Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems
Abstract
:1. Introduction
1.1. State of the Art
1.2. The Original Contribution
2. Materials and Methods
2.1. HEMS Architecture
2.2. Defition of SSAs and NSSAs
2.3. PV System
2.4. Defition of ESS
2.5. Problem Definition
2.6. Optimization Process
2.6.1. Single-Objective Optimization
Algorithm 1: Minimum cost for an SHA with 1-h length. |
|
Algorithm 2: Minimum cost for an SHA with more than 1-h length. |
|
2.6.2. Multi-Objective Optimization
2.7. The Proposed Method
2.7.1. The Modified SFLA Algorithm
2.7.2. The Developed Crossover Operation
Algorithm 3: Crossover operation for SFLA. |
1. Enter the string and the first and last indices of the operation range 2. Create substring in operation range 3. Determine the number of elements of the substring 4. If the first element of the substring is equal to 1, 4.1 Find the indices corresponding to the ones in the substring 4.2 Create a new substring of zeros in the same size of the old substring 4.3 Increment the indices by 1 and set the values corresponding to these indices to one 5. If the last element of the substring is equal to one, 5.1 Find the indices corresponding to the ones in the substring 5.2 Create a new substring of zeros in the same size of the old substring 5.3 Decrement the indices by one and set the values corresponding to these indices to one 6. If (3) and (4) are not the case, 6.1 Generate a random number between 0 and 1. 6.2 If the number is greater than and equal to 0.5, find the indices of substring corresponding to one 6.3 Create a new substring of zeros in the same size of the old substring 6.4 Increment the indices by one and set the values corresponding to these indices to one 6.5 If the number is less than 0.5, find the indices of substring corresponding to one 6.6 Create a new substring of zeros in the same size of the old substring 6.7 Decrement the indices by one and set the values corresponding to these indices to one 7. Create a new string of zeros in the same size of the old string 8. Copy the substring at hand to this string. |
3. Results and Discussion
3.1. Results of Single-Objective Optimization
3.2. Results of Multi-Objective Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
AC | Air conditioner |
AI | Artificial intelligence |
ANN | Artificial neural network |
B2L | Power flow from ESS to load |
BA | Bat algorithms |
BFO | Bacterial foraging optimization |
BSS | Best start slot |
CD | Cloth dryer |
CO | Electric cooker |
DC | Daily energy consumption cost |
DE-CSFLA | Differential evolution-chaos SFLA |
DEP | Dynamic electricity pricing |
DRLA | Deep reinforcement learning algorithm |
DW | Dish washer |
EMC | Energy management controller |
ES | End slot |
ESS | Energy-storage system |
EV | Electric vehicle |
G2B | Power flow from grid to ESS |
G2L | Power flow from grid to load |
GA | Genetic algorithms |
GWO | Grey wolf optimization |
HA | Home appliance |
HD | Hair dryer |
HEMS | Home energy management |
HEMS1a | MOO in HEMS1 for a set of , and |
HEMS1b | MOO in HEMS1 for a set of , and |
HEMS1c | MOO in HEMS1 for a set of , and |
HEMS2a | MOO in HEMS2 for a set of , and |
HEMS2b | MOO in HEMS2 for a set of , and |
HEMS2c | MOO in HEMS2 for a set of , and |
IR | Iron |
IPM | Interior Point Method |
KE | Kettle |
L | Time length |
LCSS | Least cost start slot |
LI | Lighting |
LP | Linear programming |
MILP | Mixed-integer linear programming |
ML | Machine learning |
MOO | Multi-objective optimization |
MPPT | Maximum power point tracker |
MW | Microwave |
NSHA | Non-shiftable HA |
OCDM | Optimal condition decomposition method |
P | Average power |
PAR | Peak-to-average ratio |
PC | Personal computer |
PSO | Particle swarm optimization |
PV | Photovoltaic |
PV2G | Power flow from PV to grid |
PV2L | Power flow from PV to load |
RES | Renewable energy sources |
RG | Refrigerator |
SC | Security cameras |
SFLA | Shuffled frog-leaping algorithm |
SH | Electric shower |
SHA | Shiftable HA |
SR | Solar radiation |
SS | Start slot |
TO | Toaster |
TV | Television |
UD | User’s discomfort |
VC | Vacuum cleaner |
WDC | Weather data center |
WDO | Wind-driven optimization |
WM | Washing machine |
References
- Bouakkaz, A.; Gil Mena, A.J.; Haddad, S.; Ferrari, M.L. Efficient energy scheduling considering cost reduction and energy saving in hybrid energy system with energy storage. J. Energy Storage 2021, 33, 101887. [Google Scholar] [CrossRef]
- Mohammad, A.; Zuhaib, M.; Ashraf, I. An optimal home energy management system with integration of renewable energy and energy storage with home to grid capability. Int. J. Energy Res. 2022, 46, 8352–8366. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, A.; Javaid, N.; Hussain, H.M.; Abdul, W.; Almogren, A.; Niaz, I.A. An Optimized Home Energy Management System with Integrated Renewable Energy and Storage Resources. Energies 2017, 10, 549. [Google Scholar] [CrossRef]
- Dinh, H.T.; Yun, J.; Kim, D.M.; Lee, K.-H.; Kim, D. A Home Energy Management System with Renewable Energy and Energy Storage Utilizing Main Grid and Electricity Selling. IEEE Access 2020, 8, 49436–49450. [Google Scholar] [CrossRef]
- Merdanoğlu, H.; Yakıcı, E.; Doğan, O.T.; Duran, S.; Karatas, M. Finding optimal schedules in a home energy management system. Electr. Power Syst. Res. 2020, 182, 106229. [Google Scholar] [CrossRef]
- Wang, X.; Mao, X.; Khodaei, H. A multi-objective home energy management system based on internet of things and optimization algorithms. J. Build. Eng. 2020, 33, 101603. [Google Scholar] [CrossRef]
- Amer, A.; Shaban, K.; Gaouda, A.; Massoud, A. Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators. Energies 2021, 14, 257. [Google Scholar] [CrossRef]
- Dinh, H.T.; Lee, K.; Kim, D. Supervised-learning-based hour-ahead demand response for a behavior-based home energy management system approximating MILP optimization. Appl. Energy 2022, 321, 119382. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, X.; Wang, L.; Yang, J. Study on Smart Home Energy Management System Based on Artificial Intelligence. J. Sens. 2021, 2021, 9101453. [Google Scholar] [CrossRef]
- Song, Z.; Guan, X.; Cheng, M. Multi-objective optimization strategy for home energy management system including PV and battery energy storage. Energy Rep. 2022, 8, 5396–5411. [Google Scholar] [CrossRef]
- Koltsaklis, N.; Panapakidis, I.; Christoforidis, G.; Knápek, J. Smart home energy management processes support through machine learning algorithms. Energy Rep. 2022, 8, 1–6. [Google Scholar] [CrossRef]
- Chakir, A.; Abid, M.; Tabaa, M.; Hachimi, H. Demand-side management strategy in a smart home using electric vehicle and hybrid renewable energy system. Energy Rep. 2022, 8, 383–393. [Google Scholar] [CrossRef]
- Lissa, P.; Deane, C.; Schukat, M.; Seri, F.; Keane, M.; Barrett, E. Deep reinforcement learning for home energy management system control. Energy AI 2021, 3, 100043. [Google Scholar] [CrossRef]
- Huang, J.; Koroteev, D.D.; Rynkovskaya, M. Machine learning-based demand response in PV-based smart home considering energy management in digital twin. Sol. Energy 2023, 252, 8–19. [Google Scholar] [CrossRef]
- Parandeh, K.; Bagheri, A.; Jadid, S. Optimal Day-ahead Dynamic Pricing of Grid-connected Residential Renewable Energy Resources Under Different Metering Mechanisms. J. Mod. Power Syst. Clean Energy 2023, 11, 168–178. [Google Scholar] [CrossRef]
- Debataa, S.; Kumar, S.C.; Panigrah, S.P. Efficient energy management strategies for hybrid electric vehicles using shuffled frog-leaping algorithm. Int. J. Sustain. Eng. 2015, 8, 138–144. [Google Scholar] [CrossRef]
- Fang, G.; Guo, Y.; Wen, X.; Fu, X.; Lei, X.; Tian, Y.; Wang, T. Machine learning-based demand response in PV-based smart home considering energy management in digital twin. Water Resour. Manag. 2018, 32, 3835–3852. [Google Scholar] [CrossRef]
Ref. | DC | PAR | UD | RES | ESS | Method |
---|---|---|---|---|---|---|
[1] | Y | N | N | Y | Y | PSO |
[2] | Y | Y | N | Y | Y | GWO |
[3] | Y | Y | N | Y | Y | BFO, WDO |
[4] | Y | Y | N | Y | Y | BPSO |
[5] | Y | N | N | Y | Y | MILP |
[6] | Y | N | Y | Y | Y | BFO |
[7] | Y | N | Y | Y | Y | IPM |
[8] | Y | N | Y | Y | Y | MILP |
[9] | Y | N | N | N | Y | AI |
[10] | Y | Y | Y | Y | Y | MILP |
[11] | Y | N | Y | Y | Y | ML |
[12] | Y | N | Y | Y | Y | LP |
[13] | Y | N | N | Y | N | DRLA |
[14] | Y | N | N | Y | N | ANN |
[15] | Y | N | N | Y | N | OCD |
[16] | Y | N | N | Y | N | SFLA-ANN |
[17] | Y | N | N | Y | N | DE-CSFLA |
Type | Appliance | P | L | SS | ES | BSS |
---|---|---|---|---|---|---|
SHA | TO | 0.8 | 1 | 2 | 10 | 8 |
IR | 1.1 | 1 | 2 | 13 | 7 | |
VC | 0.7 | 1 | 9 | 20 | 11 | |
MW | 0.9 | 1 | 9 | 19 | 12 | |
EK | 1 | 1 | 5 | 12 | 7 | |
AC | 1.3 | 10 | 6 | 24 | 10 | |
WM | 1 | 2 | 8 | 21 | 10 | |
CD | 1.8 | 1 | 10 | 23 | 12 | |
CO | 0.6 | 2 | 16 | 21 | 18 | |
DW | 1.4 | 2 | 17 | 24 | 20 | |
SH | 2.5 | 1 | 18 | 24 | 21 | |
HD | 1 | 1 | 21 | 24 | 22 | |
NSHA | PC | 0.2 | 14 | 9 | 22 | 9 |
SC | 0.1 | 24 | 1 | 24 | 1 | |
RG | 0.9 | 21 | 3 | 17 | 3 | |
TV | 0.2 | 6 | 17 | 10 | 10 | |
LI | 0.1 | 7 | 18 | 10 | 10 |
SHA | Non-HEMS | HEMS1 | HEMS2 | BSS | LCSS |
---|---|---|---|---|---|
TO | 19.6 | 6.8 | 5.5 | 8 | 3 |
IR | 13.4 | 9.4 | 7.5 | 7 | 3 |
VC | 12.0 | 5.6 | 4.8 | 11 | 20 |
MW | 14.9 | 7.7 | 6.1 | 12 | 17 |
KE | 12.2 | 9.2 | 6.8 | 7 | 6 |
AC | 186.7 | 117.1 | 89 | 10 | 15 |
WM | 44.7 | 16.2 | 14 | 10 | 20 |
CD | 29.7 | 14.4 | 12 | 12 | 22 |
CO | 10.9 | 9.7 | 8.2 | 18 | 20 |
DW | 22.7 | 22.5 | 19 | 20 | 22 |
SH | 20.5 | 20.0 | 17 | 21 | 20 |
HD | 8.0 | 8.2 | 6.8 | 22 | 21 |
SHA | HEMS1a | HEMS1b | HEMS1c |
---|---|---|---|
TO | 9.8 | 19.6 | 19.6 |
IR | 10.1 | 13.4 | 13.4 |
VC | 11.6 | 11.6 | 11.6 |
MW | 14.9 | 14.9 | 14.9 |
KE | 9.2 | 12.2 | 9.2 |
AC | 117.1 | 127.7 | 117.1 |
WM | 30.2 | 44.7 | 33.7 |
CD | 16.2 | 29.7 | 29.7 |
CO | 10.5 | 10.5 | 10.9 |
DW | 22.7 | 22.7 | 22.7 |
SH | 20.5 | 20.5 | 20 |
HD | 8.0 | 8.0 | 8.1 |
SHA | HEMS1a | HEMS1b | HEMS1c |
---|---|---|---|
TO | −1 | 0 | 0 |
IR | −1 | 0 | 0 |
VC | 1 | 1 | 1 |
MW | 0 | 0 | 1 |
KE | −1 | 0 | −1 |
AC | 5 | 4 | 5 |
WM | 4 | 0 | 1 |
CD | 4 | 0 | 1 |
CO | 1 | 1 | 0 |
DW | 1 | 1 | 0 |
SH | 0 | 0 | 1 |
HD | 0 | 0 | 1 |
SHA | HEMS2a | HEMS2b | HEMS2c |
---|---|---|---|
TO | 19.6 | 19.6 | 21.6 |
IR | 13.4 | 13.4 | 10.1 |
VC | 19.3 | 18.9 | 19.3 |
MW | 15.5 | 14.9 | 15.5 |
KE | 12.2 | 9.2 | 9.2 |
AC | 117.1 | 127.7 | 117.1 |
WM | 33.0 | 44.7 | 33 |
CD | 29.2 | 29.7 | 29.2 |
CO | 10.9 | 10.9 | 10.9 |
DW | 22.7 | 22.7 | 22.7 |
ES | 20.0 | 20.0 | 20 |
HD | 8.1 | 8.1 | 8.1 |
SHA | HEMS2a | HEMS2b | HEMS2c |
---|---|---|---|
TO | 0 | 0 | 1 |
IR | 0 | 0 | −1 |
VC | −1 | −2 | −1 |
MW | −1 | 1 | −1 |
KE | 0 | −1 | −1 |
AC | 5 | 4 | 5 |
WM | 2 | 0 | 2 |
CD | 2 | 0 | 2 |
CO | 0 | 0 | 0 |
DW | 0 | 0 | 0 |
ES | 1 | 1 | 1 |
HD | 1 | 1 | 1 |
Case | Cost (¢) | PAR | UD | |||
---|---|---|---|---|---|---|
I | 0.8 | 0.1 | 0.1 | 616.8 | 2.94 | 10 |
II | 0.7 | 0.1 | 0.2 | 671.5 | 2.94 | 6 |
III | 0.6 | 0.1 | 0.3 | 690.6 | 2.93 | 5 |
IV | 0.5 | 0.1 | 0.4 | 708.8 | 2.58 | 4 |
V | 0.4 | 0.1 | 0.5 | 725.6 | 2.37 | 3 |
Case | Cost (¢) | PAR | UD | |||
---|---|---|---|---|---|---|
I | 0.8 | 0.1 | 0.1 | 616.8 | 2.94 | 10 |
II | 0.7 | 0.1 | 0.2 | 671.5 | 2.94 | 6 |
III | 0.6 | 0.1 | 0.3 | 690.6 | 2.93 | 5 |
IV | 0.5 | 0.1 | 0.4 | 708.8 | 2.58 | 4 |
V | 0.4 | 0.1 | 0.5 | 725.6 | 2.37 | 3 |
Slot | G2B [8] | G2B | B2L [8] | B2La | B2Lb | B2Lc |
---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 0 | 0 | 0 | 0 |
3 | 1 | 1 | 0 | 0 | 0 | 0 |
4 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 0 | 0 | 0 | 0 |
6 | 1 | 1 | 0 | 0 | 0 | 0 |
7 | 1 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0.43 | 0.95 | 0.95 | 0.6 |
9 | 0 | 0 | 0 | 0.3 | 0.95 | 0.95 |
10 | 0 | 0 | 0 | 0.9 | 0.95 | 0.9 |
11 | 0 | 0 | 0 | 0.95 | 0.95 | 0.95 |
12 | 0 | 0 | 0.06 | 0.95 | 0.95 | 0.95 |
13 | 0 | 0 | 0.06 | 0.95 | 0.91 | 0.95 |
14 | 0 | 0 | 0.06 | 0.618 | 0.618 | 0.618 |
15 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0.05 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0.903 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 0 | 0 | 0 | 0 |
Slot | G2B [8] | G2B | B2L [8] | B2La | B2Lb | B2Lc |
---|---|---|---|---|---|---|
1 | 1 | 1 | 0 | 0 | 0 | 0 |
2 | 1 | 1 | 0 | 0 | 0 | 0 |
3 | 1 | 1 | 0 | 0 | 0 | 0 |
4 | 1 | 1 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 0 | 0 | 0 | 0 |
6 | 1 | 1 | 0 | 0 | 0 | 0 |
7 | 1 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0.43 | 0.95 | 0.95 | 0.95 |
9 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0.95 | 0 | 0.95 |
12 | 0 | 0 | 0.06 | 0 | 0.95 | 0.95 |
13 | 0 | 0 | 0.06 | 0 | 0 | 0.95 |
14 | 0 | 0 | 0 | 0 | 0.415 | 0.618 |
15 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0.339 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 |
19 | 0 | 0 | 0.903 | 0 | 0 | 0 |
20 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 |
23 | 0 | 0 | 0 | 0 | 0 | 0 |
24 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tutkun, N.; Scarcello, L.; Mastroianni, C. Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems. Sustainability 2023, 15, 8739. https://doi.org/10.3390/su15118739
Tutkun N, Scarcello L, Mastroianni C. Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems. Sustainability. 2023; 15(11):8739. https://doi.org/10.3390/su15118739
Chicago/Turabian StyleTutkun, Nedim, Luigi Scarcello, and Carlo Mastroianni. 2023. "Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems" Sustainability 15, no. 11: 8739. https://doi.org/10.3390/su15118739
APA StyleTutkun, N., Scarcello, L., & Mastroianni, C. (2023). Improved Low-Cost Home Energy Management Considering User Preferences with Photovoltaic and Energy-Storage Systems. Sustainability, 15(11), 8739. https://doi.org/10.3390/su15118739