Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Soil
2.2. Experimental Setup, Design, and Treatments
2.3. Total Chlorophyll and Cob Vitamin C Estimation
2.4. Plant Height and Yield Attributes of Baby Corn
2.5. Yield of Baby Corn
2.6. Analysis of Plant Samples
2.7. Nitrogen Uptake, Nitrogen Use Efficiency, and Fertilizer N Use Efficiency
2.8. Post-Harvest Soil Analysis
2.9. Measurement of Urease Enzyme Activity in Soil
2.10. Statistical Analysis
3. Results
3.1. Urease Activity of Soil Amended with Urea and PSU Granules
3.2. Plant Height and Yield Attributes of Baby Corn
3.3. Leaf Total Chlorophyll, Cob Vitamin C, and Protein Content
3.4. Cob and Fodder Yield
3.5. Cob and Fodder N Concentration and Uptake by Baby Corn
3.6. Nitrogen Use Efficiency (NUE) and Fertilizer N Use Efficiency (FNUE)
3.7. Soil Organic Carbon (SOC) and Soil pH after Harvest
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Boukhari, M.E.M.E.; Mphatso, C.; Zeroual, Y.; Lyamlouli, K. Conversion of Waste into Organo-Mineral Fertilizers: Current Technological Trends and Prospects. Rev. Environ. Sci. Bio/Technol. 2022, 21, 425–446. [Google Scholar] [CrossRef]
- Reynolds, M.P.; Quilligan, E.; Aggarwal, P.K.; Bansal, K.C.; Cavalieri, A.J.; Chapman, S.C.; Chapotin, S.M.; Datta, S.K.; Duveiller, E.; Gill, K.S. An Integrated Approach to Maintaining Cereal Productivity under Climate Change. Glob. Food Sec. 2016, 8, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Saha, B.K.; Rose, M.T.; Van Zwieten, L.; Wong, V.N.L.L.; Patti, A.F. Slow Release Brown Coal-Urea Fertilizer Potentially Influences Greenhouse Gas Emissions, Nitrogen Use Efficiency, and Sweet Corn Yield in Oxisol. ACS Agric. Sci. Technol. 2021, 1, 469–478. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen Losses from the Soil/Plant System: A Review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human Alteration of the Global Nitrogen Cycle: Sources and Consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Hartemink, A.E.; Gerzabek, M.H.; Lal, R.; McSweeney, K. Soil Carbon Research Priorities. In Soil Carbon; Springer: Berlin/Heidelberg, Germany, 2014; pp. 483–490. [Google Scholar]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.J.; Creamer, R.E. Eco-Functionality of Organic Matter in Soils. Plant Soil 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Dong, L.; Córdova-Kreylos, A.L.; Yang, J.; Yuan, H.; Scow, K.M. Humic Acids Buffer the Effects of Urea on Soil Ammonia Oxidizers and Potential Nitrification. Soil Biol. Biochem. 2009, 41, 1612–1621. [Google Scholar] [CrossRef] [Green Version]
- Naz, M.Y.; Sulaiman, S.A. Slow Release Coating Remedy for Nitrogen Loss from Conventional Urea: A Review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Davidson, D.; Gu, F.X. Materials for Sustained and Controlled Release of Nutrients and Molecules to Support Plant Growth. J. Agric. Food Chem. 2012, 60, 870–876. [Google Scholar] [CrossRef]
- Barbosa, C.F.; Correa, D.A.; Carneiro, J.S.d.S.; Melo, L.C.A. Biochar Phosphate Fertilizer Loaded with Urea Preserves Available Nitrogen Longer than Conventional Urea. Sustainability 2022, 14, 686. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of Effectiveness of Enhanced-efficiency Fertilizers as Mitigation Options for N2O and NO Emissions from Agricultural Soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Wu, W.; Ma, B. Integrated Nutrient Management (INM) for Sustaining Crop Productivity and Reducing Environmental Impact: A Review. Sci. Total Environ. 2015, 512, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Quilty, J.R.; Cattle, S.R. Use and Understanding of Organic Amendments in Australian Agriculture: A Review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mallick, R.; Mukherjee, J. Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Marwanto, M.; Silitinga, M.O.; Bertham, Y.H.; Handajaningsih, M. Prasetyo Azolla Compost-Based Organomineral Fertilizer for Increasing N Uptake, Growth, and Yield of Green Onion. In Proceedings of the AIP Conference Proceedings, Göttingen, Germany, 4–8 September 2023; AIP Publishing LLC: New York, NY, USA, 2023; Volume 2583, p. 20035. [Google Scholar]
- Bahari, M.T.P.; Marwanto, M.; Fahrurrozi, F.; Handajaningsih, M. Zeolite Oil Palm Compost-Based Organomineral Fertilizer for Shallot Agronomic Performances and N Substitution. TERRA J. L Restor. 2022, 5, 1–7. [Google Scholar]
- Gao, Y.; Fang, Z.; Van Zwieten, L.; Bolan, N.; Dong, D.; Quin, B.F.; Meng, J.; Li, F.; Wu, F.; Wang, H. A Critical Review of Biochar-Based Nitrogen Fertilizers and Their Effects on Crop Production and the Environment. Biochar 2022, 4, 36. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; van Zwieten, L.; Wong, V.N.L.; Rose, T.; Patti, A.F. Fate and Recovery of Nitrogen Applied as Slow Release Brown Coal-Urea in Field Microcosms: 15N Tracer Study. Environ. Sci. Process. Impacts 2023, 25, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Orekhovskaya, A.A.; Klyosov, D.N. Effect of Application of Organomineral Fertilizers. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 022010. [Google Scholar] [CrossRef]
- Saha, B.K.; Rose, M.T.; Wong, V.N.L.; Cavagnaro, T.R.; Patti, A.F. A Slow Release Brown Coal-Urea Fertiliser Reduced Gaseous N Loss from Soil and Increased Silver Beet Yield and N Uptake. Sci. Total Environ. 2019, 649, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Shahi, J.P.G.V. Baby Corn. In Genesis and Evolution of Horticultural Crops; Peter, K.V., Ed.; Kruger Brentt Publishere: London, UK, 2017; pp. 47–65. [Google Scholar]
- Roy, S.D. Baby Corn Farming Gains, Farmers Need Market Facility. The Daily Star, 28 May 2015. [Google Scholar]
- Hooda, S.; Kawatra, A. Nutritional Evaluation of Baby Corn (Zea mays). Nutr. Food Sci. 2013, 43, 68–73. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, G.; Kaleem, M.D.; Bahadur, V. Effect of Different Levels of Nitrogen and Crop Geometry on the Growth, Yield and Quality of Baby Corn (Zea mays L.) Cv.’golden Baby’. In Proceedings of the International Symposium on the Socio-Economic Impact of Modern Vegetable Production Technology in Tropical Asia, Chiang Mai, Thailand, 3–6 February 2008; pp. 161–166. [Google Scholar]
- Singh, M.K.; Singh, R.N.; Singh, S.P. Effect of Integrated Nutrient Management on Growth, Yield and Yield Attributes of Baby Corn (Zea mays). Veg. Sci. 2009, 36, 77–79. [Google Scholar]
- Wang, X.; Cao, X.; Xu, H.; Zhang, S.; Gao, Y.; Deng, Z.; Li, J. Research on the Properties of Peat Soil and Foundation Treatment Technology. E3S Web Conf. 2021, 272, 2019. [Google Scholar] [CrossRef]
- Cao, S. Research and Application of Peat in Agriculture. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Moscow, Russia, 27 May–6 June 2019; IOP Publishing: Bristol, UK, 2019; Volume 384, p. 12174. [Google Scholar]
- Davis, J.G.; Whiting, D.; Wilson, C.R. Choosing a Soil Amendment: Fact Sheet No. 7.235. In Gardening Series Basics; Colorado State University Extension: Fort Collins, CO, USA, 2013; pp. 1–4. [Google Scholar]
- Ali, M.R. Potential of Peatlands in Bangladesh and Sustainable Management Strategy. Agric. Eng. Int. CIGR J. 2020, 22, 65–74. [Google Scholar]
- Uddin, M.J.; Mohiuddin, A.S.M. Estimation of Carbon Stock in the Peat Soils of Bangladesh. J. Asiat. Soc. Bangladesh Sci. 2019, 45, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Sutejo, Y.; Saggaff, A.; Rahayu, W. Hanafiah Physical and Chemical Characteristics of Fibrous Peat. AIP Conf. Proc. 2017, 1903, 90006. [Google Scholar]
- Warren, M.W.; Kauffman, J.B.; Murdiyarso, D.; Anshari, G.; Hergoualc’h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J. A Cost-Efficient Method to Assess Carbon Stocks in Tropical Peat Soil. Biogeosciences 2012, 9, 4477–4485. [Google Scholar] [CrossRef] [Green Version]
- Putri, C.S.; Saharjo, B.H.; Wasis, B. The Chemical Properties of Burnt Peat Soil in Teluk Bakung Village, West Kalimantan. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Virtual, 25–27 February 2022; IOP Publishing: Bristol, UK, 2022; Volume 959, p. 12055. [Google Scholar]
- Dias, R.d.C.; Stafanato, J.B.; Zonta, E.; Polidoro, J.C.; Gonçalves, R.G.d.M.; Teixeira, P.C. Effect of Phosphate Organomineral Fertilization on the Dry Matter Production and Phosphorus Accumulation of Corn. Embrapa 2022, 14, 78–89. [Google Scholar] [CrossRef]
- Forster, J.C. Soil Sampling, Handling, Storage and Analysis. In Methods in Applied Soil Microbiology and Biochemistry; Elsevier: Amsterdam, The Netherlands, 1995; pp. 49–121. [Google Scholar]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.U. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1984. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course: A Manual of Methods Useful for Instruction and Research in Soil Chemistry, Physical Chemistry of Soils, Soil Fertility, and Soil Genesis; UW-Madison Libraries Parallel Press: Madison, WI, USA, 2005; ISBN 1893311473. [Google Scholar]
- Chang, S.K.C.; Zhang, Y. Protein Analysis. Food Anal. 2017, 315–331. [Google Scholar] [CrossRef]
- Finzi, A.C.; Norby, R.J.; Calfapietra, C.; Gallet-Budynek, A.; Gielen, B.; Holmes, W.E.; Hoosbeek, M.R.; Iversen, C.M.; Jackson, R.B.; Kubiske, M.E. Increases in Nitrogen Uptake Rather than Nitrogen-Use Efficiency Support Higher Rates of Temperate Forest Productivity under Elevated CO2. Proc. Natl. Acad. Sci. USA 2007, 104, 14014–14019. [Google Scholar] [CrossRef] [Green Version]
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization 1. Agron. J. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Black, C.A. Soil-Plant Relationships. Soil Sci. 1958, 85, 175. [Google Scholar] [CrossRef]
- Kandeler, E.; Gerber, H. Short-Term Assay of Soil Urease Activity Using Colorimetric Determination of Ammonium. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley & Sons: Hoboken, NJ, USA, 1984; ISBN 0471870927. [Google Scholar]
- Liu, X.-Y.; Koba, K.; Koyama, L.A.; Hobbie, S.E.; Weiss, M.S.; Inagaki, Y.; Shaver, G.R.; Giblin, A.E.; Hobara, S.; Nadelhoffer, K.J. Nitrate Is an Important Nitrogen Source for Arctic Tundra Plants. Proc. Natl. Acad. Sci. USA 2018, 115, 3398–3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bollmann, A.; Laanbroek, H.J. Continuous Culture Enrichments of Ammonia-Oxidizing Bacteria at Low Ammonium Concentrations. FEMS Microbiol. Ecol. 2001, 37, 211–221. [Google Scholar] [CrossRef]
- Araújo, B.R.; Romao, L.P.C.; Doumer, M.E.; Mangrich, A.S. Evaluation of the Interactions between Chitosan and Humics in Media for the Controlled Release of Nitrogen Fertilizer. J. Environ. Manag. 2017, 190, 122–131. [Google Scholar] [CrossRef]
- Ullah, S.; Zhao, Q.; Wu, K.; Ali, I.; Liang, H.; Iqbal, A.; Wei, S.; Cheng, F.; Ahmad, S.; Jiang, L. Biochar Application to Rice with 15N-Labelled Fertilizers, Enhanced Leaf Nitrogen Concentration and Assimilation by Improving Morpho-Physiological Traits and Soil Quality. Saudi J. Biol. Sci. 2021, 28, 3399–3413. [Google Scholar] [CrossRef]
- Zhao, H.; Xie, T.; Xiao, H.; Gao, M. Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize–Chinese Cabbage Rotation System. Agriculture 2022, 12, 1030. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Wang, Y.; Ma, X.; Shen, Y.; Wang, X.; Yang, H.; Zhang, W.; Lakshmanan, P.; Hu, Y. Physiological and Metabolomic Analysis Reveals Maturity Stage-Dependent Nitrogen Regulation of Vitamin C Content in Pepper Fruit. Front. Plant Sci. 2023, 13, 1049785. [Google Scholar] [CrossRef]
- Dawar, K.; Fahad, S.; Alam, S.S.; Khan, S.A.; Dawar, A.; Younis, U.; Danish, S.; Datta, R.; Dick, R.P. Influence of Variable Biochar Concentration on Yield-Scaled Nitrous Oxide Emissions, Wheat Yield and Nitrogen Use Efficiency. Sci. Rep. 2021, 11, 16774. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.N.A.; Uddin, M.K.; Sulaiman, M.F.; Amin, A.M.; Hossain, M.; Solaiman, Z.M.; Aziz, A.A.; Mosharrof, M. Combined Use of Biochar with 15Nitrogen Labelled Urea Increases Rice Yield, N Use Efficiency and Fertilizer N Recovery under Water-Saving Irrigation. Sustainability 2022, 14, 7622. [Google Scholar] [CrossRef]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.M.; Wu, F.; Chen, Y.; Liu, D.; Zhang, W.; He, Z.; Hou, E.; Xing, S.; Mao, Y. Impacts of MgO-and Sepiolite-Biochar Composites on N-Partitioning and Dynamics of N-Cycling Bacteria in a Soil-Maize System: A Field-Based 15N-Urea Tracer Study. Geoderma 2023, 429, 116236. [Google Scholar] [CrossRef]
- Rashid, M.; Hussain, Q.; Khan, K.S.; Alwabel, M.I.; Hayat, R.; Akmal, M.; Ijaz, S.S.; Alvi, S. Carbon-Based Slow-Release Fertilizers for Efficient Nutrient Management: Synthesis, Applications, and Future Research Needs. J. Soil Sci. Plant Nutr. 2021, 21, 1144–1169. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Liu, Z.; Xia, W.; Zhang, X.; Li, L.; Liu, X.; Bian, R.; Cheng, K.; Zheng, J. Biochar Compound Fertilizer Increases Nitrogen Productivity and Economic Benefits but Decreases Carbon Emission of Maize Production. Agric. Ecosyst. Environ. 2017, 241, 70–78. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Textural class | Silty loam | Total N | 0.06% |
Bulk density | 1.28 g cm−1 | Available P | 3.12 μg g−1 |
Soil class | Inceptisol | Available S | 4.09 μg g−1 |
pH | 6.8 | Available K | 1.29 meq 100 g−1 |
Total C | 0.46% | Available Ca | 4.9 meq 100 g−1 |
Organic matter | 0.79% | Available Mg | 3.2 meq 100 g−1 |
Granules | Moisture (%) | Crush Strength (kg) | C:N | C content (%) | N content (%) |
---|---|---|---|---|---|
Peat soil urea-H (PSU-H) | 4.15 | 4.39 | 1.12 | 28 | 25 |
Peat soil urea-L (PSU-L) | 4.04 | 6.80 | 2.07 | 31 | 15 |
Treatment Number | Treatment Symbol | Treatment Details and Dose of N |
---|---|---|
1 | Control | No N |
2 | Urea 100% | 100% of RD of N |
3 | Urea 75% | 75% of RD of N |
4 | Urea 50% | 50% of RD of N |
5 | PSU-H 100% | 100% of RD of N |
6 | PSU-H 75% | 75% of RD of N |
7 | PSU-H 50% | 50% of RD of N |
8 | PSU-L 100% | 100% of RD of N |
9 | PSU-L 75% | 75% of RD of N |
10 | PSU-L 50% | 50% of RD of N |
Treatment | Plant Height (cm) | Cob Length (cm) | Cob Circumference (cm) | |||
---|---|---|---|---|---|---|
14 DAS | 28 DAS | 42 DAS | Harvest | |||
Control | 30.75 ± 2.29a | 60.50 ± 1.83b | 82.77 ± 3.64f | 100.55 ± 2.02d | 4.3 ± 0.15e | 4.5 ± 0.17e |
Urea 50% | 31.25 ± 2.10a | 70.56 ± 3.66ab | 94.72 ± 7.11ef | 135.53 ± 2.60c | 8.76 ± 0.31d | 7.35 ± 0.41d |
PSU-H 50% | 29.25 ± 1.70a | 81.58 ± 1.32a | 119.29 ± 1.80bcd | 169.45 ± 6.20b | 10.98 ± 0.20cd | 8.16 ± 0.39d |
PSU-L 50% | 29.23 ± 1.47a | 78.75 ± 1.31a | 123.52 ± 1.85abcd | 170.35 ± 6.97b | 11.58 ± 0.42bc | 9.01 ± 0.41cd |
Urea 75% | 29.50 ± 1.32a | 69.25 ± 5.20ab | 107.55 ± 5.61de | 169.55 ± 4.41b | 11.71 ± 0.30bc | 9.08 ± 0.30cd |
PSU-H 75% | 28.71 ± 1.65a | 73.75 ± 2.46ab | 122.25 ± 1.11bcd | 185.65 ± 7.47ab | 12.84 ± 0.62abc | 9.49 ± 0.27bcd |
PSU-L 75% | 30.00 ± 1.68a | 76.34 ± 1.80ab | 130.42 ± 2.45abc | 192.28 ± 6.10ab | 13.5 ± 0.25ab | 11.60 ± 0.65ab |
Urea 100% | 23.65 ± 3.77a | 67.25 ± 8.33ab | 113.26 ± 2.61cde | 177.35 ± 4.77ab | 13.51 ± 0.55ab | 10.9 ± 0.48abc |
PSU-H 100% | 28.76 ± 1.89a | 74.62 ± 3.35ab | 135.46 ± 2.12ab | 187.75 ± 6.61ab | 13.66 ± 0.38ab | 11.48 ± 0.10ab |
PSU-L 100% | 31.73 ± 2.43a | 80.59 ± 2.56a | 141.75 ± 5.85a | 199.75 ± 5.22a | 14.22 ± 1.10a | 12.15 ± 0.76a |
Treatment | SOC | pH |
---|---|---|
Initial soil | 0.46 ± 0.030a | 6.76 ± 0.082a |
Control | 0.44 ± 0.030a | 6.80 ± 0.203a |
Urea 50% | 0.43 ± 0.024a | 6.61 ± 0.082a |
PSU-H 50% | 0.46 ± 0.029a | 6.75 ± 0.067a |
PSU-L 50% | 0.48 ± 0.027a | 6.68 ± 0.030a |
Urea 75% | 0.42 ± 0.027a | 6.56 ± 0.094a |
PSU-H 75% | 0.48 ± 0.023a | 6.77 ± 0.149a |
PSU-L 75% | 0.51 ± 0.020a | 6.65 ± 0.052a |
Urea 100% | 0.40 ± 0.027a | 6.64 ± 0.067a |
PSU-H 100% | 0.50 ± 0.029a | 6.77 ± 0.066a |
PSU-L 100% | 0.53 ± 0.034a | 6.72 ± 0.072a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uddin, M.K.; Yeasmin, S.; Mohiuddin, K.M.; Chowdhury, M.A.H.; Saha, B.K. Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.). Sustainability 2023, 15, 9086. https://doi.org/10.3390/su15119086
Uddin MK, Yeasmin S, Mohiuddin KM, Chowdhury MAH, Saha BK. Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.). Sustainability. 2023; 15(11):9086. https://doi.org/10.3390/su15119086
Chicago/Turabian StyleUddin, Md. Kafil, Sanjida Yeasmin, K. M. Mohiuddin, Md. Akhter Hossain Chowdhury, and Biplob Kumar Saha. 2023. "Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.)" Sustainability 15, no. 11: 9086. https://doi.org/10.3390/su15119086
APA StyleUddin, M. K., Yeasmin, S., Mohiuddin, K. M., Chowdhury, M. A. H., & Saha, B. K. (2023). Peat-Based Organo-Mineral Fertilizer Improves Nitrogen Use Efficiency, Soil Quality, and Yield of Baby Corn (Zea mays L.). Sustainability, 15(11), 9086. https://doi.org/10.3390/su15119086