In-Lake Mechanisms for Manganese Control—A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Criteria
2.2. Inclusion and Exclusion Criteria
- (i)
- Studies focusing on the internal loading of Mn were included (i.e., studies on Mn external contamination sources such as mining and industrial discharge were excluded).
- (ii)
- Only case studies of lakes and reservoirs were included (i.e., case studies carried out on rivers and groundwater were excluded from the review).
- (iii)
- Only studies published in English were included.
- (iv)
- Only peer-reviewed journal articles were included.
2.3. Article Selection, Data Extraction and Summary
- (i)
- Publication date
- (ii)
- The timeline and global distribution of reviewed articles
- (iii)
- Data on the characteristics of the case study lakes that influence thermal stratification and Mn circulation behaviour:
- Total volume and the surface area of the lake
- Stratification pattern and impact on the level of Mn
- Köppen climate classification of the region in which the lake is located
- (iv)
- Characteristics of the suggested Mn control mechanism:
- Details of the numerical models used to predict the cycle of Mn (if applied)
- Data collection and sampling methodology
- Advantages and disadvantages of the suggested solutions
3. Results
3.1. Time and Spatial Distribution of the Reviewed Articles
3.2. Suggested In-Lake Mn Control Mechanisms
3.2.1. Identification of Mn Behaviour in the Lake
Climate Region | Lake/Reservoir | Circulation Pattern (Monomictic (M) or Dimictic (D)) | Surface Area (km2) | Avg. Depth (m) | Water Quality | Sediment Quality | Water Quality Parameter Monitored | Sampling | Reference | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Mn | Water T0 | Turbidity | DO | Conductivity | pH | ORP | Duration | Season | Sampling Frequency | |||||||||
1 | Temperate climate | Lake Hume, Australia | M | 202.5 | 41.4 | X | X | X | X | X | X | 6 months | Summer | Weekly | [6] | |||
2 | Humid subtropical | Falling Creek Reservoir, USA | D | 0.119 | 4 | X | X | X | X | X | X | 1 year | Summer | Weekly | [14] | |||
3 | Humid continental | Lake Sebasticook, Maine USA | D | 18.3 | 20 | X | X | X | 5 months | Summer/Early Autumn | Monthly | [15] | ||||||
4 | Mediterranean climate | Hodges Reservoir, USA | M | 6 | 29 | X | X | X | X | 8 months | Autumn | Monthly | [16] | |||||
5 | Humid Subtropical | Grand Lake, Oklahoma, USA | M | 188.2 | 50 | X | X | X | 7 months | Winter/Spring | Monthly | [17] | ||||||
6 | Hot Summer Continental | Lake Erie, USA | D | 25,667 | 19 | X | 1 month | Summer | Weekly | [18] | ||||||||
7 | Humid Continental | Three Kettle Lakes, USA | M | N/A | N/A | X | X | X | X | 3 months | Summer | Multiple dates at each lake | [19] | |||||
8 | Humid subtropical | Arha Reservoir, China | M | 4.5 | 13 | X | X | X | X | 10 months | Throughout 10 months | Once in 3 months | [6] | |||||
9 | Humid Subtropical | Zhoucun Reservoir, China | M | 6.5 | 13 | X | X | X | X | X | 3 years | Throughout the year | Weekly and every 3 days during the overturn period | [20] | ||||
10 | Temperate monsoon | Wangjuan Reservoir, China | M | N/A | N/A | X | X | X | X | X | 1 month | Summer | Once | [21] | ||||
11 | Humid subtropical | Daheiting Reservoir, China | M | N/A | 28 | X | X | X | X | 2 years | Winter | Monthly | [22] | |||||
12 | Humid subtropical | Arha Reservoir, China | M | 4.5 | 13 | X | X | X | 10 months | Throughout the year | N/A | [23] | ||||||
13 | Tropical and subtropical | Heihe Reservoir, China | M | 4.55 | 40 | X | X | X | X | 2 years | Throughout the year | Monthly | [24] | |||||
14 | Humid subtropical | Danjiangkou, China | M | N/A | N/A | X | X | X | 3 years | Autumn/Spring | Twice a year | [25] | ||||||
15 | Tropical and Subtropical | El Gergal, Spain | M | 2.5 | 15.7 | X | X | X | X | X | 2 years | During stratification | Biweekly | [11] | ||||
16 | Hot semi-arid | Fokos Reservoir, Greece | M | N/A | N/A | X | X | 1 year | Throughout the year | 20 samples | [26] | |||||||
17 | Subcontinental | Ridracoli Reservoir, Italy | M | 1035 | 82 | X | X | X | X | X | X | 2 years | Throughout the year | Bimonthly | [27] | |||
18 | Marine West Coast | Megget Reservoir, UK | M | 2.59 | N/A | X | X | X | X | 1 day | Autumn | Once | [12] | |||||
19 | Mediterranean | Mujib, Jordan | M | 1.98 | 25 | X | X | X | X | 1 month | Mid-summer | Once | [28] | |||||
20 | Oceanic climate with warm summers | Lake Ngapouri, New Zealand | M | 0.19 | 24.5 | X | X | X | X | 2 years | Autumn | N/A | [29] | |||||
21 | Marine West Coast | Lower Lake Zurich, Switzerland | M | 88 | 142 | X | X | X | 1 year | Summer and Autumn | Every 21 days | [30] | ||||||
22 | Tropical savanna | Mae Thang Reservoir, Thailand | M | N/A | N/A | X | X | X | X | X | 1 year | Not given | Twice | [31] | ||||
23 | Dry-summer subtropical | Mohammed Ben-Abdelkrim Khattabi Reservoir, Morocco | M | N/A | N/A | X | X | X | X | X | 10 years | Throughout the year | Four times a year | [13] |
3.2.2. Testing and Validation of Built In-Lake Mn Control Measures
Hypolimnetic Oxygenation (HO)
Circular or Linear Bubble Plume Diffusers
Water-Lifting Aeration (WLA)
Climate Region | Lake/Reservoir | Surface Area (km2) | Avg Depth (m) | Mn Control Measure | Initial Mn Concentration | Reduction of Mn Concentration Due to Control Measure (%) | References | |
---|---|---|---|---|---|---|---|---|
1 | Summer humid continental | North Twin Lake, Washington, USA | N/A | 9.7 | Hypolimnetic oxygenation | 119 to 32 μg/L | 94% on day 7 to 49% on day 17 | [39] |
2 | Humid subtropical | Carvins Cove Reservoir, USA | 2.5 | 23 | Hypolimnetic oxygenation | N/A | 97% | [34] |
3 | Humid subtropical | Falling Creek Reservoir, USA | 0.119 | 4 | Hypolimnetic oxygenation | N/A | 39% | [40] |
4 | Humid subtropical | Falling Creek Reservoir, USA | 0.119 | 4 | Hypolimnetic oxygenation | N/A | 39% | [41] |
5 | Humid subtropical | Arha Reservoir, China | 4.5 | 13 | Circular bubble plume diffusers | N/A | 48.9% | [35] |
6 | Humid subtropical | Arha Reservoir, China | 4.5 | 13 | Circular bubble plume diffusers | N/A | 48.9% | [33] |
7 | Humid Subtropical | Zhoucun Reservoir, China | 6.5 | 13 | Water-lifting aerators (artificial mixing) | N/A | 84% | [37] |
8 | Humid continental | Heihe Jinpen Reservoir, China | 4.55 | 40 | Water-lifting aerators (artificial mixing) | 0.13 ± 0.02 mg/L to 0.09 ± 0.01 mg/L | 30.8% | [42] |
3.2.3. Prediction and Forecasts—The Application of Models (Digital Solutions)
Forecasting Models
Predictive Models
Climate Region | Lake/Reservoir | Surface Area (km2) | Avg Depth (m) | DD/PB | Phenomenon That the Model Predicts | Water Quality Parameter Inputs | Goal of the Model | References | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature | DO | Water Level | Air temperature | Wind Direction | Wind Speed | pH | Conductivity | ORP | Turbidity | Prediction of Mn | Optimization of a Control Measure | ||||||||
1 | Temperate oceanic climate | The Tarago Reservoir, Australia | 3.6 | 23 | DD | The simulation of the distribution of Mn in a monomictic water reservoir | X | X | X | [6] | |||||||||
2 | Humid subtropical climate | Advancetown Lake, Australia | 15 | 48 | DD | Simulation of the seasonal and spatial variability of Mn | X | X | X | [7] | |||||||||
3 | Humid subtropical climate | Advancetown Lake, Australia | 15 | 48 | DD | Simulation of the seasonal and spatial variability of Mn | X | X | X | X | X | X | X | [49] | |||||
4 | Oceanic climate | Googong Reservoir, Australia | 6.96 | N/A | PB | The optimal efficiency of the mixers | X | [43] | |||||||||||
5 | Humid subtropical climate | Advancetown Lake, Australia | 15 | 48 | PB | Simulation of the seasonal and spatial variability of Mn | X | X | X | X | X | X | [3] | ||||||
6 | Humid subtropical climate | Advancetown Lake, Australia | 15 | 48 | PB | Simulation of the seasonal and spatial variability of Mn 7 days ahead | X | [49] | |||||||||||
7 | Humid subtropical climate | Advancetown Lake, Australia | 15 | 48 | PB | Simulation of the seasonal and spatial variability of Mn 7 days ahead | X | X | X | X | [50] | ||||||||
8 | Humid subtropical | Leesville Lake, USA | 13.2 | 23 | DD | Simulation of the seasonal and spatial variability of Mn | X | X | X | X | [1] | ||||||||
9 | Moderate oceanic climate | San Vicente Reservoir, USA | 6.4 | 57.9 | PB | Simulate the effect of operation of a linear diffuser oxygenation system on thermal stratification. | X | X | X | [45] | |||||||||
10 | Dry-summer subtropical | Walnut Canyon Reservoir, USA | N/A | N/A | PB | Predict association between water temperature and water quality | X | [46] | |||||||||||
11 | Temperate monsoon | Wangjuan Reservoir, China | N/A | N/A | DD | Simulation of the seasonal and spatial variability of Mn—impact of air temperature, water level, wind speed, wind direction | X | X | X | X | X | [51] | |||||||
12 | Mediterranean climate region | Dhuenn Reservoir, Germany | N/A | 53 | PB | Water balance, vertical stratification, mixing, heat exchange and the effect of inflows/outflows | X | X | X | [47] | |||||||||
13 | Humid continental | Firiza-Strîmtori Reservoir, Romania | 168 | N/A | DD | Simulation of the seasonal and spatial variability of heavy metals including Mn | X | [52] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munger, Z.W.; Shahady, T.D.; Schreiber, M.E. Effects of reservoir stratification and watershed hydrology on manganese and iron in a dam-regulated river. Hydrol. Process. 2017, 31, 1622–1635. [Google Scholar] [CrossRef]
- World Health Organization. Potable Reuse: Guidance for Producing Safe Drinking-Water. 2017. Available online: http://apps.who.int/bookorders (accessed on 1 August 2022).
- Bertonea, E.; Stewarta, R.A.; Zhanga, H.; O’Halloranb, K. Data driven statistical model for manganese concentration prediction in drinking water reservoirs. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 6 December 2013; pp. 2695–2701. [Google Scholar] [CrossRef]
- Wurbs, R. Reservoir system management. In Sustainable Water Management and Technologies; CRC Press: Boca Raton, FL, USA, 2016; Volume 1, pp. 1–429. [Google Scholar] [CrossRef]
- Baldwin, D.S.; Gigney, H.; Wilson, J.S.; Watson, G.; Boulding, A.N. Drivers of water quality in a large water storage reservoir during a period of extreme drawdown. Water Res. 2008, 42, 4711–4724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, H.; Bertone, E.; Stewart, R.; Shen, X.; Cinque, K. A three-dimensional manganese model for the management of a monomictic drinking water reservoir. Environ. Model. Softw. 2021, 146, 105213. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Zhang, H.; Bartkow, M.; Hacker, C. An autonomous decision support system for manganese forecasting in subtropical water reservoirs. Environ. Model. Softw. 2015, 73, 133–147. [Google Scholar] [CrossRef]
- Deemer, B.R.; Harrison, J.A. Summer redox dynamics in a eutrophic reservoir and sensitivity to a summer’s end drawdown event. Ecosystems 2019, 22, 1618–1632. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Pickering, C.; Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef]
- Montes-Pérez, J.J.; Marcé, R.; Obrador, B.; Conejo-Orosa, T.; Díez, J.L.; Escot, C.; Reyes, I.; Moreno-Ostos, E. Hydrology influences carbon flux through metabolic pathways in the hypolimnion of a Mediterranean reservoir. Aquat. Sci. 2022, 84, 36. [Google Scholar] [CrossRef]
- Abesser, C.; Robinson, R. Mobilisation of iron and manganese from sediments of a Scottish Upland reservoir. J. Limnol. 2010, 69, 4. [Google Scholar] [CrossRef]
- Elouahli, A.; Barcha, S.E.; Sammoudi, R.; Fekhaoui, M. Trophic status and impact of the filling rate on eutrophication of the MBAK dam. AACL Bioflux 2022, 15, 1067–1082. [Google Scholar]
- Krueger, K.M.; Vavrus, C.E.; Lofton, M.E.; McClure, R.P.; Gantzer, P.; Carey, C.C.; Schreiber, M.E. Iron and manganese fluxes across the sediment-water interface in a drinking water reservoir. Water Res. 2020, 182, 116003. [Google Scholar] [CrossRef]
- Mayer, L.M.; Liotta, F.P.; Norton, S.A. Hypolimnetic redox and phosphorus cycling in hypereutrophic Lake Sebasticook, Maine. Water Res. 1982, 16, 1189–1196. [Google Scholar] [CrossRef]
- Beutel, M.; Fuhrmann, B.; Herbon, G.; Chow, A.; Brower, S.; Pasek, J. Cycling of methylmercury and other redox-sensitive compounds in the profundal zone of a hypereutrophic water supply reservoir. Hydrobiologia 2020, 847, 4425–4446. [Google Scholar] [CrossRef]
- Wildman, R.A.J.; Forde, N.A. Effect of a moderate-size reservoir on transport of trace elements in a watershed. Lake Reserv. Manag. 2016, 32, 353–365. [Google Scholar] [CrossRef]
- Godwin, C.M.; Zehnpfennig, J.R.; Learman, D.R. Biotic and Abiotic Mechanisms of Manganese (II) Oxidation in Lake Erie. Front. Environ. Sci. 2020, 8, 57. [Google Scholar] [CrossRef]
- Koretsky, C.M.; MacLeod, A.; Sibert, R.J.; Snyder, C. Redox stratification and salinization of Three Kettle Lakes in Southwest Michigan, USA. Water Air Soil Pollut. 2012, 223, 1415–1427. [Google Scholar] [CrossRef]
- Qiu, X.; Huang, T.; Zeng, M.; Shi, J.; Cao, Z.; Zhou, S. Abnormal increase of Mn and TP concentrations in a temperate reservoir during fall overturn due to drought-induced drawdown. Sci. Total Environ. 2017, 575, 996–1004. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, X.; Wang, T.; Zhang, J. Influences of key factors on manganese release from soil of a reservoir shore. Environ. Sci. Pollut. Res. 2015, 22, 11801–11812. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Fu, H.; Chen, B.; Wang, M.; Wang, Z. How environmental protection motivation influences on residents’ recycled water reuse behaviors: A case study in Xi’an City. Water 2018, 10, 1282. [Google Scholar] [CrossRef]
- Chen, X.; Brimicombe, A.J. Temporal and spatial variations of fe and mn in arha reservoir. WIT Trans. Ecol. Environ. 1997, 20, 10. [Google Scholar]
- Ma, W.-X.; Huang, T.-L.; Li, X.; Zhang, H.-H.; Ju, T. Impact of short-term climate variation and hydrology change on thermal structure and water quality of a canyon-shaped, stratified reservoir. Environ. Sci. Pollut. Res. 2015, 22, 18372–18380. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Yin, W.; Jia, H.; Xu, J.; Li, N.; Chen, Q.; Zhong, Z.; Wang, J.; Shi, Z. Dynamics of dissolved heavy metals in reservoir bays under different hydrological regulation. J. Hydrol. 2021, 595, 126042. [Google Scholar] [CrossRef]
- Pavlidis, G.; Ploumistou, E.; Karasali, H.; Liapis, K.; Anagnostopoulos, C.; Charalampous, A.; Alexakis, D.; Gamvroula, D.; Tsihrintzis, V.A. Evaluation of the water quality status of two surface water reservoirs in a Mediterranean island. Environ. Monit. Assess. 2018, 190, 570. [Google Scholar] [CrossRef] [PubMed]
- Toller, S.; Giambastiani, B.M.S.; Greggio, N.; Antonellini, M.; Vasumini, I.; Dinelli, E. Assessment of seasonal changes in water chemistry of the ridracoli water reservoir (Italy): Implications for water management. Water 2020, 12, 581. [Google Scholar] [CrossRef]
- Al-Taani, A.A.; El-Radaideh, N.M.; Al Khateeb, W.M.; Al Bsoul, A. Reservoir water quality: A case from Jordan. Environ. Monit. Assess. 2018, 190, 604. [Google Scholar] [CrossRef] [PubMed]
- Hartland, A.; Andersen, M.S.; Hamilton, D.P. Phosphorus and arsenic distributions in a seasonally stratified, iron-and manganese-rich lake: Microbiological and geochemical controls. Environ. Chem. 2015, 12, 708–722. [Google Scholar] [CrossRef]
- Wieland, E.; Lienemann, P.; Bollhalder, S.; Lück, A.; Santschi, P.H. Composition and transport of settling particles in Lake Zurich: Relative importance of vertical and lateral pathways. Aquat. Sci. 2001, 63, 123–149. [Google Scholar] [CrossRef]
- Grellier, S.; Janeau, J.L.; Thothong, W.; Boonsaner, A.; Bonnet, M.P.; Lagane, C.; Seyler, P. Seasonal effect on trace metal elements behaviour in a reservoir of northern Thailand. Environ. Monit. Assess. 2013, 185, 5523–5536. [Google Scholar] [CrossRef]
- Preece, E.P.; Moore, B.C.; Skinner, M.M.; Child, A.; Dent, S. A review of the biological and chemical effects of hypolimnetic oxygenation. Lake Reserv. Manag. 2019, 35, 229–246. [Google Scholar] [CrossRef]
- Lan, C.; Chen, J.; Wang, J.; Guo, J.; Yu, J.; Yu, P.; Yang, H.; Liu, Y. Application of circular bubble plume diffusers to restore water quality in a sub-deep reservoir. Int. J. Environ. Res. Public Health 2017, 14, 1298. [Google Scholar] [CrossRef]
- Gantzer, P.A.; Bryant, L.D.; Little, J.C. Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation. Water Res. 2009, 43, 1285–1294. [Google Scholar] [CrossRef]
- Lan, C.; Ji, Y.; Wang, J.; Yang, H. Water quality restoration of a drinking water outlet area in a eutrophic reservoir using hypolimnetic oxygenation in Southwest China. Polish J. Environ. Stud. 2021, 30, 1237–1246. [Google Scholar] [CrossRef]
- Schladow, G. Lake destratification by bubble-plume systems: Design methodology. Source 1993, 119, 350–368. [Google Scholar] [CrossRef]
- JianChao, S.; Yongrui, Y.; Fei, L.; TingLin, H.; Qitao, Y. Constraining release of pollutants from anoxic bottom sediment via water-lifting aeration in a source water reservoir, East China. J. Soils Sediments 2021, 21, 3300–3309. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.; Tan, X.; Zhou, Z.; Ma, W. Destratification and oxygenation efficiency of a water-lifting aerator system in a deep reservoir: Implications for optimal operation. J. Environ. Sci. 2018, 73, 9–19. [Google Scholar] [CrossRef]
- Dent, S.R.; Beutel, M.W.; Gantzer, P.; Moore, B.C. Response of methylmercury, total mercury, iron and manganese to oxygenation of an anoxic hypolimnion in North Twin lake, Washington. Lake Reserv. Manag. 2014, 30, 119–130. [Google Scholar] [CrossRef]
- Munger, Z.W.; Carey, C.C.; Gerling, A.B.; Hamre, K.D.; Doubek, J.P.; Klepatzki, S.D.; McClure, R.P.; Schreiber, M.E. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir. Water Res. 2016, 106, 1–14. [Google Scholar] [CrossRef]
- Munger, Z.W.; Carey, C.C.; Gerling, A.B.; Doubek, J.P.; Hamre, K.D.; McClure, R.P.; Schreiber, M.E. Oxygenation and hydrologic controls on iron and manganese mass budgets in a drinking-water reservoir. Lake Reserv. Manag. 2019, 35, 277–291. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, T.; Gong, W.; Li, Y.; Liu, Y.; Zhou, S.; Cao, M. Water quality responses during the continuous mixing process and informed management of a stratified drinking water reservoir. Sustainability 2019, 11, 7106. [Google Scholar] [CrossRef]
- Castelletti, A.; Pianosi, F.; Soncini-Sessa, R.; Antenucci, J.P. A multi objective response surface approach for improved water quality planning in lakes and reservoirs. Water Resour. Res. 2010, 46, 7–11. [Google Scholar] [CrossRef]
- Rousso, B.Z.; Bertone, E.; Stewart, R.; Hamilton, D.P. A systematic literature review of forecasting and predictive models for cyanobacteria blooms in freshwater lakes. Water Res. 2020, 182, 115959. [Google Scholar] [CrossRef]
- Beutel, M.; Hannoun, I.; Pasek, J.; Kavanagh, K.B. Evaluation of hypolimnetic oxygen demand in a large eutrophic raw water reservoir San Vicente Reservoir, Calif. J. Environ. Eng. 2007, 133, 130–138. [Google Scholar] [CrossRef]
- Anderson, M.A.; Komor, A.; Ikehata, K. Flow routing with bottom withdrawal to improve water quality in Walnut Canyon Reservoir, California. Lake Reserv. Manag. 2014, 30, 131–142. [Google Scholar] [CrossRef]
- Weber, M.; Rinke, K.; Hipsey, M.R.; Boehrer, B. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia. J. Environ. Manage. 2017, 197, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zong, R.; He, H.; Liu, K.; Yan, M.; Miao, Y.; Ma, B.; Huang, X. Biogeographic distribution patterns of algal community in different urban lakes in China: Insights into the dynamics and co-existence. J. Environ. Sci. 2021, 100, 216–227. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Zhang, H.; O’halloran, K. Statistical analysis and modelling of the manganese cycle in the subtropical Advancetown Lake, Australia. J. Hydrol. Stud. 2016, 8, 69–81. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Zhang, H.; O’Halloran, K. Intelligent data mining of vertical profiler readings to predict manganese concentrations in water reservoirs. J. Water Supply Res. Technol.-AQUA 2014, 63, 541–552. [Google Scholar] [CrossRef]
- Peng, H.; Zheng, X.; Chen, L.; Wei, Y. Analysis of numerical simulations and influencing factors of seasonal manganese pollution in reservoirs. Environ. Sci. Pollut. Res. 2016, 23, 14362–14372. [Google Scholar] [CrossRef]
- Dippong, T.; Mihali, C.; Goga, F.; Cical, E. Seasonal evolution and depth variability of heavy metal concentrations in the water of Firiza-StrÎmtori lake, nw of Romania. Stud. Univ. Babes-Bolyai Chem. 2017, 62, 213–228. [Google Scholar] [CrossRef]
Search Criteria | Boolean Operator | Key Words |
---|---|---|
Water quality parameter | Manganese OR Mn [TI and Abstract] | |
AND | ||
Stratification | Stratif * OR Thermal Stratif * [TI and Abstract] | |
AND | ||
Water supply | “Water supply” OR drink * OR potable [TI and Abstract] | |
AND | ||
Treatment | Treat* OR Destrat * OR Oxidis * OR control OR aerat * OR “turnover” OR Manag * [TI and Abstract] | |
AND | ||
Forecasting | Predict * OR forecast OR model * [TI and Abstract] | |
AND | ||
Water body | lake* OR lagoon * OR pond * OR freshwater * OR reservoir * OR inland [TI and Abstract] | |
AND | ||
Seasonality/climate | Summer OR Season OR Winter OR Temperature OR Subtropical [TI and Abstract] | |
AND | ||
Document type | Full text journal article | |
AND | ||
Databases | Web of Science, ProQuest and Scopus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semasinghe, C.; Rousso, B.Z. In-Lake Mechanisms for Manganese Control—A Systematic Literature Review. Sustainability 2023, 15, 8785. https://doi.org/10.3390/su15118785
Semasinghe C, Rousso BZ. In-Lake Mechanisms for Manganese Control—A Systematic Literature Review. Sustainability. 2023; 15(11):8785. https://doi.org/10.3390/su15118785
Chicago/Turabian StyleSemasinghe, Christina, and Benny Zuse Rousso. 2023. "In-Lake Mechanisms for Manganese Control—A Systematic Literature Review" Sustainability 15, no. 11: 8785. https://doi.org/10.3390/su15118785
APA StyleSemasinghe, C., & Rousso, B. Z. (2023). In-Lake Mechanisms for Manganese Control—A Systematic Literature Review. Sustainability, 15(11), 8785. https://doi.org/10.3390/su15118785