Considerations on the Use of Active Compounds Obtained from Lavender
Abstract
:1. Introduction
2. Methods of Extraction of Volatile Oils from Lavender
- Hydrodistillation uses lower temperatures to reduce the risk of chemical breakdown of the plant matter undergoing the process and is used for plants that are more sensitive and require temperatures of a maximum of 100 °C in order not to damage their active compounds. Compared to other methods, this method of extracting active compounds from plants has the advantage of eliminating toxic residues from the final products because the solvent used during the process is water. Another advantage is represented by the low costs in terms of the construction of the equipment required for the extraction process. The disadvantages of using this method would be the energy and heat costs and the resulting CO2 emissions [15].
- b.
- Steam distillation is recommended for the extraction of active compounds from leaves and flowers; it consists of decomposing the cellular structures of the plant matter, opening the cavities that have volatile compounds and giving them access to volatilise for the condensation phase but also for the final part of the process, namely collection [15]. The process is as follows: during the steam distillation process, water vapour under pressure shakes the plant structures to release the oil contained in them, then the mixture of the two components (water vapour + oil) passes through the cooling system and condenses, after which the distilled compound is passed through a decanter, thus obtaining two phases after decantation: the essential oil and the floral water used in the cosmetic industry. Additionally, the vegetable residues left after distillation can still be used, because traces of oil and non-volatile compounds can be found on them [27].
- c.
- The supercritical CO2 extraction method is advantageous because it allows the adjustment of the temperature and pressure to optimize the solvation process and the selectivity properties. Regarding the separation of molecules from the raw material, this process is faster because CO2 evaporates easily, as long as it is adapted to the environmental conditions [15,28]. CO2 has low toxicity; low oxidation; achieves easy decomposition of products, unlike other traditional methods; and has the ability to penetrate easily and quickly through the cellular matrix of plants [29].
3. Chemical Composition of Lavender Plants
3.1. Tannins
3.1.1. Characterization of Tannins
3.1.2. Utilisation and Action of Tannins
- ▪
- In the pharmaceutical and medicinal industry: in the form of treatments for various respiratory, gastrointestinal, urinary, inflammatory or skin problems, such as acne, irritations, allergies, etc. [40]. The natural antioxidant property of tannins helps prevent cardiovascular and neurodegenerative diseases. At the same time, they protect the immune system against bacteria, viruses and parasites [41].
- ▪
- In the cosmetics industry: in antibacterial and antiseptic body creams and solutions [41].
- ▪
- In agriculture: in biopesticides and bioinsecticides for the removal of pests attacking various plant crops [41].
- ▪
- In the food industry: in dietary supplements or in various food ingredients [38].
- ▪
- For animals: in feed and in treatments against parasites that can cause digestive diseases or infections in certain organs [40].
3.2. Anthocyanins
3.2.1. Characterization of Anthocyanins
3.2.2. Utilization and Action of Anthocyanins
3.3. Saponins
3.3.1. Characterization of Saponins
3.3.2. Utilization and Action of Saponins
3.4. Flavonoids
3.4.1. Characterisation of Flavonoids
3.4.2. The Action of Flavonoids
3.5. Polyphenols
3.5.1. Characterization of Polyphenols
3.5.2. Utilization and Actions of Polyphenols
3.6. Valeric Acid
3.7. Ursolic Acid
3.7.1. Characterization of Ursolic Acid
3.7.2. Utilization and Activity of Ursolic Acid
3.8. Minerals
3.9. Lavender Essential Oil
3.9.1. Characterization of the Essential Oil
3.9.2. Utilization and Activity of Essential Oil
3.10. Lavender Floral Water
3.11. Plant Residues from Lavander
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katarzyna, S.-L.; Romuald, M.; Wojciech, K.; Bogdan, K.; Jan, B. Yielding and quality of lavender flowers (Lavandula angustifolia Mill.) from organic cultivation. Acta Sci. Pol. Hortorum Cultus 2014, 13, 173–183. [Google Scholar]
- Fakhriddinova, D.K.; Rakhimova, T.R.; Dusmuratova, F.M.; Duschanova, G.M.; Abdinazarov, S.H.; Samadov, I.N. The Anatomical Structure of Vegetative Organs Lavandula officinalis Chaix in the Introduction of Tashkent Botanical Garden. Am. J. Plant Sci. 2020, 11, 578–588. [Google Scholar] [CrossRef]
- Saadatian, M.; Aghaei, M.; Farahpour, M.; Balouchi, Z. Chemical composition of lavender (Lavandula officinallis L.) extraction extracted by two solvent concentrations. Glob. J. Med. Plant Res. 2013, 1, 214–217. [Google Scholar]
- Aprotosoaie, A.C.; Gille, E.; Trifan, A.; Luca, V.S.; Miron, A. Essential oils of Lavandula genus: A systematic review of their chemistry. Phytochem. Rev. 2017, 16, 761–799. [Google Scholar] [CrossRef]
- Vijulie, I.; Lequeux-Dincă, A.-I.; Preda, M.; Mareci, A.; Matei, E. Could Lavender Farming Go from a Niche Crop to a Suitable Solution for Romanian Small Farms? Land 2022, 11, 662. [Google Scholar] [CrossRef]
- Giray, F.H. An Analysis of World Lavender Oil Markets and Lessons for Turkey. J. Essent. Oil Bear. Plants 2018, 21, 1612–1623. [Google Scholar] [CrossRef]
- Prusinowska, R.; Śmigielski, K.B. Composition, biological properties and therapeutic effects of lavender (Lavandula angustifolia L.). A review. Kerba Pol. 2014, 60, 56–66. [Google Scholar] [CrossRef]
- Costea, T.; Străinu, A.-M.; Gîrd, C.E. Botanical characterization, chemical composition and antioxidant activity of romanian lavender (Lavandula angustifolia Mill.) Flowers, Studia Universitatis “Vasile Goldiș”. Ser. Științele Vieții 2019, 29, 159–167. [Google Scholar]
- Adam, K.L. Lavender Production, Markets and Agritourism. ATTRA Sustain. Agric. 2018, 1–8. Available online: https://ccsmallfarms.ucanr.edu/files/294700.pdf (accessed on 13 March 2023).
- Kimbrough, K.A.; Swift, C.E. Growing Lavender in Colorado; Colorado State University: Fort Collins, CO, USA, 2006. [Google Scholar]
- Giannoulis, K.D.; Evangelopoulos, V.; Gougoulias, N.; Wogiatzi, E. Lavender organic cultivation yield and essential oil can be improved by using bio-stimulants. Acta Agric. Scand. 2020, 70, 648–656. [Google Scholar] [CrossRef]
- Gonceariuc, M.; Zbancă, A.; Panuța, S. A Practical Guide to Growing Lavender and Managing the Business/Ghid Practic Privind Cultivarea Lavandei și Administrarea Afacerii; Lavanda.MD: Chișinău, Moldova, 2019; 128p, ISBN 978-9975-56-687-2. Available online: https://www.ecovisio.org/images/articles/Resources/WEB_Ghid_practic_lavanda_.pdf (accessed on 13 March 2023).
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. NIH Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Hrnčič, M.K.; Cör, D.; Verboten, M.T.; Knez, Z. Application of Supercritical and Subcritical Fluids in Food Processing. Food Qual. Saf. 2018, 2, 59–67. [Google Scholar]
- Kapadia, P.; Newell, A.S.; Cunningham, J.; Roberts, M.R.; Hardy, J.G. Extraction of High-Value Chemicals from Plants for Technical and Medical Applications. Int. J. Mol. Sci. 2022, 23, 10334. [Google Scholar] [CrossRef] [PubMed]
- Rassem, H.H.; Nour, A.H.; Yunus, R.M. Techniques for Extraction of Essential Oils from Plants: A Review. Aust. J. Basic Appl. Sci. 2016, 10, 117–127. [Google Scholar]
- Chikezie, P.C.; Chiedozie, O.I.; Mbagwu, F.N. Bioactive principles from medicinal plants. Res. J. Phytochem. 2015, 9, 88–115. [Google Scholar] [CrossRef]
- Saboon; Chaudhari, S.K.; Arshad, S.; Amjad, M.S.; Akhtar, M.S. Natural compounds extracted from medicinal plants and their applications. Nat. Bio-Act. Compd. 2019, 1, 193–207. [Google Scholar]
- Grigore, I.; Sorica, C.; Vladut, V.; Matache, M.; Cujbescu, D.; Sorica, E.; Muscalu, A.; Marin, E.; Kabas, O.; Lazar, S. Superior capitalization of lavender by obtaing volatile oils applying the steam distillation method. ANNALS Fac. Eng. Hunedoara-Int. Jpurnal Eng. 2016, XIV, 87–91. [Google Scholar]
- Lee, Y.-T. A study of the effect of lavender floral-water eye mask aromatherapy on the autonomous nervous system. Eur. J. Integr. Med. 2016, 8, 781–788. [Google Scholar] [CrossRef]
- Wells, R.S.; Adal, A.M.; Bauer, L.; Najafianashrafi, E.; Mahmoud, S.S. Cloning and functional characterization of a foral repressor gene from Lavandula angustifolia. Planta 2020, 251, 41. [Google Scholar] [CrossRef]
- Stanev, S.; Zagorcheva, T.; Atanassov, I. Lavender cultivation in Bulgaria—21st century developments, breeding challenges and opportunities. Bulg. J. Agric. Sci. 2016, 22, 584–590. [Google Scholar]
- Volume of the Production of Essential Oil of Lavender in France from 2012 to 2018. Available online: https://www.statista.com/statistics/975529/essential-oil-lavender-production-volume-france/ (accessed on 12 September 2022).
- Increasing Lavender Production and Oil Producers through the Use of Hoop Housing and Soil Amendments. Available online: https://projects.sare.org/sare_project/fnc10-819/ (accessed on 2 May 2023).
- Purple Plant Is on the Defensive. Lavender Is More than Just a Nice Smelling and Calming Plant. Available online: https://www.sciencedaily.com/releases/2017/09/170927093310.htm (accessed on 2 May 2023).
- Tongnuanchan, P.; Benjakul, S. Essential Oils: Extraction, Bioactivities, and Their Uses for Food Preservation. J. Food Sci. 2014, 79, 1231–1249. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.-C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef]
- Moradi-kheibari, N.; Ahmadzadeh, H.; Talebi, A.F.; Hosseini, M.; Murry, M.A. Recent Advances in Lipid Extraction for Biodiesel Production. In Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts: New Technologies, Challenges and Opportunities; Woodhead Publishing: Duxford, UK, 2019; pp. 179–198. [Google Scholar]
- Harris, J.; Viner, K.; Champagne, P.; Jessop, P.G. Advances in microalgal lipid extraction for biofuel production: A review. Soc. Chem. Ind. John Wiley Sons Ltd./Biofuels Bioprod. Biorefining 2018, 12, 1118–1135. [Google Scholar] [CrossRef]
- Danh, L.T.; Han, L.N.; Triet, N.D.A.; Zhao, J.; Mammucari, R.; Foster, N. Comparison of chemical composition, antioxidant and antimicrobial activity of lavender (Lavandula angustifolia L.) essential oils extracted by supercritical CO2, hexane and hydrodistillation. Food Bioprocess Technol. 2013, 6, 3481–3489. [Google Scholar] [CrossRef]
- Djilani, A.; Dicko, A. The Therapeutic Benefits of Essential Oils. In Nutrition, Well-Being and Health; Bouayed, J., Ed.; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Cerón-Martínez, L.J.; Hurtado-Benavides, A.M.; Ayala-Aponte, A.; Serna-Cock, L.; Tirado, D.F. A Pilot-Scale Supercritical Carbon Dioxide Extraction to Valorize Colombian Mango Seed Kernel. Molecules 2021, 26, 2279. [Google Scholar] [CrossRef]
- Cucu, I. Study of the functional properties of lavender (Lavandula) cultivated in the Republic of Moldova/Studiul proprietăților funcționale lavandei (Lavandula) cultivate în Republica Moldova. Tech.-Sci. Conf. Undergrad. Master Phd Stud. 2021, I, 463–466. [Google Scholar]
- Chikezie, P.C.; Ibegbulem, C.O.; Mbagwu, F.N. Medicinal Potentials and Toxicity Concerns of Bioactive Principles. Med. Aromat. Plants 2015, 4, 1000202. [Google Scholar] [CrossRef]
- Takuo, O.; Hideyuki, I. Tannins of Constant Structure in Medicinal and Food Plants—Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef]
- Pereira, A.V.; Santana, G.M.; Góis, M.B.; Sant’Ana, D.M.G. Tannins obtained from medicinal plants extracts against pathogens: Antimicrobial potential. In The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Méndez-Vilas, A., Ed.; Formatex Microbiology Series No 5; Formatex Research Center: Badajoz, Spain, 2015; Volume 1, pp. 228–235. [Google Scholar]
- Szczurek, A. Perspectives on Tannins. Biomolecules 2021, 11, 442. [Google Scholar] [CrossRef]
- Guangcheng, Z.; Yunlu, L.; Yazaki, Y. Extractive yields, Stiasny values and polyflavonoid contents in barks from six Acacia species in Australia. Aust. For. 1991, 54, 154–156. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Cassani, L.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Chamorro, F.; Laurenco-Lopes, C.; Prieto, M.A.; Simal-Gandara, J. Traditional applications of tannin rich extracts supported by scientific data: Chemical composition, bioavability and bioaccessibility. Foods 2021, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.P.; Kumar, S. Applications of Tannins in Industry; IntechOpen Tannins: London, UK, 2019. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [PubMed]
- Bakowska-Barczak, A. Acylated anthocyanins as stable, natural food colorants—A review. Pol. J. Food Nutr. Sci. 2005, 14, 107–116. [Google Scholar]
- Jaiswal, Y.S.; Guan, Y.; Moon, K.H.; Williams, L.L. Anthocyanins: Natural Sources and Traditional Therapeutic Uses; IntechOpen Flavonoids: London, UK, 2019. [Google Scholar] [CrossRef]
- Mattioli, R.; Francisco, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Khan, R.A. Anthocyanins: Traditional uses, structural and functional variations, approaches to increase yields and products’ quality, hepatoprotection, liver longevity, and commercial products. Int. J. Mol. Sci. 2022, 23, 2149. [Google Scholar] [CrossRef]
- Daotong, L.; Pengpu, W.; Yinghua, L.; Mengyao, Z.; Fang, C. Health benefits of anthocyanins and molecular mechanism: Update from recent decade. Food Sci. Nutr. 2017, 57, 1729–1741. [Google Scholar] [CrossRef]
- Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Fărcaș, A.C.; Socaci, S.A.; Tofană, M.; Diaconeasa, Z.M.; Pop, O.L.; Salanță, L.C. An Overview of Saponins—A Bioactive Group. Bull. UASVM Food Sci. Technol. 2020, 77, 25–36. [Google Scholar] [CrossRef]
- Rai, S.; Acharya-Siwakoti, E.; Kafle, A.; Devkota, H.P.; Bhattarai, A. Plant-Derived Saponins: A Review of Their Surfactant Properties and Applications. Sci 2021, 3, 44. [Google Scholar] [CrossRef]
- Böttcher, S.; Drusch, S. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. [Google Scholar] [CrossRef]
- Yu, X.L.; He, Y. Tea saponins: Effective natural surfactants beneficial for soil remediation, from preparation to application. RSC Adv. 2018, 8, 24312–24321. [Google Scholar] [CrossRef]
- Savage, G.P. Saponins. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ashour, A.S.; Abed El Aziz, M.M.; Al Sadek, G.M. A review on saponins from medicinal plants: Chemistry, isolation, and determination. J. Nanomed. Res. 2019, 8, 282–288. [Google Scholar] [CrossRef]
- Tao, W.; Duan, J.; Zhao, R.; Li, X.; Yan, H.; Li, J.; Guo, S.; Yang, N.; Tang, Y. Comparison of three officinal Chinese pharmacopoeia species of Glycyrrhiza based on separation and quantification of triterpene saponins and chemometrics analysis. Food Chem. 2013, 141, 1681–1689. [Google Scholar] [CrossRef]
- Isoda, H.; Motojima, H.; Onaga, S.; Samet, I.; Villareal, M.O.; Han, J. Analysis of the erythroid differentiation effect of flavonoid apigenin on K562 human chronic leukemia cells. Chem. Interact. 2014, 220, 269–277. [Google Scholar] [CrossRef]
- Wang, T.-Y.; Li, Q.; Bi, K.-S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J. Pharm. Sci. 2018, 13, 12–23. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Roy, A.; Khan, A.; Ahmad, I.; Alghamdi, S.; Rajab, B.S.; Babalghith, A.O.; Alshahrani, M.Y.; Islam, S.; Islam, R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. BioMed Res. Int. 2022, 2022, 5445291. [Google Scholar] [CrossRef]
- Kisiriko, M.; Anastasiadi, M.; Terry, L.A.; Yasri, A.; Beale, M.H.; Ward, J.L. Phenolics from Medicinal and Aromatic Plants: Characterisation and Potential as Biostimulants and Bioprotectants. Molecules 2021, 26, 6343. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview; Hindawi Publishning Corporation: London, UK, 2013. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.; Jez, J.M. Nature’s assembly line: Biosynthesis of simple phenylpropanoids and polyketides. Plant J. 2008, 54, 750–762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, S.; Yu, O. Metabolic engineering of flavonoids in plants and microorganisms. Appl. Microbiol. Biotechnol. 2011, 91, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Russo, D. Flavonoids and the Structure-Antioxidant Activity Relationship. J. Pharmacogn. Nat. Prod. 2018, 4, e109. [Google Scholar] [CrossRef]
- Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 45. [Google Scholar] [CrossRef]
- Santos, E.L.; Maia, B.H.L.N.; Ferriani, A.P.; Teixeira, S.D. Flavonoids: Classification, biosynthesis and chemical ecology. IntechOpen 2017, 23, 3–16. [Google Scholar] [CrossRef]
- Molfenter, T.D.; Bhattacharya, A.; Gustafson, D.H. The roles of past behavior and health beliefs in predicting medication adherence to a statin regimen. Patient Prefer. Adherence 2012, 6, 643–651. [Google Scholar] [CrossRef]
- Nisar, A. Medicinal Plants and Phenolic Compounds. In Phenolic Compounds; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Al Mamari, H.H. Phenolic Compounds: Classification, Chemistry, and Updated Techniques of Analysis and Synthesis. In Phenolic Compounds; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Randhir, R.; Lin, Y.-T.; Shetty, K. Phenolics, their antioxidant and antimicrobial activity in dark germinated fenugreek sprouts in response to peptide and phytochemical elicitors. Asia Pac. J. Clin. Nutr. 2004, 13, 295–307. [Google Scholar]
- Bera, A.; Roy, B. Polyphenols in medicinal plants: An overview. In Polyphenols in Health and Diseases; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Rao, U.S.M.; Abdurrazak, M.; Mohd, K.S. Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of Musa paradisiaca. Malays. J. Anal. Sci. 2016, 20, 1181–1190. [Google Scholar] [CrossRef]
- Harborne, J.B. General procedures and measurement of total phenolics. In Methods in Plant Biochemistry; Harborne, J.B., Ed.; Plant Phenolics; Academic Press: London, UK, 1989; Volume 1, pp. 1–28. [Google Scholar] [CrossRef]
- Harborne, J.B.; Baxter, H.; Moss, G.P. Phytochemical Dictionary: Handbook of Bioactive Compounds from Plants, 2nd ed.; Taylor & Francis: London, UK, 1999. [Google Scholar]
- Shahidi, F.; Naczk, M. Food Phenolics: Sources, Chemistry, Effects, Applications; Technomic Publishing Company Inc.: Lancaster, PA, USA, 1995. [Google Scholar]
- Reis Giada, M.L. Food Phenolic Compounds: Main Classes, Sources and Their Antioxidant Power. In Oxidative Stress and Chronic Degenerative Diseases—A Role for Antioxidants; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Sambangi, P. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Foss, K.; Przybyłowicz, K.E.; Sawicki, T. Antioxidant Activity and Profile of Phenolic Compounds in Selected Herbal Plants. Plant Foods Hum. Nutr. 2022, 77, 383–389. [Google Scholar] [CrossRef]
- Goldberg, I.; Rokem, J.S. Organic and fatty acid production, microbial. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Pironi, A.M.; de Araújo, P.R.; Fernandes, M.A.; Salgado, H.R.N.; Chorilli, M. Characteristics, Biological Properties and Analytical Methods of Ursolic Acid: A Review. Crit. Rev. Anal. Chem. 2018, 48, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Huaman, M.A.L.; Quispe, R.I.H.; Quispe, A.L.T.; Flores, C.A.S. Ursolic acid: An overview including research performed in Peru. Rev. Bases Cienc. 2021, 6, 19–32. [Google Scholar] [CrossRef]
- Sharifiyan, F.; Mirjalili, S.A.; Fazilati, M.; Poorazizi, E.; Habibollahi, S. Variation of ursolic acid content in flowers of ten Iranian pomegranate (Punica granatum L.) cultivars. BMC Chem. 2019, 13, 13–80. [Google Scholar] [CrossRef]
- Chizzola, R. Metallic Mineral Elements and Heavy Metals in Medicinal Plants. Med. Aromat. Plant Sci. Bio-Technol. 2012, 6, 39–53. [Google Scholar]
- Florescu, M.; Stihi, C.; Radulescu, C.; Dulama, I.D.; Bute, O.C.; Stirbescu, R.M.; Teodorescu, S.; Serban, A. Mineral composition of Lavandula angustifolia flowers and hippophae rhamnoides fruits extracts. J. Sci. Arts 2017, 4, 789–794. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: Cambridge, MA, USA, 1995; p. 889. [Google Scholar]
- Smigielski, K.; Prusinowska, R.; Raj, A.; Sikora, M.; Woliñska, K.; Gruska, R. Effect of Drying on the Composition of Essential Oil from Lavandula angustifolia. J. Essent. Oil Bear. Plants 2011, 14, 532–542. [Google Scholar] [CrossRef]
- Vaze, S.V. Indian essential oil industry: Present and future. J. Med. Aromat. Plant Sci. 2000, 22, 186–191. [Google Scholar]
- Babu, G.D.K.; Sharma, A.; Singh, B. Volatile composition of Lavandula angustifolia produced by different extraction techniques*. J. Essent. Oil Res. 2016, 28, 489–500. [Google Scholar] [CrossRef]
- Lawrence, B.M. Progress in essential oils. Perf. Flav. 2009, 34, 48–57. Available online: https://img.perfumerflavorist.com/files/base/allured/all/document/2008/12/pf.PF_34_01_048_10.pdf (accessed on 1 November 2022).
- Dobreva, A. Essential oil content and composition of lavender origins, introduced in Bulgaria. Agric. Sci. 2021, 13, 23–25. [Google Scholar] [CrossRef]
- Nedeltcheva-Antonova, D.; Gechovska, K.; Bozhanov, S.; Antonov, L. Exploring the Chemical Composition of Bulgarian Lavender Absolute (Lavandula Angustifolia Mill.) by GC/MS and GC-FID. Plants 2022, 11, 3150. [Google Scholar] [CrossRef] [PubMed]
- Białoń, M.; Krzyśko-Łupicka, T.; Nowakowska-Bogdan, E.; Wieczorek, P.P. Chemical Composition of Two Different Lavender Essential Oils and Their Effect on Facial Skin Microbiota. Molecules 2019, 24, 3270. [Google Scholar] [CrossRef] [PubMed]
- Da Porto, C.; Decorti, D.; Kikic, I. Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem. 2009, 112, 1072–1078. [Google Scholar] [CrossRef]
- Shellie, R.; Mondello, L.; Marriott, P.; Dugo, G. Characterization of lavender essential oils by using gas chroma-tography–mass spectrometry with correlation of linear retentionindices and comparison with comprehensive two-dimensional gaschromatography. J. Chromatogr. A 2002, 970, 225–234. [Google Scholar] [CrossRef]
- Steltenkamp, R.J.; Casazza, W.T. Composition of the Essential Oil of Lavandin. J. AGR Food Chem. 1967, 15, 1063–1069. [Google Scholar] [CrossRef]
- Kiran Babu, G.D.; Singh, B. Characteristics Variation of Lavender Oil Produced by Different Hydrodistillation Techniques. In Comprehensive Bioactive Natural Products: Quality Control & Standardizationvol; Studium Press LLC: Houston, TX, USA, 2010; Volume 8. [Google Scholar]
- Wainer, J.; Thomas, A.; Chimhau, T.; Harding, K.G. Extraction of Essential Oils from Lavandula × intermedia ‘Margaret Roberts’ Using Steam Distillation, Hydrodistillation, and Cellulase-Assisted Hydrodistillation: Experimentation and Cost Analysis. Plants 2022, 11, 3479. [Google Scholar] [CrossRef]
- Sahraoui, N.; Vian, M.A.; Bornard, I.; Boutekedjiret, C.; Chemat, F. Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steamdistillation. J. Chromatogr. A 2008, 1210, 229–233. [Google Scholar] [CrossRef]
- Chemat, F.; Lucchesi, M.E.; Smadja, J.; Favretto, L.; Colnaghi, G.; Visinoni, F. Microwave accelerated steam distillation ofessential oil from lavender: A rapid, clean and environmentally friendly approach. Anal. Chim. Acta 2006, 555, 157–160. [Google Scholar] [CrossRef]
- Fakhari, A.R.; Salehi, P.; Heydari, R.; Ebrahimi, S.N.; Haddad, P.R. Hydrodistillation-headspace solvent microextraction, a new method for analysis of the essential oil components of Lavandula angustifolia Mill. J. Chromatogr. 2005, 1098, 14–18. [Google Scholar] [CrossRef]
- Filly, A.; Fabiano-Tixier, A.S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a green solvent combined with different techniques for extraction of essential oil from lavender flowers. Comptes Rendus Chim. 2016, 19, 707–717. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Lazari, D.M.; Vlachonasios, K.E. The effects of habitat type and diurnal harvest of Lavandula angustifolia Mill. Fresenius Environ. Bull. 2010, 19, 1491–1498. [Google Scholar]
- Ihsan, S.A. Essential oil composition of Lavandula officinalis L. Grown in Jordan. J. Kerbala Univ. 2007, 5, 18–21. [Google Scholar]
- Pokajewicz, K.; Białoń, M.; Svydenko, L.; Fedin, R.; Hudz, N. Chemical Composition of the Essential Oil of the New Cultivars of Lavandula angustifolia Mill. Bred in Ukraine. Molecules 2021, 26, 5681. [Google Scholar] [CrossRef]
- Wells, R.; Truong, F.; Adal, A.M.; Sarker, L.S.; Mahmoud, S.S. Lavandula essential oils: A current review of applications in medicinal, food, and cosmetic industries of Lavender. NPC 2018, 13, 1403–1417. [Google Scholar] [CrossRef]
- Lavender Floral Water (Hydrolat). Available online: https://woldswaylavender.co.uk/lavender-floral-water.pdf (accessed on 1 November 2022).
- Prusinowska, R.; Smigielski, K.; Kunica-Styczynska, A. Hydrolates from lavender (Lavandula angustifolia)—Chemical composition, antimicrobial and antioxidant properties. PhD Interdiscip. J. 2013, 3, 33–39. [Google Scholar] [CrossRef]
- Slavov., A.M.; Karneva, K.B.; Vasileva, I.N.; Denev, P.N.; Denkova, R.S.; Shikov, V.T.; Manolova, M.N.; Lazarova, Y.L.; Ivanova, V.N. Valorization of lavender waste—Obtaining and characteristics of polyphenol rich extracts. Food Sci. Appl. Biotechnol. 2018, 1, 11–18. [Google Scholar] [CrossRef]
- González-Moreno, M.-G.; Gracianteparaluceta, B.G.; Sádaba, S.M.; Cobo, E.P.; Meneses, A.S. Vermicomposting of Lavender Waste: A Biological Laboratory Investigation. Agronomy 2022, 12, 2957. [Google Scholar] [CrossRef]
- Chilev, C.; Simeonov, E.; Dimitrova, B.; Yonkova, V.; Pietsch, S.; Heinrich, S.; Peshev, D. Valorization of waste lavender residue from the essential oil industry for production of rosmarinic acid—A study on the solid-liquid extraction. J. Chem. Technol. Metall. 2022, 57, 522–532. [Google Scholar]
Class of Phenolic Compounds | General Representation of the Skeleton of the Phenolic Compound |
---|---|
Acethophenones, phenylacetic acids | C6-C2 [78,79] |
Flavonoids, isoflavonoids | C6-C3-C6 [71,78,79] |
Condensed tannins | (C6-C3-C6)n [71,79] |
Phenolic acids | C6-C1 [71,78,79] |
Simple phenols | C6 [71,78,79] |
Xanthones | C6-C1-C6 [78,79] |
Coumarins, isocoumarins | C6-C3 [71,78] |
Hydroxycinnamic acids | C6-C3 [71,78,79] |
Biflavonoids | (C6-C3-C6)2 [79] |
Catecholmelanine | (C6)n [79] |
Lignans, neolignans | (C6-C3)2 [71,78,79] |
Hydroxybenzoic acids | C6-C1 [71] |
Anthraquinones | C6-C2-C6 [78] |
Stilbenes, anthraquinones | C6-C2-C6 [71,78,79] |
Lignins | (C6-C3)n [71,78,79] |
Naphthoquinone | C6-C4 [78,79] |
Mineral Substance | Lavender Species | Quantity Obtained [gxkg−1 Dry Substance] |
---|---|---|
Potassium (k) | Lavandula angustifolia Munstead | 17.7 |
Lavandula angustifolia Lady | 23.9 | |
Calcium (Ca) | Lavandula blue River | 8.10 |
Lavandula angustifolia Munstead | 13.8 | |
Magnesium (Mg) | Lavandula angustifolia Lady | 1.40 |
Lavandula angustifolia Munstead | 3.60 | |
Sodium (Na) | Lavandula angustifolia Munstead | 0.11 |
Lavandula angustifolia Lady | 0.15 |
No. | Compound | Bulgaria [%] | Italy [%] | France [%] | Poland [%] | Australia [%] |
---|---|---|---|---|---|---|
1 | O-cymene | 6.8–7.7 [7] | - | 0.2–18.1 [7] | 1.9–2.9 [7] | 0.03–0.12 [94,96] |
2 | Cineole | 2.1–3.0 [7] | 0.02–0.2 [7] | 0–3.4 [7] | 0.2–0.5 [7] | - |
3 | Camphor | <0.5 [7] | 0.3–0.6 [7] 5.56–11.76 [94,95] | 0–0.5 [7] | 0.2–0.3 [7] | 0.09–7.10 [94,96] |
4 | Linalool | 30.1–33.7 [7], 43.3–45.78 [93] a 35.96–36.51 [93] b 21.8–42.1 [92] | 33.3–42.2 [7] 35.96–36.51 [94,95] | 9.3–68.8 [7] | 27.3–34.7 [7] | 23.03–57.48 [94,96] |
5 | Linalyl acetate | 35.2–37.6 [7]; 13–44.9 [92]; 17.91–21 [93] a 14.42–21.74 [93] b | 37.8–41.2 [7] 14.42–21.74 [94,95] | 1.2–59.4 [7] 27 [94,97] | 19.7–22.4 [7] | 4.01–35.39 [94,96] |
6 | Terpinen-4-ol | 4.5–5.8 [7] | 2.8–3.6 [7] | 0.1–13.5 [7] | 1.1–2.0 [7] | 0.11–8.07 [94,96] |
7 | Lavandulol | - | 0.05 [94,95] | 0–4.3 [7,94,97] | 0.6–0.8 [7] | 0.05–3.27 [96] |
8 | Lavandulol acetate | - | - | 0.3–21.6 [7] | 4.5–5.7 [7] | - |
9 | β-caryophyllene | 4.6–7.4; [92] | - | - | - | - |
10 | Limonene + 1,8 cineole | 2.3–6 [92] | - | - | - | 0.18–3.92 [94,96] |
11 | Borneol | - | 2.71–4.21 [94,95] | 2.90 [94,97] | - | 0.3–4.04 [92,96] |
12 | Caryophyllene | - | - | 0.7 [94,97] | - | 0.45–2.83 [94,96] |
Extraction Method | Hydrodistillation | Supercritical CO2 Extraction | Steam Distillation | References | |
---|---|---|---|---|---|
Extraction conditions | Time (min) | 300 | 50 | 57 | [30,99] |
Temperature (°C) | 100 | 45 | - | [30] | |
Pressure (bar) | 1 | 140 | - | [30] | |
Yield (% dry weight) | 4.57 ± 0.13 | 6.68 ± 0.57 | - | [30] | |
Physical properties | Colour | Colourless | Pale yellow | - | [30] |
Form at room temperature | Liquid | Liquid | - | [30] | |
Compounds (%) | Camphene | 0.19–0.59 | - | 0.2–0.6 | [30,95,96,98,100,101,102,103] |
1-Octen-3-ol | 0.2–0.4 | 0.2–0.30 | - | [30,95,96,102,103] | |
Myrcene | 0.12–0.56 | - | 2.03 | [30,95,96,98,102] | |
1,4-Cineole | 0.06–0.32 | - | - | [30,95,96] | |
Limonene | 0.24–0.5 | 0.10–0.5 | 0.5–1.10 | [30,91,92,93,94,98,103] | |
1,8-cineole | 1.51–10.89 | 1.18 | 1.43–7.29 | [30,95,96,98,101,102,103,104] | |
Terpinolene | 0.21–0.39 | - | 0.3 | [30,95,96,102,103,104] | |
Linalool | 30–52.59 | 42.82–45.78 | 28.1–46.85 | [30,95,96,98,100,101,102,103,104] | |
Camphor | 1.6–11.76 | 8.05 | 0.23–10.23 | [30,95,96,98,100,101,102,103,104] | |
Borneol | 2.71–7.50 | 6.68 | 4.07–10.21 | [30,95,96,100,101,102,103,104] | |
Lavandulol | 0.05–0.8 | 0.52 | 0.47–0.7 | [30,95,96,98,103] | |
Linalyl acetate | 9.27–21.74 | 23.40 | 4.04–35.28 | [30,95,96,98,100,102,103,104] | |
Bornyl acetate | 1.11 | 0.17 | 0.05–0.24 | [30,98,100,104] | |
Lavandulyl acetate | 0.19–10.9 | 1.35 | 0.31–3.7 | [30,95,98,99,100,102,103,104] | |
Alcohols | 67.18 | 54.82 | 35.58 | [30,98] | |
Esters | 13.54 | 25.52 | 41.29 | [30,98] | |
Aldehydes | 0.16 | - | - | [30] | |
Ethers | 1.79 | 1.47 | - | [96] | |
α-Terpineol | 6.2 | 4.7 | 3.78 | [98,103] | |
Monoterpene hydrocarbons | - | - | 10.05 | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tăbărașu, A.-M.; Anghelache, D.-N.; Găgeanu, I.; Biriș, S.-Ș.; Vlăduț, N.-V. Considerations on the Use of Active Compounds Obtained from Lavender. Sustainability 2023, 15, 8879. https://doi.org/10.3390/su15118879
Tăbărașu A-M, Anghelache D-N, Găgeanu I, Biriș S-Ș, Vlăduț N-V. Considerations on the Use of Active Compounds Obtained from Lavender. Sustainability. 2023; 15(11):8879. https://doi.org/10.3390/su15118879
Chicago/Turabian StyleTăbărașu, Ana-Maria, Dragoș-Nicolae Anghelache, Iuliana Găgeanu, Sorin-Ștefan Biriș, and Nicolae-Valentin Vlăduț. 2023. "Considerations on the Use of Active Compounds Obtained from Lavender" Sustainability 15, no. 11: 8879. https://doi.org/10.3390/su15118879
APA StyleTăbărașu, A. -M., Anghelache, D. -N., Găgeanu, I., Biriș, S. -Ș., & Vlăduț, N. -V. (2023). Considerations on the Use of Active Compounds Obtained from Lavender. Sustainability, 15(11), 8879. https://doi.org/10.3390/su15118879