Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Establishment of the High-Resolution Species Distribution Prediction System
2.2.1. Ensemble Prediction System Using Multiple Species Distribution Models
2.2.2. Building Input Data
2.3. Experimental Design for Potential Habitat Prediction
3. Results and Discussion
3.1. Prediction Results of Potential Habitats for A. koreana Based on Current Climate Conditions
3.2. Changes in Potential Habitat Distribution of A. koreana under Future Climate Conditions
3.3. An Index for Extracting In Situ Conservation Areas for A. koreana
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Horikawa, M.; Tsuyama, I.; Matsui, T.; Kominami, Y.; Tanaka, N. Assessing the potential impacts of climate change on the alpine habitat suitability of Japanese stone pine (Pinus pumila). Landsc. Ecol. 2009, 24, 115–128. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Climate Change 2014 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspect; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Kong, W.S.; Lim, J.H. Disjunctive distribution of Vaccinium vitis-idaea and thermal condition. J. Korean Geog Soc. 2008, 43, 495–510, (In Korean with English abstract). [Google Scholar]
- Kong, W.S.; Kim, K.; Lee, S.; Park, H.; Cho, S.H. Distribution of high mountain plants and species vulnerability against climate change. J. Environ. Impact Assess. 2014, 23, 119–136, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Kim, E.S.; Lee, J.S.; Park, G.E.; Lim, J.H. Change of subalpine coniferous forest area over the last 20 years. J. Korean Soc. For. Sci. 2019, 108, 10–20, (In Korean with English abstract). [Google Scholar]
- Park, H.C.; Lee, H.Y.; Lee, N.Y.; Lee, H.; Song, J.Y. Survey on the distribution of evergreen conifers in major national parks—A case study on Seoraksan, Odaesan, Taebaeksan, Sobaeksan, Deogyusan, Jirisan National Park. J. Natl. Park. Res. 2019, 10, 224–231. [Google Scholar]
- Korea National Park Research Institute. Needleleaf Species Distributions over Subalpine Areas of Korean National Parks; Korea National Park Research Institute: Wonju, Republic of Korea, 2016; p. 79. (In Korean) [Google Scholar]
- National Institute of Ecology. Climate Change and Vegetation Colony (Subalpine Coniferous Colony) in Korea I; National Institute of Ecology: Seocheon, Republic of Korea, 2014; p. 134. [Google Scholar]
- Millar, C.I.; Rundel, P.W. Subalpine forest. In Ecosystems of California, 1st ed.; Zavaleta, E., Mooney, H., Eds.; University of California Press: Berkeley, CA, USA, 2016; pp. 579–662. [Google Scholar]
- Park, H.C.; Moon, G.S.; Lee, H.; Lee, N.Y. A study on the spatial information and location environment of dead coniferous trees in subalpine zone in Jirisan National Park. Korean J. Environ. Ecol. 2020, 34, 42–54, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Kim, J.K.; Koh, J.G.; Yim, H.T.; Kim, D.S. Changes of spatial distribution of Korean fir forest in Mt. Hallasan for the past 10 years (2006, 2015). Korean J. Environ. Ecol. 2017, 31, 549–556, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Campbell, D.R. Early snowmelt projected to cause population decline in a subalpine plant. Proc. Natl. Acad. Sci. USA 2019, 116, 12901–12906. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.A.; Park, W.K.; Kong, W.S. Dendrochronological analysis of Abies koreana W. at Mt. Halla, Korea: Effect of climate change on the growths. Korean J. Ecol. 2011, 24, 281–288, (In Korean with English abstract). [Google Scholar]
- Seo, J.W.; Kim, Y.J.; Choi, E.B.; Park, J.H.; Kim, J.H. Investigation of death years and inter-annual growth reduction of Korean firs (Abies koreana) at Yeongsil in Mt. Halla. J. Korean Soc. Environ. Restor. Technol. 2019, 22, 1–14, (In Korean with English abstract). [Google Scholar]
- Ahn, U.S.; Kim, D.S.; Yun, Y.S.; Ko, S.H.; Kim, K.S.; Cho, I.S. The inference about the cause of death of Korean fir in Mt. Halla through the analysis of spatial dying pattern—Proposing the possibility of excess soil moisture by climate changes. Korean J. Agric. For. Meteorol. 2019, 21, 1–28, (In Korean with English abstract). [Google Scholar]
- Ahn, U.S.; Yun, Y.S. Causes of decline in the Korean fir based on spatial distribution in the Mt. Halla region in Korea: A meta-analysis. Forests 2020, 11, 391. [Google Scholar] [CrossRef]
- Kim, N.S.; Han, D.; Cha, J.Y.; Park, Y.S.; Cho, H.J.; Kwon, H.J.; Cho, Y.C.; Oh, S.H.; Lee, C.S. A detection of novel habitats of Abies koreana by using species distribution models (SDMs) and its application for plant conservation. J. Korean Soc. Environ. Restor. Technol. 2015, 18, 135–149, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Koo, K.A.; Kim, J.; Kong, W.S.; Jung, H.; Kim, G. Projecting the potential distribution of Abies koreana in Korea under the climate change based on RCP scenarios. J. Korean Soc. Environ. Restor. Technol. 2016, 19, 19–30, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Yun, J.H.; Nakao, K.; Tsuyama, I.; Matsui, T.; Park, C.H.; Lee, B.Y.; Tanaka, N. Vulnerability of subalpine fir species to climate change: Using species distribution modeling to assess the future efficiency of current protected areas in the Korean Peninsula. Ecol. Res. 2018, 33, 341–350. [Google Scholar] [CrossRef]
- Park, H.C.; Lee, J.H.; Lee, G.G.; Um, G.J. Environmental features of the distribution areas and climate sensitivity assessment of Korean fir and Khinghan fir. J. Environ. Impact Assess. 2015, 24, 260–277, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Manzoor, S.A.; Griffiths, G.; Lukac, M. Species distribution model transferability and model grain size—Finer may not always be better. Sci. Rep. 2018, 8, 7168. [Google Scholar] [CrossRef]
- Kim, M.K.; Han, M.S.; Jang, D.H.; Baek, S.G.; Lee, W.S.; Kim, Y.H.; Kim, S.J. Production technique of observation grid data of 1 km resolution. J. Clim. Res. 2012, 7, 55–68, (In Korean with English abstract). [Google Scholar]
- Hong, S.B.; Lee, K.E.; Kim, M.K.; Sang, J. High-Resolution Bioclimatic Prediction Data Production Technology Guide for the Subalpine Zone—Based on the RCP Climate Change Scenario; National Institute of Ecology (NIE): Maseo-myeon, Republic of Korea, 2022. (In Korean) [Google Scholar]
- Austin, M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002, 157, 101–118. [Google Scholar] [CrossRef]
- Marmion, M.; Luoto, M.; Heikkinen, R.K.; Thuiller, W. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. Ecol. Model. 2009, 220, 3512–3520. [Google Scholar] [CrossRef]
- Buisson, L.; Thuiller, W.; Casajus, N.; Lek, S.; Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 2010, 16, 1145–1157. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Thorne, J.H.; Greenberg, J.A.; Safford, H.D.; Mynsberge, A.R.; Crimmins, S.M.; Swanson, A.K. Modeling plant ranges over 75 years of climate change in California.; USA: Temporal transferability and species traits. Ecol. Monogr. 2011, 81, 241–257. [Google Scholar] [CrossRef]
- Corcoran, J.; Knight, J.; Pelletier, K.; Rampi, L.; Wang, Y. The effects of point or polygon based training data on RandomForest classification accuracy of wetlands. Remote Sens. 2015, 7, 4002–4025. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Lay, G.L.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Araújo, M.B.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Hao, T.; Elith, J.; Guillera-Arroita, G.; Lahoz-Monfort, J.J. A review of evidence about use and performance of species distribution modeling ensembles like BIOMOD. Divers. Distrib. 2018, 25, 839–852. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Baldwin, R.A. Use of maximum entropy modeling in wildlife research. Entropy 2009, 11, 854–866. [Google Scholar] [CrossRef]
- Koo, K.A.; Kim, D.B. Review forty-year studies of Korean fir (Abies koreana Wilson). Korean J. Environ. Ecol. 2020, 34, 358–371, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Cho, S.; Kim, Y.; Choung, Y. Distribution and synchronized massive flowering of Sasa borealis in the forests of Korean National Parks. J. Ecol. Environ. 2018, 42, 37. [Google Scholar] [CrossRef]
BIOCLIM | Description | Unit |
---|---|---|
BIO1 | Annual mean temperature | °C |
BIO4 | Temperature seasonality | |
BIO6 | Mean minimum temperature of the coldest month | °C |
BIO9 | Mean temperature of the driest quarter | °C |
BIO14 | Precipitation in the driest month | mm/month |
BIO15 | Precipitation seasonality |
BIOCLIM Variables | EXP1 (≥10%) | EXP2 (≥25%) | EXP3 (≥50%) | EXP4 (≥75%) | ||||
---|---|---|---|---|---|---|---|---|
PC | PI | PC | PI | PC | PI | PC | PI | |
BIO1 | 68 | 77.1 | 21.4 | 72 | 27 | 77.5 | 16.3 | 22 |
BIO4 | 0.7 | 8.8 | 27.5 | 13.6 | 46.3 | 1.7 | 22 | 28.6 |
BIO6 | 0.1 | 1 | 0 | 0 | 0 | 0 | 9.1 | 22.9 |
BIO9 | 0 | 0 | 0.2 | 0.7 | 0.9 | 6.6 | 9.2 | 18.9 |
BIO14 | 0.4 | 8.6 | 0.8 | 8.2 | 1.2 | 9.9 | 26.1 | 3.5 |
BIO15 | 0.1 | 0. | 29.4 | 3.9 | 24.1 | 3.2 | 15.2 | 2.9 |
Slope | 30.6 | 3.9 | 20.7 | 1.7 | 0.4 | 0 | 1.2 | 0.9 |
Aspect | 0 | 0.1 | 0 | 0 | 0 | 0 | 0.8 | 0.4 |
Inhabitable Probability | EXP1 | EXP2 | EXP3 | EXP4 |
---|---|---|---|---|
≥25% | 16,061 ha | 14,415 ha | 13,032 ha | 11,013 ha |
≥50% | 12,806 ha | 11,175 ha | 10,693 ha | 8094 ha |
≥75% | 9316 ha | 8045 ha | 8234 ha | 5449 ha |
Density of A. koreana | Average Inhabitable Probability | |||
---|---|---|---|---|
EXP1 | EXP2 | EXP3 | EXP4 | |
75–100% | 89.96 | 88.91 | 92.14 | 88.29 |
50–75% | 89.60 | 88.82 | 91.33 | 84.82 |
25–50% | 86.65 | 85.44 | 85.33 | 77.33 |
10–25% | 85.10 | 81.75 | 82.39 | 71.97 |
Inhabitable Probability | Residual Period | Conservation Grade | ||||
---|---|---|---|---|---|---|
2100 | 2080 | 2060 | 2040 | Grade | Description | |
>50% | SR | HR | HR | MR | SR | Strong recommendation |
40–50% | HR | HR | MR | MR | HR | High recommendation |
30–40% | HR | MR | MR | LR | MR | Medium recommendation |
20–30% | MR | MR | LR | LR | LR | Low recommendation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.; Kim, D.; Cha, J.; Hong, S. Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation. Sustainability 2023, 15, 8964. https://doi.org/10.3390/su15118964
Lee K, Kim D, Cha J, Hong S. Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation. Sustainability. 2023; 15(11):8964. https://doi.org/10.3390/su15118964
Chicago/Turabian StyleLee, Kyungeun, Daeguen Kim, Jaegyu Cha, and Seungbum Hong. 2023. "Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation" Sustainability 15, no. 11: 8964. https://doi.org/10.3390/su15118964
APA StyleLee, K., Kim, D., Cha, J., & Hong, S. (2023). Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation. Sustainability, 15(11), 8964. https://doi.org/10.3390/su15118964