Overproduction of Efflux Pumps as a Mechanism of Metal and Antibiotic Cross-Resistance in the Natural Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Sampling Sites and Sample Withdrawal
2.2. Isolation, Selection and Characterisation of the Bacterial Population
2.3. Metal and Antibiotic Resistance Testing
2.4. Determination of Multi-Antibiotic Resistance
2.5. Determination of Overproduction of Efflux Pumps
3. Results and Discussion
3.1. Antibiotics and Metal Resistance
3.2. Overproduction of Efflux Pumps
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Wang, L.; Wang, W.; Li, T.; He, Z.; Yang, X. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 2018, 651, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Mandal, M.; Das, S.N.; Mandal, S. Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance. Access Microbiol. 2020, 2, e000095. [Google Scholar] [CrossRef] [PubMed]
- Sinegani, A.A.S.; Younessi, N. Antibiotic resistance of bacteria isolated from heavy metal-polluted soils with different land uses. J. Glob. Antimicrob. Resist. 2017, 10, 247–255. [Google Scholar] [CrossRef]
- Silvester, R.; Madhavan, A.; Kokkat, A.; Parolla, A.; Adarsh, B.M.; Harikrishnan, M.; Abdulla, M.H. Global surveillance of antimicrobial resistance and hypervirulence in Klebsiella pneumoniae from LMICs: An in-silico approach. Sci. Total Environ. 2021, 802, 149859. [Google Scholar] [CrossRef]
- Kwon, J.H.; Powderly, W.G.; Power, S.; Lengaigne, M.; Saitou, M.; Hayashi, K.; Swaney, D.L.; Ramms, D.J. The post-antibiotic era is here. Science 2021, 373, 471. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.; Zhang, H.; Shi, W.; Liu, Y. Bacterial heavy-metal and antibiotic resistance genes in a copper Tailing Dam Area in Northern China. Front. Microbiol. 2019, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Rajbanshi, A. Study on Heavy metal resistant bacteria in Guheswori sewage treatment plant. Our Nat. 2009, 6, 52–57. [Google Scholar] [CrossRef]
- Zagui, G.S.; Moreira, N.C.; Santos, D.V.; Darini, A.L.C.; Domingo, J.L.; Segura-Muñoz, S.I.; Andrade, L.N. High occurrence of heavy metal resistance genes in bacteria isolated from wastewater: A new concern? Environ. Res. 2020, 196, 110352. [Google Scholar] [CrossRef]
- Salam, L.B. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020, 10, 238. [Google Scholar] [CrossRef]
- Peng, S.; Dolfing, J.; Feng, Y.; Wang, Y.; Lin, X. Enrichment of the antibiotic resistance gene tet (L) in an alkaline soil fertilized with plant derived organic manure. Front. Microbiol. 2018, 9, 1140. [Google Scholar] [CrossRef]
- Dickinson, A.; Power, A.; Hansen, M.; Brandt, K.; Piliposian, G.; Appleby, P.; O’Neill, P.; Jones, R.; Sierocinski, P.; Koskella, B.; et al. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environ. Int. 2019, 132, 105117. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Shen, Q.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.; Wu, M. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, M.; Feng, F.; Zhang, J.; Sui, Q.; Tong, J.; Wei, Y.; Wei, D. Effects of chlortetracycline and copper on tetracyclines and copper resistance genes and microbial community during swine manure anaerobic digestion. Bioresour. Technol. 2017, 238, 57–69. [Google Scholar] [CrossRef]
- Grimsey, E.M.; Weston, N.; Ricci, V.; Stone, J.W.; Piddock, L.J. Over-expression of RamA, which regulates production of the MDR efflux pump AcrAB-TolC, increases mutation rate and influences drug-resistance phenotype. Antimicrob. Agents Chemo-Ther. 2020, 64, e02460-19. [Google Scholar]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.J.; Hobman, J.L. Metal resistance and its association with antibiotic resistance. Adv. Microb. Physiol. 2017, 70, 261–313. [Google Scholar] [CrossRef] [PubMed]
- Amsalu, A.; Sapula, S.A.; Lopes, M.D.B.; Hart, B.J.; Nguyen, A.H.; Drigo, B.; Turnidge, J.; Leong, L.E.; Venter, H. Efflux pump-driven antibiotic and biocide cross-resistance in Pseudomonas aeruginosa isolated from different ecological niches: A case study in the development of multidrug resistance in environmental hotspots. Microorganisms 2020, 8, 1647. [Google Scholar] [CrossRef]
- Kaur, U.J.; Chopra, A.; Preet, S.; Raj, K.; Kondepudi, K.K.; Gupta, V.; Rishi, P. Potential of 1-(1-napthylmethyl)-piperazine, an efflux pump inhibitor against cadmium-induced multidrug resistance in Salmonella enterica serovar Typhi as an adjunct to antibiotics. Braz. J. Microbiol. 2021, 52, 1303–1313. [Google Scholar] [CrossRef]
- Ivanov, M.E.; Fursova, N.K.; Potapov, V.D. Pseudomonas aeruginosa efflux pump superfamily (review of literature). Klin. Lab. Diagn. 2022, 67, 53–58. [Google Scholar] [CrossRef]
- Seiler, C.; Berendonk, T.U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 399. [Google Scholar] [CrossRef]
- Ding, J.; An, X.L.; Lassen, S.B.; Wang, H.T.; Zhu, D.; Ke, X. Heavy metal-induced co-selection of antibiotic resistance genes in the gut microbiota of collembolans. Sci. Total Environ. 2019, 683, 210–215. [Google Scholar] [CrossRef]
- Di Cesare, A.; Eckert, E.; Corno, G. Co-selection of antibiotic and heavy metal resistance in freshwater bacteria. J. Limnol. 2016, 75, 59–66. [Google Scholar] [CrossRef]
- Delmar, J.A.; Su, C.-C.; Yu, E.W. Heavy metal transport by the C us CFBA efflux system. Protein Sci. 2015, 24, 1720–1736. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Couto, I.; Viveiros, M.; Amaral, L. Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. In Antibiotic Resistance Protocols; Humana Press: Totowa, NJ, USA, 2010; pp. 143–157. [Google Scholar] [CrossRef]
- Timková, I.; Lachká, M.; Kisková, J.; Maliničová, L.; Nosáľová, L.; Pristaš, P.; Sedláková-Kaduková, J. High frequency of antibiotic resistance in deep subsurface heterotrophic cultivable bacteria from the Rozália Gold Mine, Slovakia. Environ. Sci. Pollut. Res. 2020, 27, 44036–44044. [Google Scholar] [CrossRef] [PubMed]
- Lachka, M.; Soltisova, K.; Nosalova, L.; Timkova, I.; Pevna, V.; Willner, J.; Janakova, I.; Luptakova, A.; Sedlakova-Kadukova, J. Metal-containing landfills as a source of antibiotic resistance. Environ. Monit. Assess. 2023, 195, 262. [Google Scholar] [CrossRef]
- Aleem, A.; Isar, J.; Malik, A. Impact of long-term application of industrial wastewater on the emergence of resistance traits in Azotobacter chroococcum isolated from rhizosphere soil. Bioresour. Technol. 2003, 86, 7–13. [Google Scholar] [CrossRef]
- Nosáľová, L. Štúdium Baktérií Z Biogeochemického Cyklu Zlata. Master’s Thesis, UPJŠ, Košice, Slovakia, 2019. [Google Scholar]
- Zgurskaya, H.I. Introduction: Transporters, Porins, and Efflux Pumps. Chem. Rev. 2021, 121, 5095–5097. [Google Scholar] [CrossRef] [PubMed]
- Paixão, L.; Rodrigues, L.; Couto, I.; Martins, M.; Fernandes, P.; de Carvalho, C.C.; Monteiro, G.A.; Sansonetty, F.; Amaral, L.; Viveiros, M. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J. Biol. Eng. 2009, 3, 18. [Google Scholar] [CrossRef]
- Chakotiya, A.S.; Tanwar, A.; Narula, A.; Sharma, R.K. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathog. 2017, 107, 254–260. [Google Scholar] [CrossRef]
- Molyneux, P.M.; Kilvington, S.; Wakefield, M.J.; Prydal, J.I.; Bannister, N.P. Autofluorescence signatures of seven pathogens: Preliminary in vitro investigations of a potential diagnostic for Acanthamoeba keratitis. Cornea 2015, 34, 1588–1592. [Google Scholar] [CrossRef]
- Bălăşoiu, M.; Bălăşoiu, A.T.; Mănescu, R.; Avramescu, C.; Ionete, O. Pseudomonas aeruginosa resistance phenotypes and phenotypic highlighting methods. Curr. Health Sci. J. 2014, 40, 85–92. [Google Scholar] [CrossRef]
- Aires, J.R.; Köhler, T.; Nikaido, H.; Plésiat, P. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 1999, 43, 2624–2628. [Google Scholar] [CrossRef] [PubMed]
- Shinde, V.; Thombre, R. Antibiotic resistance profiling of marine halophilic bacteria and haloarchaea. J. Appl. Pharm. Sci. 2016, 6, 132–137. [Google Scholar] [CrossRef]
Antibiotic Concentration (μg/mL) | |||||||||||
AMP | - | - | 5 | - | 10 | 20 | - | 50 | 100 | - | 1000 |
CHLOR | 1 | 2 | 5 | - | 10 | 20 | - | 50 | 100 | - | - |
TET | - | 2 | 5 | 8 | 10 | 20 | - | 50 | 100 | - | - |
KAN | - | - | 5 | - | 10 | 20 | 30 | 50 | 100 | 200 | - |
Metal Concentration (μg/mL) | |||||||||||
Cu | 100 | 125 | 250 | 500 | - | 1000 | - | - | - | - | - |
Zn | 100 | - | 250 | 500 | - | 1000 | - | - | - | - | - |
Pb | 100 | - | - | - | - | 1000 | 1500 | 2000 | - | - | - |
Ni | 100 | - | 300 | 500 | 750 | 1000 | - | - | - | - | - |
Metal/Antibiotic | AMP | CHLO | TET | KAN | Zn | Cu | Ni | Pb |
---|---|---|---|---|---|---|---|---|
Concentration (μg/mL) | 50 | 10 | 10 | 30 | 125 | 300 | 250 | 1000 |
Sampling Site | ATB MIC (ug/mL) | MIC metals (ug/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Bacterial Taxon * | AMP | CHLOR | TET | KAN | Zn | Ni | Cu | Pb | ||
Hodruša | H/L | Rhizobium radiobacter | 800 | 5 | 5 | 10 | 250 | 250 | 750 | 2000 |
Brachybacterium spp. | 10 | 1 | 50 | 5 | 1000 | 500 | 750 | 2000 | ||
Comamonas testosteroni | 200 | 20 | 2 | 200 | 1000 | 500 | 750 | 2000 | ||
H/U2 | Acidovorax spp. | 400 | 50 | 5 | 20 | 500 | 500 | 500 | 1500 | |
H/soil | Rhodococcus erythropolis | 50 | 20 | 10 | 200 | 1000 | 500 | 500 | 2000 | |
H/U1 | Staphylococcus spp. | 100 | 2 | 2 | 5 | 100 | 250 | 500 | 1500 | |
NRI-11 | 10 | 1 | 2 | 5 | 125 | 100 | 100 | 1000 | ||
Košice | K/L | NRI-1 | 10 | 5 | 100 | 200 | 100 | 300 | 150 | 2000 |
NRI-2 | 5 | 5 | 100 | 500 | 100 | 300 | 150 | 2000 | ||
NRI-3 | 5 | 2 | 5 | 200 | 100 | 300 | 200 | 2000 | ||
Microbacterium sp. | 5 | 2 | 10 | 200 | 100 | 300 | 200 | 2000 | ||
NRI-4 | 10 | 5 | 100 | 200 | 100 | 300 | 200 | 2000 | ||
NRI-5 | 5 | 2 | 2 | 100 | 50 | 200 | 150 | 1000 | ||
NRI-6 | 5 | 2 | 2 | 500 | 50 | 300 | 150 | 1000 | ||
NRI-7 | 5 | 2 | 2 | 30 | 25 | 100 | 100 | 1000 | ||
NRI-8 | 10 | 2 | 2 | 200 | 100 | 300 | 200 | 2000 | ||
NRI-9 | 10 | 2 | 2 | 200 | 100 | 300 | 300 | 2000 | ||
NRI-10 | 5 | 2 | 2 | 200 | 100 | 300 | 300 | 2000 | ||
NRI-12 | 5 | 2 | 2 | 30 | 50 | 300 | 150 | 1000 |
Sampling Site | Bacterial Taxon | Overexpression of Efflux Pumps | Ethidium Bromide Concentration (mg/mL) | MAR Index | |
---|---|---|---|---|---|
Hodruša | H/L | Rhizobium radiobacter | √ | 1 | 0.50 |
Brachybacterium spp. | X | 0.63 | |||
Comamonas testosteroni | √ | 1 | 0.88 | ||
H/U2 | Acidovorax spp. | √ | 2.5 | 0.75 | |
H/soil | Rhodococcus erythropolis | √ | 2.5 | 0.88 | |
H/U1 | Staphylococcus spp. | X | 0.38 | ||
NRI-11 | √ | 1 | 0.00 | ||
Košice | K/L | NRI-1 | X | 0.38 | |
NRI-2 | X | 0.38 | |||
NRI-3 | X | 0.25 | |||
Microbacterium sp. | X | 0.25 | |||
NRI-4 | X | 0.38 | |||
NRI-5 | X | 0.13 | |||
NRI-6 | X | 0.13 | |||
NRI-7 | X | 0.00 | |||
NRI-8 | X | 0.25 | |||
NRI-9 | X | 0.38 | |||
NRI-10 | X | 0.38 | |||
NRI-12 | X | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sincak, M.; Šoltisová, K.; Luptakova, A.; Sedlakova-Kadukova, J. Overproduction of Efflux Pumps as a Mechanism of Metal and Antibiotic Cross-Resistance in the Natural Environment. Sustainability 2023, 15, 8767. https://doi.org/10.3390/su15118767
Sincak M, Šoltisová K, Luptakova A, Sedlakova-Kadukova J. Overproduction of Efflux Pumps as a Mechanism of Metal and Antibiotic Cross-Resistance in the Natural Environment. Sustainability. 2023; 15(11):8767. https://doi.org/10.3390/su15118767
Chicago/Turabian StyleSincak, Miroslava, Katarína Šoltisová, Alena Luptakova, and Jana Sedlakova-Kadukova. 2023. "Overproduction of Efflux Pumps as a Mechanism of Metal and Antibiotic Cross-Resistance in the Natural Environment" Sustainability 15, no. 11: 8767. https://doi.org/10.3390/su15118767
APA StyleSincak, M., Šoltisová, K., Luptakova, A., & Sedlakova-Kadukova, J. (2023). Overproduction of Efflux Pumps as a Mechanism of Metal and Antibiotic Cross-Resistance in the Natural Environment. Sustainability, 15(11), 8767. https://doi.org/10.3390/su15118767