Tracking the Transit Divide: A Multilevel Modelling Approach of Urban Inequalities and Train Ridership Disparities in Chicago
Abstract
:1. Introduction
2. Literature Review
2.1. Urban Inequalities, COVID-19, and Mobility Behaviour
2.2. Residential Segregation and Chicago’s L-Train
3. Materials and Methods
3.1. Modelling Approach and Unit Structure
3.2. Model Development
3.2.1. Null Models
3.2.2. Time Trend Models
3.2.3. Random-Coefficient Model with Covariates Models
3.3. Data, Study Location, and Study Period
3.3.1. Response Variable
3.3.2. Supplementary Data and Station Service Areas
4. Results
4.1. Null Models and Time Trend
4.2. Random-Coefficient Models with Covariates
5. Discussion and Conclusions
5.1. Race and Ethnicity
5.2. Land-Use
5.3. Urban Inequalities
5.4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dong, X. Investigating changes in longitudinal associations between declining bus ridership, bus service, and neighborhood characteristics. J. Public Transp. 2022, 24, 100011. [Google Scholar] [CrossRef]
- Hu, S.; Chen, P. Who left riding transit? Examining socioeconomic disparities in the impact of COVID-19 on ridership. Transp. Res. Part D Transp. Environ. 2021, 90, 102654. [Google Scholar] [CrossRef]
- Bucsky, P. Modal share changes due to COVID-19: The case of Budapest. Transp. Res. Interdiscip. Perspect. 2020, 8, 100141. [Google Scholar] [CrossRef]
- Brough, R.; Freedman, M.; Phillips, D.C. Understanding socioeconomic disparities in travel behavior during the COVID-19 pandemic. J. Reg. Sci. 2021, 61, 753–774. [Google Scholar] [CrossRef] [PubMed]
- Van Dorn, A.; Cooney, R.E.; Sabin, M.L. COVID-19 exacerbating inequalities in the US. Lancet 2020, 395, 1243–1244. [Google Scholar] [CrossRef] [PubMed]
- Carrión, D.; Colicino, E.; Pedretti, N.F.; Arfer, K.B.; Rush, J.; DeFelice, N.; Just, A.C. Neighborhood-level disparities and subway utilization during the COVID-19 pandemic in New York City. Nat. Commun. 2021, 12, 3692. [Google Scholar] [CrossRef] [PubMed]
- Sy, K.T.L.; Martinez, M.E.; Rader, B.; White, L.F. Socioeconomic disparities in subway use and COVID-19 outcomes in New York City. Am. J. Epidemiol. 2021, 190, 1234–1242. [Google Scholar] [CrossRef]
- Osorio, J.; Liu, Y.; Ouyang, Y. Executive orders or public fear: What caused transit ridership to drop in Chicago during COVID-19? Transp. Res. Part D Transp. Environ. 2022, 105, 103226. [Google Scholar] [CrossRef]
- Nanda, S. Inequalities and COVID-19 1. In COVID-19; Routledge: London, UK, 2020; pp. 109–123. [Google Scholar]
- Swyngedouw, E. The segregation of social interactions in the red line L-train in Chicago. Symb. Interact. 2013, 36, 293–313. [Google Scholar] [CrossRef]
- Hamnett, C. Urban inequality. In Handbook of Urban Geography; Edward Elgar Publishing: Cheltenham, UK, 2019; pp. 242–254. [Google Scholar]
- Nijman, J.; Wei, Y.D. Urban inequalities in the 21st century economy. Appl. Geogr. 2020, 117, 102188. [Google Scholar] [CrossRef]
- Wellman, G.C. Transportation apartheid: The role of transportation policy in societal inequality. Public Work. Manag. Policy 2014, 19, 334–339. [Google Scholar] [CrossRef]
- Power, A. Social inequality, disadvantaged neighbourhoods and transport deprivation: An assessment of the historical influence of housing policies. J. Transp. Geogr. 2012, 21, 39–48. [Google Scholar] [CrossRef]
- Falavigna, C.; Hernandez, D. Assessing inequalities on public transport affordability in two latin American cities: Montevideo (Uruguay) and Córdoba (Argentina). Transp. Policy 2016, 45, 145–155. [Google Scholar] [CrossRef]
- Batty, M. The Coronavirus crisis: What will the post-pandemic city look like? Environ. Plan. B Urban Anal. City Sci. 2020, 47, 547–552. [Google Scholar] [CrossRef]
- Credit, K.; Dias, G.; Li, B. Exploring neighbourhood-level mobility inequity in Chicago using dynamic transportation mode choice profiles. Transp. Res. Interdiscip. Perspect. 2021, 12, 100489. [Google Scholar] [CrossRef]
- Kim, E.J.; Marrast, L.; Conigliaro, J. COVID-19: Magnifying the effect of health disparities. J. Gen. Intern. Med. 2020, 35, 2441–2442. [Google Scholar] [CrossRef]
- Patel, J.A.; Nielsen, F.B.H.; Badiani, A.A.; Assi, S.; Unadkat, V.A.; Patel, B.; Ravindrane, R.; Wardle, H. Poverty, inequality and COVID-19: The forgotten vulnerable. Public Health 2020, 183, 110. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Miravet, D.; Domènech, A. COVID-19 and urban public transport services: Emerging challenges and research agenda. Cities Health 2021, 5 (Suppl. S1), S177–S180. [Google Scholar] [CrossRef]
- Eisenmann, C.; Nobis, C.; Kolarova, V.; Lenz, B.; Winkler, C. Transport mode use during the COVID-19 lockdown period in Germany: The car became more important, public transport lost ground. Transp. Policy 2021, 103, 60–67. [Google Scholar] [CrossRef]
- Islind, A.S.; Óskarsdóttir, M.; Steingrímsdóttir, H. Changes in mobility patterns in Europe during the COVID-19 pandemic: Novel insights using open source data. arXiv 2020, arXiv:2008.10505. [Google Scholar]
- Latif, S.; Usman, M.; Manzoor, S.; Iqbal, W.; Qadir, J.; Tyson, G.; Castro, I.; Razi, A.; Boulos, M.N.K.; Weller, A.; et al. Leveraging Data Science to Combat COVID-19: A Comprehensive Review. IEEE Trans. Artif. Intell. 2020, 1, 85–103. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Bennell, K.; White, D.K.; Wei, J.; Wu, Z.; He, H.; Liu, S.; Luo, X.; Hu, S.; et al. Physical Distancing Measures and Walking Activity in Middle-aged and Older Residents in Changsha, China, during the COVID-19 Epidemic Period: Longitudinal Observational Study. J. Med. Internet Res. 2020, 22, e21632. [Google Scholar] [CrossRef]
- Almlöf, E.; Rubensson, I.; Cebecauer, M.; Jenelius, E. Who continued travelling by public transport during COVID-19? Socioeconomic factors explaining travel behaviour in Stockholm 2020 based on smart card data. Eur. Transp. Res. Rev. 2021, 13, 31. [Google Scholar] [CrossRef]
- Burström, B.; Tao, W. Social determinants of health and inequalities in COVID-19. Eur. J. Public Health 2020, 30, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Kissler, S.M.; Kishore, N.; Prabhu, M.; Goffman, D.; Beilin, Y.; Landau, R.; Gyamfi-Bannerman, C.; Bateman, B.T.; Snyder, J.; Razavi, A.S.; et al. Reductions in commuting mobility correlate with geographic differences in SARS-CoV-2 prevalence in New York City. Nat. Commun. 2020, 11, 4674. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Noland, R.B. Bikeshare and subway ridership changes during the COVID-19 pandemic in New York City. Transp. Policy 2021, 106, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Timberlake, J.M. Residential segregation. In The Wiley Blackwell Encyclopedia of Race, Ethnicity, and Nationalism; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Bader, M.D.; Krysan, M. Community attraction and avoidance in Chicago: What’s race got to do with it? Ann. Am. Acad. Political Soc. Sci. 2015, 660, 261–281. [Google Scholar] [CrossRef]
- Acs, G.; Pendall, R.; Treskon, M.; Khare, A. The Cost of Segregation: National Trends and the Case of Chicago, 1990–2010; Urban Institute: Washington, DC, USA, 2017. [Google Scholar]
- Gelman, A.; Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Chicago Data Portal. CTA—Ridership—‘L’ Station Entries—Monthly Day-Type Averages & Totals. Available online: https://data.cityofchicago.org/Transportation/CTA-Ridership-L-Station-Entries-Monthly-Day-Type-A/t2rn-p8d7 (accessed on 27 October 2022).
- Chicago.Gov. Mayor Lightfoot Announces Chicago Has Moved to Phase 5 Fully Reopening The City. 2021. Available online: https://www.chicago.gov/city/en/depts/mayor/press_room/press_releases/2021/june/Phase5FullyReopened.html (accessed on 6 March 2023).
- Chicago.Gov. COVID-19 Vaccination Phases and Rollout. 2023. Available online: https://www.chicago.gov/city/en/sites/covid19-vaccine/home/vaccine-distribution-phases.html (accessed on 6 March 2023).
- American Community Survey (A). B03002—Hispanic or Latino Origin by Race. Available online: https://data.census.gov/table?q=B03002:+HISPANIC+OR+LATINO+ORIGIN+BY+RACE&g=0100000US&tid=ACSDT5Y2020.B03002 (accessed on 27 October 2022).
- American Community Survey (B). Available online: https://data.census.gov/table?q=s2801&g=0100000US&tid=ACSST1Y2021.S2801 (accessed on 27 October 2022).
- American Community Survey (C). Available online: https://data.census.gov/table?q=DP03&g=0100000US&tid=ACSDP1Y2021.DP03 (accessed on 27 October 2022).
- Chicago Metropolitan Area for Planning. Available online: https://www.cmaillinois.gov/data/data-hub (accessed on 27 October 2022).
- Illinois Department of Public Health. Available online: https://dph.illinois.gov/covid19/vaccine/vaccination-by-zip-code.html (accessed on 27 October 2022).
- Sun, Y.; Thakuriah, P. Public transport availability inequalities and transport poverty risk across England. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 2775–2789. [Google Scholar] [CrossRef]
- El-Geneidy, A.; Grimsrud, M.; Wasfi, R.; Tétreault, P.; Surprenant-Legault, J. New evidence on walking distances to transit stops: Identifying redundancies and gaps using variable service areas. Transportation 2014, 41, 193–210. [Google Scholar] [CrossRef]
- Rodriguez-Diaz, C.E.; Guilamo-Ramos, V.; Mena, L.; Hall, E.; Honermann, B.; Crowley, J.S.; Baral, S.; Prado, G.J.; Marzan-Rodriguez, M.; Beyrer, C.; et al. Risk for COVID-19 infection and death among Latinos in the United States: Examining heterogeneity in transmission dynamics. Ann. Epidemiol. 2020, 52, 46–53. [Google Scholar] [CrossRef]
- Tai, D.B.G.; Shah, A.; Doubeni, C.A.; Sia, I.G.; Wieland, M.L. The disproportionate impact of COVID-19 on racial and ethnic minorities in the United States. Clin. Infect. Dis. 2021, 72, 703–706. [Google Scholar] [CrossRef]
- Chan, H.F.; Skali, A.; Savage, D.A.; Stadelmann, D.; Torgler, B. Risk attitudes and human mobility during the COVID-19 pandemic. Sci. Rep. 2020, 10, 19931. [Google Scholar] [CrossRef] [PubMed]
- Hunter, R.F.; Garcia, L.; de Sa, T.H.; Zapata-Diomedi, B.; Millett, C.J.; Woodcock, J.; Pentland, A.; Moro, E. Effect of COVID-19 response policies on walking behavior in US cities. medRxiv 2020, 12, 3652. [Google Scholar] [CrossRef] [PubMed]
- Hino, K.; Asami, Y. Change in walking steps and association with built environments during the COVID-19 state of emergency: A longitudinal comparison with the first half of 2019 in Yokohama, Japan. Health Place 2021, 69, 102544. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.J.; Hensher, D.A. Insights into the impact of COVID-19 on household travel and activities in Australia–The early days of easing restrictions. Transp. Policy 2020, 99, 95–119. [Google Scholar] [CrossRef]
- American Community Survey. Available online: https://data.census.gov/table?q=below+poverty+level&tid=ACSST5Y2020.S1701 (accessed on 6 May 2023).
Model | Covariates | Model |
---|---|---|
Model 1 | None | Unconditional Linear Regression |
Model 2 | None | Variance-Component Model |
Model 3 | Time Trend | Random-Intercept |
Model 4 | Time Trend | Random-Coefficient |
Model 5 | Time Trend; Race and Ethnicity | Random-Coefficient |
Model 6 | Time Trend; Race and Ethnicity; Land-Use | Random-Coefficient |
Model 7 | Time Trend; Race and Ethnicity; Land-Use; Housing, Health, and Economic Characteristics | Random-Coefficient |
Final Model | Time Trend; Race and Ethnicity; Land-Use; Housing, Health, and Economic Characteristics | Random-Coefficient |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Est. | SE | Est. | SE | Est. | SE | Est. | SE | |
Fixed Effects: | ||||||||
Intercept | −64.12 *** | 0.28 | −64.12 *** | 0.61 | −75.49 *** | 0.63 | −75.49 *** | 0.72 |
n_month | - | - | - | - | 2.27 *** | 0.03 | 2.27 *** | 0.07 |
Est. | Est. | Est. | Est. | |||||
Random Effects: | ||||||||
Station Level: | ||||||||
Between-Station Variance | - | 44.59 | 49.76 | 68.97 | ||||
Intercept-Slope Covariance | - | - | - | −3.30 | ||||
N-month Variance | - | - | - | 0.57 | ||||
Observational Level: | ||||||||
Residual Variance | 119.37 | 74.70 | 17.85 | 11.53 | ||||
Deviance | 11,650 | 11,216 | 9226 | 8878 |
Model 5 | Model 6 | Model 7 | Final Model | |||||
---|---|---|---|---|---|---|---|---|
Est. | SE | Est. | SE | Est. | SE | Est. | SE | |
Fixed Effects: | ||||||||
Intercept | −81.29 *** | 1.53 | −82.28 *** | 0.98 | −79.54 *** | 2.09 | −79.84 *** | 2.10 |
n_month | 2.27 *** | 0.07 | 2.27 *** | 0.06 | 2.27 *** | 0.05 | 2.27 *** | 0.05 |
Black or African American | 0.13 *** | 0.02 | 0.15 *** | 0.06 | 0.09 + | 0.05 | 0.10 + | 0.05 |
Asian | 0.01 | 0.90 | - | - | - | - | - | - |
Hispanic or Latino | 0.18 *** | 0.03 | 0.16 *** | 0.02 | 0.10 * | 0.04 | 0.10 * | 0.04 |
Native American | −6.90 ** | 2.31 | - | - | - | - | - | - |
Hawaiian | −7.81 | 8.92 | - | - | - | - | - | - |
Commercial (Centred) | - | - | −0.11 | 0.08 | - | - | - | - |
Commercial (Interaction) | - | - | 0.05 *** | 0.01 | −0.01 | 0.01 | - | - |
Industrial (Centred) | - | - | 0.28 ** | 0.11 | 0.22 * | 0.09 | 0.24 ** | 0.08 |
Industrial (Interaction) | - | - | 0.03 * | 0.01 | 0.02 | 0.01 | - | - |
Institutional (Centred) | - | - | 0.02 | 0.07 | - | - | - | - |
Institutional (Interaction) | - | - | 0.04 *** | 0.01 | 0.03 *** | 0.01 | 0.03 *** | 0.01 |
Open Space (Centred) | - | - | 0.20 * | 0.09 | 0.20 * | 0.08 | 0.20 ** | 0.07 |
Open Space (Interaction) | - | - | 0.01 | 0.01 | - | - | - | - |
Residential (Centred) | - | - | 0.06 | 0.05 | - | - | - | - |
Residential (Interaction) | - | - | 0.02 *** | 0.01 | 0.00 | 0.01 | - | - |
Desktop or Laptop (Centred) | - | - | - | - | −0.29 * | 0.11 | −0.30 ** | 0.10 |
Desktop or Laptop (Interaction) | - | - | - | - | 0.03 *** | 0.01 | 0.05 *** | 0.01 |
Two Vehicles (Centred) | - | - | - | - | 0.01 | 0.07 | - | - |
Two Vehicles (Interaction) | - | - | - | - | −0.02 ** | 0.01 | −0.02 ** | 0.01 |
One Dose (Centred) | - | - | - | - | −0.20 + | 0.10 | −0.17 * | 0.08 |
One Dose (Interaction) | - | - | - | - | 0.01 | 0.01 | - | - |
Unemployed (Centred) | - | - | - | - | −1.28 ** | 0.43 | −1.46 *** | 0.41 |
Unemployed (Interaction) | - | - | - | - | −0.06 | 0.04 | - | - |
WFH (Centred) | - | - | - | - | 0.05 | 0.27 | - | - |
WFH (Interaction) | - | - | - | - | −0.06 * | 0.03 | −0.07 ** | 0.02 |
Est. | Est. | Est. | Est. | |||||
Random Effects: | ||||||||
Station Level: | ||||||||
Between-Station Variance | 29.88 | 26.95 | 23.34 | 23.25 | ||||
Intercept-Slope Covariance | −1.07 | −0.75 | −0.34 | −0.29 | ||||
n_month Variance | 0.57 | 0.41 | 0.24 | 0.26 | ||||
Observational Level: | ||||||||
Residual Variance | 11.53 | 11.53 | 11.53 | 11.53 | ||||
Deviance | 8803 | 8754 | 8683 | 8691 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owen, D.; Arribas-Bel, D.; Rowe, F. Tracking the Transit Divide: A Multilevel Modelling Approach of Urban Inequalities and Train Ridership Disparities in Chicago. Sustainability 2023, 15, 8821. https://doi.org/10.3390/su15118821
Owen D, Arribas-Bel D, Rowe F. Tracking the Transit Divide: A Multilevel Modelling Approach of Urban Inequalities and Train Ridership Disparities in Chicago. Sustainability. 2023; 15(11):8821. https://doi.org/10.3390/su15118821
Chicago/Turabian StyleOwen, Danial, Daniel Arribas-Bel, and Francisco Rowe. 2023. "Tracking the Transit Divide: A Multilevel Modelling Approach of Urban Inequalities and Train Ridership Disparities in Chicago" Sustainability 15, no. 11: 8821. https://doi.org/10.3390/su15118821
APA StyleOwen, D., Arribas-Bel, D., & Rowe, F. (2023). Tracking the Transit Divide: A Multilevel Modelling Approach of Urban Inequalities and Train Ridership Disparities in Chicago. Sustainability, 15(11), 8821. https://doi.org/10.3390/su15118821