Research on the Efficiency of Urban Infrastructure Investment under the Constraint of Carbon Emissions, Taking Provincial Capitals in China as an Example
Abstract
:1. Introduction
2. Research Methods
2.1. Model Construction
2.2. Index Establishment
3. Empirical Analysis
3.1. Measurement Results of Infrastructure Investment Efficiency
3.2. Malmquist Index Efficiency Decomposition and Analysis
3.3. Factors and Analysis on the Efficiency of Infrastructure Investment
3.3.1. Variable Selection
3.3.2. Tobit Regression Analysis
4. Conclusions and Suggestions
4.1. Conclusions
4.2. Suggestions
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IEA. Global Energy Review: CO2 Emissions in 2021-Global Emissions Rebound Sharply to Highest Ever Level; IEA: Paris, France, 2022. [Google Scholar]
- Lingegård, S.; Olsson, J.A.; Kadefors, A.; Uppenberg, S. Sustainable public procurement in large infrastructure projects—Policy implementation for carbon emission reductions. Sustainability 2021, 13, 11182. [Google Scholar] [CrossRef]
- Xie, R.; Fang, J.; Liu, C. The effects of transportation infrastructure on urban carbon emissions. Appl. Energy 2017, 196, 199–207. [Google Scholar] [CrossRef]
- Lyu, Y.; Ji, Z.; Liang, H.; Wang, T.; Zheng, Y. Has Information Infrastructure Reduced Carbon Emissions?—Evidence from Panel Data Analysis of Chinese Cities. Buildings 2022, 12, 619. [Google Scholar] [CrossRef]
- Fisch-Romito, V. Embodied carbon dioxide emissions to provide high access levels to basic infrastructure around the world. Glob. Environ. Chang. 2021, 70, 102362. [Google Scholar] [CrossRef]
- Chen, X.; Xu, H.; Zhang, L.; Cao, H. Spatial functional division, infrastructure and carbon emissions: Evidence from China. Energy 2022, 256, 124551. [Google Scholar] [CrossRef]
- Novikova, T.S. Investments in research infrastructure on the project level: Problems, methods and mechanisms. Eval. Program Plan. 2022, 91, 102018. [Google Scholar] [CrossRef]
- Javid, M. Public and private infrastructure investment and economic growth in pakistan: An aggregate and disaggregate analysis. Sustainability 2019, 11, 3359. [Google Scholar] [CrossRef] [Green Version]
- Min, S. Cost structure and efficiency of Korea’s road and rail in the manufacturing industries. J. Infrastruct. Syst. 2011, 17, 118–128. [Google Scholar] [CrossRef]
- Panayiotou, A.; Medda, F. Portfolio of infrastructure investments: Analysis of European infrastructure. J. Infrastruct. Syst. 2016, 22, 04016011. [Google Scholar] [CrossRef]
- Giang, D.T.H.; Pheng, L.S. Critical factors affecting the efficient use of public investments in infrastructure in Vietnam. J. Infrastruct. Syst. 2014, 21, 05014007. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, C. The Impact of government integrity on investment efficiency in regional transportation infrastructure in China. Sustainability 2019, 11, 6747. [Google Scholar] [CrossRef] [Green Version]
- Lan, T.; Chen, T.; Hu, Y.; Yang, Y.; Pan, J. Governmental investments in hospital infrastructure among regions and its efficiency in China: An assessment of building construction. Front. Public Health 2021, 9, 1553. [Google Scholar] [CrossRef]
- Chen, B. Public–private partnership infrastructure investment and sustainable economic development: An empirical study based on efficiency evaluation and spatial spillover in China. Sustainability 2021, 13, 8146. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, H.; Zhou, C. DEA game cross-efficiency model to urban public infrastructure investment comprehensive efficiency of China. Math. Probl. Eng. 2016, 2016, 9814313. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Liang, L.; Zhu, J. A slacks-based measure of super-efficiency in data envelopment analysis: A comment. Eur. J. Oper. Res. 2010, 204, 694–697. [Google Scholar] [CrossRef]
- World Bank. World Development Report 1994: Infrastructure for Development; The World Bank: Washington, DC, USA, 1994. [Google Scholar]
- Mastromarco, C.; Woitek, U. Public infrastructure investment and efficiency in Italian regions. J. Prod. Anal. 2006, 25, 57–65. [Google Scholar] [CrossRef]
- Kyriacou, A.P.; Muinelo-Gallo, L.; Roca-Sagalés, O. The efficiency of transport infrastructure investment and the role of government quality: An empirical analysis. Transp. Policy 2019, 74, 93–102. [Google Scholar] [CrossRef]
- Gan, L.; Huang, M. Establishing of an Evaluation System on Government Investment Efficiency in Infrastructure Projects Based on the Input/Output Theory. In ICCREM 2013: Construction and Operation in the Context of Sustainability; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 1258–1268. [Google Scholar]
- Yang, J.P.; Gao, L. DEA’s CCR model for evaluation of urban infrastructure investment efficiency of Shaanxi Province. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2014; Volume 685, pp. 424–428. [Google Scholar]
- Saxena, M.; Chotia, V.; Rao, N.M. Estimating the efficiency of public infrastructure investment: A state-wise analysis. Glob. Bus. Rev. 2018, 19, 1037–1049. [Google Scholar] [CrossRef]
- Herranz-Loncán, A. Infrastructure investment and Spanish economic growth, 1850–1935. Explor. Econ. Hist. 2007, 44, 452–468. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Du, X.; Li, K.; Zeng, S.; Bledsoe, B.P. Benchmarking sustainability of urban water infrastructure systems in China. J. Clean. Prod. 2018, 170, 330–338. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, L.; Zhang, Y.; Li, H.; Ren, Y. Sustainability based perspective on the utilization efficiency of urban infrastructure—A China study. Habitat Int. 2019, 93, 102050. [Google Scholar] [CrossRef]
- Granoff, I.; Hogarth, J.R.; Miller, A. Nested barriers to low-carbon infrastructure investment. Nat. Clim. Chang. 2016, 6, 1065–1071. [Google Scholar] [CrossRef]
- Chen, C. A bigger bang for the public buck: A non-parametric efficiency analysis of state highway infrastructure investment. J. Public Budg. Account. Financ. Manag. 2018, 30, 270–285. [Google Scholar] [CrossRef]
- Goyal, G.; Dutta, P. Performance analysis of Indian states based on social–economic infrastructural investments using data envelopment analysis. Int. J. Prod. Perform. Manag. 2021, 70, 2258–2280. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, S.; Zhang, W.; Li, J.; Zhao, Y.; Li, W. China’s municipal public infrastructure: Estimating construction levels and investment efficiency using the entropy method and a DEA model. Habitat Int. 2017, 64, 59–70. [Google Scholar] [CrossRef]
- Ngobeni, V.; Breitenbach, M.C.; Aye, G.C. Technical efficiency of provincial public healthcare in South Africa. Cost Eff. Resour. Alloc. 2020, 18, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yu, Y.; Addis, A.K.; Guo, X. Empirical assessment and comparison of educational efficiency between major countries across the world. Sustainability 2022, 14, 4009. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M. On the relationship between transportation infrastructure and economic development in China. Res. Transp. Econ. 2021, 88, 100947. [Google Scholar] [CrossRef]
- Siddiqui, S.; Vaillancourt, K.; Bahn, O.; Victor, N.; Nichols, C.; Avraam, C.; Brown, M. Integrated North American energy markets under different futures of cross-border energy infrastructure. Energy Policy 2020, 144, 111658. [Google Scholar] [CrossRef]
- Woodward, J.; Stoughton, K.M.; Begley, L.; Boyd, B. Evaluating water assets using water efficiency framework for infrastructure intensive agency. J. Water Resour. Plan. Manag. 2019, 145, 04018090. [Google Scholar] [CrossRef]
- Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards smart cities. Urban For. Urban Green. 2017, 25, 58–65. [Google Scholar] [CrossRef]
- Xu, Z.; Das, D.K.; Guo, W.; Wei, W. Does power grid infrastructure stimulate regional economic growth? Energy Policy 2021, 155, 112296. [Google Scholar] [CrossRef]
- Mohanty, R.K.; Bhanumurthy, N.R. Analyzing the dynamic relationships between physical infrastructure, financial development and economic growth in India. Asian Econ. J. 2019, 33, 381–403. [Google Scholar] [CrossRef]
- Toader, E.; Firtescu, B.N.; Roman, A.; Anton, S.G. Impact of information and communication technology infrastructure on economic growth: An empirical assessment for the EU countries. Sustainability 2018, 10, 3750. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Bianchi, A.; E Silva, F.B.; Herrera, M.A.M.; Leblois, A.; LaValle, C.; Aerts, J.C.J.H.; Feyen, L. Escalating impacts of climate extremes on critical infrastructures in Europe. Glob. Environ. Chang. 2018, 48, 97–107. [Google Scholar] [CrossRef]
- Dawson, R.J.; Thompson, D.; Johns, D.; Wood, R.; Darch, G.; Chapman, L.; Hughes, P.N.; Watson, G.V.R.; Paulson, K.; Bell, S.; et al. A systems framework for national assessment of climate risks to infrastructure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170298. [Google Scholar] [CrossRef] [Green Version]
- Brockway, A.M.; Dunn, L.N. Weathering adaptation: Grid infrastructure planning in a changing climate. Clim. Risk Manag. 2020, 30, 100256. [Google Scholar] [CrossRef]
- Mitoulis, S.A.; Bompa, D.V.; Argyroudis, S. Sustainability and Climate Resilience Trade-Offs in Transport Infrastructure Recovery. Soc. Sci. Res. Netw. 2022. [Google Scholar] [CrossRef]
- Agénor, P.R.; Alpaslan, B. Infrastructure and industrial development with edogenous skill acquisition. Bull. Econ. Res. 2018, 70, 313–334. [Google Scholar] [CrossRef]
- Lu, C.; Hong, W.; Wang, Y.; Zhao, D. Study on the Coupling Coordination of Urban Infrastructure and Population in the Perspective of Urban Integration. IEEE Access 2021, 9, 124070–124086. [Google Scholar] [CrossRef]
- Liu, C. Infrastructure Public–Private Partnership (PPP) Investment and Government Fiscal Expenditure on Science and Technology from the Perspective of Sustainability. Sustainability 2021, 13, 6193. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, H.W.; Tang, W.; Whittington, J.; Qiang, M. Structural equation modeling for the determinants of international infrastructure investment: Evidence from Chinese contractors. J. Manag. Eng. 2021, 37, 04021033. [Google Scholar] [CrossRef]
Input | Road traffic system | Urban road area per capita (m2) | [15,18,19,20,22,23,24,26,28,29,30] |
Water supply | Daily domestic water consumption per capita (Liter per day per person) | [15,19,21,25,26,30] | |
Energy power system | Total gas supply per capita (cubic meter/day · person) | [15,21,22,24,26] | |
Annual per capita in urban and rural areas (KWH) | [21,22,24,25,26,30] | ||
Green environment | The green park space area per capita (m2) | [15,22,26,30] | |
Medical and health level | The harmless treatment rate of municipal solid waste (%) | [25,30] | |
Number of medical facilities per ten thousand people (one) | [13,19,21,22,25,30,31] | ||
Educational level | Education expenditure per ten thousand people (RMB ten thousand) | [17,32] | |
Output | Level of income | Per capita GDP of urban residents (CNY) | [22,26] |
Urbanization level | Built-up area (km2) | [15,26] | |
Undesirable output | Carbon emission | Carbon emission (ten thousand tons) | [4,6,27] |
DMU | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Mean | Ranking | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
North China | Beijing | 1.04 | 1.06 | 1.05 | 1.07 | 1.05 | 1.07 | 1.09 | 1.08 | 1.03 | 1.06 | 1.08 | 1.06 | 8 |
Tianjin | 1.02 | 1.04 | 1.04 | 1.04 | 1.05 | 1.07 | 1.08 | 1.03 | 1.10 | 1.07 | 1.04 | 1.05 | 9 | |
Shijiazhuang | 1.02 | 0.51 | 0.47 | 0.52 | 0.55 | 0.35 | 0.33 | 0.32 | 0.33 | 0.34 | 0.32 | 0.46 | 26 | |
Taiyuan | 0.57 | 0.50 | 0.52 | 0.48 | 0.48 | 0.44 | 0.40 | 0.43 | 0.40 | 0.67 | 0.46 | 0.49 | 24 | |
Hohehot | 0.43 | 0.44 | 1.02 | 0.63 | 0.50 | 0.52 | 0.49 | 0.44 | 1.04 | 1.08 | 1.04 | 0.69 | 19 | |
mean | 0.82 | 0.71 | 0.82 | 0.75 | 0.72 | 0.69 | 0.68 | 0.66 | 0.78 | 0.84 | 0.79 | 0.75 | ||
Northeast | Changchun | 0.65 | 1.03 | 1.08 | 1.18 | 1.06 | 1.11 | 1.02 | 1.01 | 1.07 | 0.62 | 0.54 | 0.94 | 13 |
Harbin | 0.64 | 0.67 | 0.65 | 0.65 | 1.01 | 0.64 | 0.65 | 0.55 | 0.52 | 0.52 | 0.44 | 0.63 | 20 | |
Shenyang | 0.57 | 0.56 | 0.59 | 0.56 | 0.59 | 0.51 | 0.49 | 0.48 | 0.52 | 0.58 | 0.60 | 0.55 | 23 | |
mean | 0.62 | 0.75 | 0.77 | 0.79 | 0.88 | 0.75 | 0.72 | 0.68 | 0.70 | 0.57 | 0.53 | 0.71 | ||
East China | Shanghai | 1.31 | 1.25 | 1.31 | 1.32 | 1.31 | 1.27 | 1.27 | 1.28 | 1.42 | 1.38 | 1.36 | 1.32 | 1 |
Nanjing | 0.54 | 0.67 | 1.01 | 1.00 | 1.01 | 1.01 | 1.01 | 1.01 | 1.02 | 1.04 | 1.02 | 0.94 | 14 | |
Hangzhou | 0.61 | 0.63 | 1.00 | 1.02 | 1.02 | 1.06 | 1.06 | 1.01 | 1.05 | 1.04 | 1.06 | 0.96 | 12 | |
Hefei | 1.13 | 0.74 | 0.83 | 1.00 | 0.77 | 0.70 | 0.61 | 0.55 | 0.67 | 0.65 | 0.79 | 0.77 | 18 | |
Fuzhou | 1.15 | 1.13 | 1.13 | 1.15 | 1.18 | 1.15 | 1.20 | 1.17 | 1.15 | 1.14 | 1.17 | 1.16 | 4 | |
Nanchang | 0.57 | 0.61 | 1.03 | 0.56 | 0.64 | 0.67 | 0.50 | 0.51 | 0.55 | 0.64 | 0.61 | 0.63 | 21 | |
Jinan | 1.13 | 1.04 | 1.05 | 1.04 | 1.06 | 1.03 | 0.69 | 1.00 | 1.02 | 1.03 | 1.03 | 1.01 | 10 | |
mean | 0.85 | 0.83 | 1.01 | 0.98 | 0.97 | 0.94 | 0.91 | 0.89 | 0.94 | 0.92 | 0.94 | 0.92 | ||
South China | Guangzhou | 1.46 | 1.36 | 1.38 | 1.31 | 1.24 | 1.28 | 1.31 | 1.21 | 1.21 | 1.15 | 1.24 | 1.29 | 2 |
seaport | 0.20 | 0.21 | 0.25 | 0.24 | 0.26 | 0.23 | 0.23 | 0.26 | 0.33 | 0.43 | 0.38 | 0.27 | 29 | |
Nanning | 1.08 | 1.08 | 1.09 | 1.11 | 1.05 | 0.65 | 0.48 | 0.46 | 0.47 | 0.49 | 1.00 | 0.82 | 16 | |
mean | 0.91 | 0.88 | 0.91 | 0.89 | 0.85 | 0.72 | 0.68 | 0.64 | 0.67 | 0.69 | 0.87 | 0.79 | ||
Central China | Zhengzhou | 1.09 | 1.08 | 1.12 | 1.12 | 1.11 | 1.07 | 1.08 | 1.02 | 1.02 | 1.01 | 1.07 | 1.07 | 7 |
Wuhan | 0.61 | 1.01 | 1.01 | 1.02 | 1.01 | 0.76 | 0.78 | 0.79 | 1.03 | 1.04 | 1.01 | 0.92 | 15 | |
Changsha | 1.12 | 1.14 | 1.14 | 1.15 | 1.13 | 1.15 | 1.14 | 1.14 | 1.09 | 1.09 | 1.09 | 1.13 | 5 | |
mean | 0.94 | 1.08 | 1.09 | 1.10 | 1.09 | 0.99 | 1.00 | 0.98 | 1.05 | 1.05 | 1.06 | 1.04 | ||
Southwest | Chongqing | 1.23 | 1.23 | 1.27 | 1.23 | 1.26 | 1.26 | 1.26 | 1.30 | 1.26 | 1.20 | 1.18 | 1.24 | 3 |
Chengdu | 0.49 | 0.49 | 0.59 | 0.60 | 1.02 | 0.60 | 1.00 | 1.00 | 1.01 | 1.02 | 1.05 | 0.80 | 17 | |
Guiyang | 0.26 | 0.27 | 0.33 | 0.37 | 0.48 | 0.48 | 0.38 | 0.44 | 0.46 | 0.48 | 0.43 | 0.40 | 27 | |
Kunming | 0.60 | 1.01 | 0.62 | 1.07 | 1.04 | 1.03 | 1.02 | 1.11 | 1.04 | 1.12 | 1.06 | 0.97 | 11 | |
mean | 0.64 | 0.75 | 0.70 | 0.82 | 0.95 | 0.84 | 0.91 | 0.96 | 0.94 | 0.96 | 0.93 | 0.86 | ||
Northwest | Xi’an | 0.39 | 0.40 | 0.42 | 0.44 | 0.47 | 0.47 | 0.46 | 1.00 | 1.02 | 1.01 | 0.63 | 0.61 | 22 |
Lanzhou | 0.27 | 0.32 | 0.35 | 0.32 | 0.35 | 0.39 | 0.34 | 0.34 | 0.31 | 0.30 | 0.34 | 0.33 | 28 | |
Xining | 0.14 | 0.16 | 0.14 | 0.18 | 0.16 | 0.16 | 0.16 | 0.14 | 0.14 | 0.15 | 0.16 | 0.15 | 30 | |
Yinchuan | 1.01 | 1.06 | 1.10 | 1.03 | 1.07 | 1.04 | 1.12 | 1.12 | 1.14 | 1.16 | 1.21 | 1.10 | 6 | |
Urumqi | 0.43 | 0.51 | 0.67 | 0.56 | 0.43 | 0.43 | 0.42 | 0.41 | 0.39 | 0.43 | 0.47 | 0.47 | 25 | |
mean | 0.45 | 0.49 | 0.54 | 0.51 | 0.50 | 0.50 | 0.50 | 0.60 | 0.60 | 0.61 | 0.56 | 0.53 | ||
All means | 0.76 | 0.78 | 0.84 | 0.83 | 0.85 | 0.78 | 0.77 | 0.78 | 0.82 | 0.83 | 0.83 | 0.81 | / |
Area | City | TFP | EFF | PEC | SCH | TC |
---|---|---|---|---|---|---|
North China | Beijing | 1.014 | 1.003 | 1.006 | 0.997 | 1.014 |
Tianjin | 1.061 | 1.032 | 1.006 | 1.026 | 1.055 | |
Shijiazhuang | 0.934 | 1.093 | 1.044 | 1.046 | 1.020 | |
Taiyuan | 1.042 | 1.189 | 0.999 | 1.191 | 1.080 | |
Hohehot | 1.333 | 1.358 | 1.043 | 1.303 | 1.055 | |
mean | 1.077 | 1.134 | 1.020 | 1.112 | 1.045 | |
Northeast | Changchun | 1.033 | 1.044 | 1.027 | 1.017 | 1.088 |
Harbin | 1.046 | 1.080 | 0.996 | 1.084 | 1.076 | |
Shenyang | 1.067 | 1.124 | 1.049 | 1.071 | 1.038 | |
mean | 1.049 | 1.083 | 1.024 | 1.058 | 1.068 | |
East China | Shanghai | 1.012 | 1.021 | 1.006 | 1.014 | 1.008 |
Nanjing | 1.119 | 1.135 | 1.063 | 1.068 | 1.069 | |
Hangzhou | 1.165 | 1.092 | 1.065 | 1.025 | 1.088 | |
Hefei | 1.048 | 1.085 | 0.992 | 1.094 | 0.971 | |
Fuzhou | 1.012 | 1.042 | 1.001 | 1.042 | 1.005 | |
Nanchang | 1.078 | 1.191 | 1.015 | 1.173 | 1.007 | |
Jinan | 1.039 | 1.024 | 0.993 | 1.031 | 1.046 | |
mean | 1.067 | 1.084 | 1.019 | 1.064 | 1.028 | |
South China | Guangzhou | 0.996 | 0.990 | 0.985 | 1.005 | 1.015 |
seaport | 1.084 | 1.597 | 1.147 | 1.393 | 1.092 | |
Nanning | 1.026 | 1.046 | 1.007 | 1.039 | 0.937 | |
mean | 1.035 | 1.198 | 1.046 | 1.146 | 1.015 | |
Central China | Zhengzhou | 1.017 | 1.029 | 0.990 | 1.039 | 1.012 |
Wuhan | 1.058 | 1.104 | 1.034 | 1.067 | 1.051 | |
Changsha | 1.003 | 1.015 | 1.002 | 1.012 | 1.003 | |
mean | 1.026 | 1.049 | 1.009 | 1.040 | 1.022 | |
Southwest | Chongqing | 1.015 | 1.030 | 1.000 | 1.030 | 1.021 |
Chengdu | 1.164 | 1.213 | 1.058 | 1.146 | 0.993 | |
Guiyang | 1.083 | 1.191 | 0.996 | 1.195 | 1.013 | |
Kunming | 1.175 | 1.205 | 1.009 | 1.194 | 1.012 | |
mean | 1.109 | 1.159 | 1.016 | 1.141 | 1.010 | |
Northwest | Xi’an | 1.057 | 1.140 | 1.055 | 1.080 | 0.990 |
Lanzhou | 1.046 | 1.433 | 1.035 | 1.384 | 1.012 | |
Xining | 1.020 | 4.057 | 1.828 | 2.220 | 0.900 | |
Yinchuan | 1.115 | 1.104 | 1.025 | 1.077 | 1.081 | |
Urumqi | 1.082 | 1.345 | 1.123 | 1.198 | 1.120 | |
mean | 1.064 | 1.689 | 1.213 | 1.392 | 1.021 | |
All means | 1.047 | 1.064 | 1.201 | 1.053 | 1.141 |
Explanatory Variable | Definition | Symbol |
---|---|---|
Economic level | Per capita GDP (RMB) | ECO |
Industrial structure | The proportion of the secondary industry in GDP (%) | INDU |
Governmental factors | The proportion of government fiscal expenditure in GDP (%) | GOV |
Technological innovation | The proportion of science and technology expenditure in GDP (%) | TCH |
Open door to the outside world | Per capita utilization amount of foreign capital (RMB) | OPEN |
Population | Population density (person/s2) | PEO |
Communication level | Number of international Internet users per 100 people (number) | COMM |
Variable | N | Mean | p50 | sd | min | max |
---|---|---|---|---|---|---|
eco | 330 | 784.8 | 728.5 | 322.9 | 238.3 | 1743 |
indu | 330 | 40.17 | 40.70 | 9.488 | 15.05 | 58.70 |
gov | 330 | 14.91 | 13.86 | 4.054 | 8.400 | 26.70 |
tch | 330 | 0.413 | 0.300 | 0.314 | 0.0400 | 1.630 |
open | 330 | 314.0 | 287.8 | 267.2 | 0.200 | 2012 |
peo | 330 | 808.6 | 664.2 | 604.2 | 167.3 | 3088 |
comm | 330 | 37.72 | 34.75 | 21.40 | 7.300 | 222.3 |
Variable | China |
---|---|
ECO | 0.887 *** (−7.38) |
INDU | 0.008 * (−1.88) |
GOV | 0.029 *** (−2.59) |
TCH | −0.18 (−1.48) |
OPEN | 0.027 (−0.98) |
PEO | −0.099 * (−1.85) |
COMM | 0.001 (−1) |
area | control |
year | control |
Variable | North China | Northeast | East China | Central China | South China | Southwest | Northwest | Variable | China |
---|---|---|---|---|---|---|---|---|---|
ECO | 0.011 *** | 0.023 *** | 0.081 *** | 0.081 ** | 0.012 ** | 0.026 *** | −0.058 | c.area#c.x2 | 0.082 ** |
INDU | 0.0477 | −0.187 | −0.097 | 0.021 *** | 0.018 * | 0.033 ** | 0.063 | c.area#c.x3 | 0.003 ** |
GOV | 0.061 *** | 0.642 *** | 0.027 * | 0.0142 | −0.018 | −0.010 *** | −0.0113 | c.area#c.x4 | −0.007 * |
TCH | −0.056 *** | −0.810 *** | −0.124 | −0.267 | −0.154 | −0.037 | 0.425 *** | c.area#c.x5 | 0.101 |
OPEN | −0.188 * | 0.015 * | −0.040 * | −0.002 | −0.002 *** | −0.001 | −0.004 | c.area#c.x6 | 0.022 ** |
PEO | −0.381 | −0.018 | −0.014 | 0.026 * | −0.168 | −0.386 | 0.017 *** | c.area#c.x7 | −0.027 |
COMM | 0.033 *** | −0.010 | 0.063 | −0.687 ** | 0.023 | 0.025 ** | 0.010 | c.area#c.x8 | 0 |
area | control | control | |||||||
year | control | control |
Variable | China |
---|---|
L. ECO | 0.877 *** |
L. INDU | 0.006 |
L. GOV | 0.029 *** |
L. TCH | −0.203 |
L. OPEN | 0.037 |
L. PEO | −0.108 ** |
L. COMM | 0.001 |
area | control |
year | control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Li, S.; Luo, Q.; Zhao, J.; Qi, Z. Research on the Efficiency of Urban Infrastructure Investment under the Constraint of Carbon Emissions, Taking Provincial Capitals in China as an Example. Sustainability 2023, 15, 9305. https://doi.org/10.3390/su15129305
Sun C, Li S, Luo Q, Zhao J, Qi Z. Research on the Efficiency of Urban Infrastructure Investment under the Constraint of Carbon Emissions, Taking Provincial Capitals in China as an Example. Sustainability. 2023; 15(12):9305. https://doi.org/10.3390/su15129305
Chicago/Turabian StyleSun, Chengshuang, Shijie Li, Qianmai Luo, Jinyu Zhao, and Zhenqiang Qi. 2023. "Research on the Efficiency of Urban Infrastructure Investment under the Constraint of Carbon Emissions, Taking Provincial Capitals in China as an Example" Sustainability 15, no. 12: 9305. https://doi.org/10.3390/su15129305
APA StyleSun, C., Li, S., Luo, Q., Zhao, J., & Qi, Z. (2023). Research on the Efficiency of Urban Infrastructure Investment under the Constraint of Carbon Emissions, Taking Provincial Capitals in China as an Example. Sustainability, 15(12), 9305. https://doi.org/10.3390/su15129305