ion-Exchange Sorbents in Aqueous Solutions. Russ. J. Phys. Chem. A 2011, 85, 1652–1659. [Google Scholar] [CrossRef]
- King, W.D.; Fondeur, F.F.; Wilmarth, W.R.; Pettis, M.E.; McCollum, S.W. Reactivity of Resorcinol Formaldehyde Resin with Nitric Acid. Sep. Sci. Technol. 2006, 41, 2475–2486. [Google Scholar] [CrossRef]
- Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Schonewill, P.P.; Peterson, R.A. Ion Exchange Kinetics Testing with SRF Resin; Technical Report PNNL-21109; Pacific Northwest National Laboratory: Richland, WA, USA, 2012.
- Arm, S.T.; Blanchard, D.L.; Fiskum, S.K.; Weier, D.R. Chemical Degradation of SuperLig® 644 Ion Exchange Resin; Technical Report PNWD-3315; Battelle-Pacific Northwest Division: Richland, WA, USA, 2003. [Google Scholar]
Indicator | The Value of the Indicator for the Sorbent | ||||
---|---|---|---|---|---|
RFR-Ca | RFR-i | Axionit RCs | Fersal | Clevasol | |
Granule size (mm) | 0.25–1.0 | 0.25–1.0 | 0.25–0.80 | 0.25–3.0 | 0.25–1.0 |
Bulk weight (g/cm3) | 0.61 | 0.68 | 0.82 | 0.53 | 0.52 |
dbw (cm3/g) | 1.63 | 1.47 | 1.22 | 1.87 | 1.92 |
V(specvol) (cm3/g) | 2.73 | 2.08 | 3.29 | 1.87 | 1.92 |
V(specvol) in model solution * (cm3/g) | 2.87 | 2.16 | 3.40 | 1.87 | 1.92 |
Organic Group | RFR-i Stored for 21 Months | RFR-I Stored for 15 Months | RFR-I Stored for 6 Months | Axionit RCs 2018 | Axionit RCs 2022 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (%) * | CS, ppm * | Area (%) | CS, ppm | Area (%) | CS, ppm | Area (%) | CS, ppm | Area (%) | CS, ppm | |
-CH2-(4,6′) | 12.9 | 19.3 | 11.1 | 19.2 | 13.2 | 24.3 | 10.8 | 19.6 | 10.6 | 21 |
-CH2-(4,2′) | 10.4 | 29.1 | 13.6 | 28.3 | 8.2 | 32.7 | 7.5 | 29.1 | 9.5 | 30.2 |
-CH2-C6H6 | - | - | - | - | - | - | 6.7 | 40.2 | 7 | 42.1 |
-CH2OH | 8 | 50.6 | 6.5 | 52.2 | 10 | 56.2 | 5.9 | 51.7 | 6.8 | 53.8 |
hemiformals | - | - | - | - | - | - | - | - | 2.1 | 91 |
C2, C6 | 2.7 | 105 | 3.9 | 104.8 | 6.7 | 106.6 | - | - | - | - |
C4 | 32.3 | 117.9 | 22.1 | 120.8 | 26.9 | 120.1 | 31 | 117.6 | 29 | 119.2 |
C5 | 12.2 | 131.4 | 15.6 | 129.9 | 14.8 | 129.5 | 12.9 | 131.4 | 10.4 | 130.7 |
>C=C< | - | - | - | - | - | - | 3.7 | 141 | 4.6 | 140.7 |
C1, C3 | 17.5 | 151.8 | 23.2 | 151.2 | 15.4 | 154.2 | 16.4 | 151.2 | 16.6 | 151.7 |
R-COO-, >C=O | 4.1 | 160.1 | 4.1 | 159.1 | 4.7 | 160.9 | 5.1 | 160.2 | 3.3 | 158.2 |
Removal Efficiency | Axionit RCs 2022 | Axionit RCs 2017 | Clevasol® | Fersal | RFR-i | RFR-Ca | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Adsorption Cycle | Adsorption Cycle | ||||||||||
% | DF | 1 | 2 | 3 | 1 | 2 | 3 | ||||
99 | 100 | 41 ± 2 | 0 | 22 ± 1 | 127 ± 6 | 30 ± 1 | 45 ± 2 | 89 ± 4 | 44 ± 2 | 31 ± 2 | 29 ± 1 |
95 | 20 | 56 ± 3 | 9 ± 0.5 | 27 ± 1 | 160 ± 8 | 50 ± 3 | 65 ± 3 | 157 ± 8 | 53 ± 3 | 40 ± 2 | 37 ± 2 |
90 | 10 | 63 ± 3 | 10 ± 0.5 | 32 ± 2 | 177 ± 9 | 63 ± 3 | 78 ± 4 | 195 ± 9 | 57 ± 3 | 45 ± 2 | 42 ± 2 |
50 | 2 | 83 ± 4 | 13 ± 0.5 | 45 ± 2 | 237 ± 12 * | 117 ± 6 * | 153 ± 8 | 298 ± 15 * | 77 ± 4 | 73 ± 4 | 59 ± 3 |
Parameters of the Thomas Equation | RFR-Ca | RFR-i | Fersal | ||||
---|---|---|---|---|---|---|---|
Adsorption Cycle | Adsorption Cycle | ||||||
1 | 2 | 3 | 1 | 2 | 3 | ||
a | 7.7 ± 0.5 | 5.3 ± 0.3 | 7.8 ± 0.3 | 5.4 ± 0.2 | 4.3 ± 0.2 | 6.3 ± 0.4 | 9.1 ± 0.3 |
b | 0.43 ± 0.03 | 0.24 ± 0.01 | 0.33 ± 0.01 | 0.15 ± 0.01 | 0.09 ± 0.01 | 0.7 ± 0.1 | 0.13 ± 0.01 |
R2 | 0.9961 | 0.9909 | 0.9972 | 0.9891 | 0.9886 | 0.9125 | 0.9943 |
KTh (cm3/mg × g) | 8.69 | 4.79 | 6.55 | 3.03 | 1.84 | 1.42 | 2.54 |
Removal Efficiency | RFR-Ca | RFR-i | Axionit RCs 2022 | Clevasol | Fersal | |||||
---|---|---|---|---|---|---|---|---|---|---|
% | DF | Adsorption Cycle | Adsorption Cycle | |||||||
1 | 2 | 3 | 1 | 2 | 3 | |||||
99 | 100 | 2.1 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.1 | 1.5 ± 0.1 | 2.2 ± 0.1 | 2.2 ± 0.1 | 2.5 ± 0.1 | 1.0 ± 0.1 | 6.2 ± 0.3 |
95 | 20 | 2.6 ± 0.1 | 1.9 ± 0.1 | 1.8 ± 0.1 | 2.4 ± 0.1 | 3.1 ± 0.2 | 7.6 ± 0.4 1 | 2.9 ± 0.1 | 1.2 ± 0.1 | 7.8 ± 0.4 |
90 | 10 | 2.8 ± 0.1 | 2.2 ± 0.1 | 2.0 ± 0.1 | 3.0 ± 0.1 | 3.8 ± 0.2 | 9.3 ± 0.4 1 | 3.2 ± 0.2 | 1.5 ± 0.1 | 8.6 ± 0.5 |
50 | 2 | 3.4 ± 0.2 | 3.0 ± 0.2 | 2.5 ± 0.1 | 5.0 ± 0.3 1 | 6.31 ± 0.3 | 13.1 ± 0.8 1 | 3.8 ± 0.2 | 1.9 ± 0.1 | 10.8 ± 0.5 1 |
TDEC | 3.8 ± 0.2 1 | 3.5 ± 0.2 1 | 2.8 ± 0.1 1 | 5.8 ± 0.3 1 | 7.61 ± 0.4 | 14.7 ± 0.8 1 | 4 ± 0.2 1 | 2 ± 0.1 2 | 11.7 ± 0.4 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milyutin, V.; Nekrasova, N.; Kozlov, P.; Slobodyuk, A.; Markova, D.; Shaidullin, S.; Feoktistov, K.; Tokar, E.; Tutov, M.; Egorin, A. Removal of Cs-137 from Liquid Alkaline High-Level Radwaste Simulated Solution by Sorbents of Various Classes. Sustainability 2023, 15, 8734. https://doi.org/10.3390/su15118734
Milyutin V, Nekrasova N, Kozlov P, Slobodyuk A, Markova D, Shaidullin S, Feoktistov K, Tokar E, Tutov M, Egorin A. Removal of Cs-137 from Liquid Alkaline High-Level Radwaste Simulated Solution by Sorbents of Various Classes. Sustainability. 2023; 15(11):8734. https://doi.org/10.3390/su15118734
Chicago/Turabian StyleMilyutin, Vitaly, Natalya Nekrasova, Pavel Kozlov, Arseni Slobodyuk, Darya Markova, Sergey Shaidullin, Kirill Feoktistov, Eduard Tokar, Mikhail Tutov, and Andrei Egorin. 2023. "Removal of Cs-137 from Liquid Alkaline High-Level Radwaste Simulated Solution by Sorbents of Various Classes" Sustainability 15, no. 11: 8734. https://doi.org/10.3390/su15118734
APA StyleMilyutin, V., Nekrasova, N., Kozlov, P., Slobodyuk, A., Markova, D., Shaidullin, S., Feoktistov, K., Tokar, E., Tutov, M., & Egorin, A. (2023). Removal of Cs-137 from Liquid Alkaline High-Level Radwaste Simulated Solution by Sorbents of Various Classes. Sustainability, 15(11), 8734. https://doi.org/10.3390/su15118734