Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater
Abstract
:1. Introduction
2. Experimental Work
2.1. Reagents
2.2. Method
3. Results and Discussion
3.1. Morphological Characteristics
Diameter Distribution
3.2. EDX Composition Analysis
3.3. XRD Analysis
3.4. FTIR Studies
3.5. Mechanical Properties
3.6. Thermogravimetric Analysis (TGA)
3.7. Differential Thermal Gravimetric Curve (DTG)
3.8. Differential Thermal Analysis (DTA)
3.9. Measurements of Adsorption Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uogintė, I.; Lujanienė, G.; Mažeika, K. Study of Cu(II), Co(II), Ni(II) and Pb(II) Removal from Aqueous Solutions Using Magnetic Prussian Blue Nano-Sorbent. J. Hazard. Mater. 2019, 369, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Akey, P.; Appel, I. The Limits of Limited Liability: Evidence from Industrial Pollution. J. Finance 2021, 76, 5–55. [Google Scholar] [CrossRef]
- Soliman, N.K.; Moustafa, A.F. Industrial Solid Waste for Heavy Metals Adsorption Features and Challenges; a Review. J. Mater. Res. Technol. 2020, 9, 10235–10253. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.D.; Abdel-Rahman, M.A.; Farag, M.M.S.; Shehal-deen, A.; Mohamed, A.A.; Alsharif, S.M.; Saied, E.; Moghanim, S.A.; Azab, M.S. Catalytic Degradation of Wastewater from the Textile and Tannery Industries by Green Synthesized Hematite (α-Fe2O3) and Magnesium Oxide (MgO) Nanoparticles. Curr. Res. Biotechnol. 2021, 3, 29–41. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Huang, Y.H.; Hsueh, C.L.; Cheng, H.P.; Su, L.C.; Chen, C.Y. Thermodynamics and Kinetics of Adsorption of Cu(II) onto Waste Iron Oxide. J. Hazard. Mater. 2007, 144, 406–411. [Google Scholar] [CrossRef]
- Hema Krishna, R.; Swamy, A.V.V.S. Physico-Chemical Key Parameters, Langmuir and Freundlich Isotherm and Lagergren Rate Constant Studies on the Removal of Divalent Nickel from the Aqueous Solutions onto Powder of Calcined Brick. Int. J. Eng. Res. Dev. 2012, 4, 29–38. [Google Scholar]
- Naseem, K.; Huma, R.; Shahbaz, A.; Jamal, J.; Rehman, M.Z.U.; Sharif, A.; Ahmed, E.; Begum, R.; Irfan, A.; Al-Sehemi, A.G.; et al. Extraction of Heavy Metals from Aqueous Medium by Husk Biomass: Adsorption Isotherm, Kinetic and Thermodynamic Study. Z. Phys. Chem. 2019, 233, 201–223. [Google Scholar] [CrossRef]
- Kiliç, M.; Kirbiyik, Ç.; Çepelioǧullar, Ö.; Pütün, A.E. Adsorption of Heavy Metal Ions from Aqueous Solutions by Bio-Char, a by-Product of Pyrolysis. Appl. Surf. Sci. 2013, 283, 856–862. [Google Scholar] [CrossRef]
- Zawierucha, I.; Kozlowski, C.; Malina, G. Immobilized Materials for Removal of Toxic Metal Ions from Surface/Groundwaters and Aqueous Waste Streams. Environ. Sci. Process. Impacts 2016, 18, 429–444. [Google Scholar] [CrossRef]
- Naseem, K.; Farooqi, Z.H.; Ur Rehman, M.Z.; Ur Rehman, M.A.; Begum, R.; Huma, R.; Shahbaz, A.; Najeeb, J.; Irfan, A. A Systematic Study for Removal of Heavy Metals from Aqueous Media Using Sorghum Bicolor: An Efficient Biosorbent. Water Sci. Technol. 2018, 77, 2355–2368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, S.; Yu, B.; Tan, Q.; Zhang, X.; Cong, H. Advanced Modified Polyacrylonitrile Membrane with Enhanced Adsorption Property for Heavy Metal Ions. Sci. Rep. 2018, 8, 1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.-G.; Huang, M.-R.; Tao, T.; Ren, Z.; Zeng, J.; Yu, J.; Umeyama, T.; Ohara, T.; Imahori, H. Highly Cost-Efficient Sorption and Desorption of Mercury Ions onto Regenerable Poly(m-Phenylenediamine) Microspheres with Many Active Groups. Chem. Eng. J. 2020, 391, 123515. [Google Scholar] [CrossRef]
- Cortés-Arriagada, D.; Toro-Labbé, A. Improving As(Iii) Adsorption on Graphene Based Surfaces: Impact of Chemical Doping. Phys. Chem. Chem. Phys. 2015, 17, 12056–12064. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Chen, Q.; Jiang, F.; Yuan, D.; Qian, J.; Lv, G.; Xue, H.; Liu, L.; Jiang, H.L.; Hong, M. In Situ Large-Scale Construction of Sulfur-Functionalized Metal-Organic Framework and Its Efficient Removal of Hg(II) from Water. J. Mater. Chem. A 2016, 4, 15370–15374. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.L.; Afsar, A.; Harwood, L.M.; Jiang, T.; Laventine, D.M.; Shaw, L.J.; Hodson, M.E. Adsorption of Pb and Zn from Binary Metal Solutions and in the Presence of Dissolved Organic Carbon by DTPA-Functionalised, Silica-Coated Magnetic Nanoparticles. Chemosphere 2017, 183, 519–527. [Google Scholar] [CrossRef]
- Xu, G.; Wang, L.; Xie, Y.; Tao, M.; Zhang, W. Highly Selective and Efficient Adsorption of Hg2+ by a Recyclable Aminophosphonic Acid Functionalized Polyacrylonitrile Fiber. J. Hazard. Mater. 2018, 344, 679–688. [Google Scholar] [CrossRef]
- Roosen, J.; Van Roosendael, S.; Borra, C.R.; Van Gerven, T.; Mullens, S.; Binnemans, K. Recovery of Scandium from Leachates of Greek Bauxite Residue by Adsorption on Functionalized Chitosan–Silica Hybrid Materials. Green Chem. 2016, 18, 2005–2013. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Wei, J. Adsorption Characteristics of Noble Metal Ions onto Modified Straw Bearing Amine and Thiol Groups. J. Mater. Chem. A 2015, 3, 18163–18170. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Hussain, N.; Ullah, A.; Sarwar, M.N.; Saito, Y.; Kim, S.H.; Kim, I.S. Stabilized Nanofibers of Polyvinyl Alcohol (PVA) Crosslinked by Unique Method for Efficient Removal of Heavy Metal Ions. J. Water Process Eng. 2020, 33, 101111. [Google Scholar] [CrossRef]
- Hanif, Z.; Lee, S.; Hussain Qasim, G.; Ardiningsih, I.; Kim, J.-A.; Seon, J.; Han, S.; Hong, S.; Yoon, M.-H. Polypyrrole Multilayer-Laminated Cellulose for Large-Scale Repeatable Mercury Ion Removal. J. Mater. Chem. A 2016, 4, 12425–12433. [Google Scholar] [CrossRef]
- Huang, M.R.; Lu, H.J.; Li, X.G. Synthesis and Strong Heavy-Metal Ion Sorption of Copolymer Microparticles from Phenylenediamine and Its Sulfonate. J. Mater. Chem. 2012, 22, 17685–17699. [Google Scholar] [CrossRef]
- Rocha, C.; Soria, M.A.; Madeira, L.M. Olive Mill Wastewater Valorization through Steam Reforming Using Hybrid Multifunctional Reactors for High-Purity H2 Production. Chem. Eng. J. 2022, 430, 132651. [Google Scholar] [CrossRef]
- Tosti, S.; Accetta, C.; Fabbricino, M.; Sansovini, M.; Pontoni, L. Reforming of Olive Mill Wastewater through a Pd-Membrane Reactor. Int. J. Hydrogen Energy 2013, 38, 10252–10259. [Google Scholar] [CrossRef]
- Hashmi, M.; Ullah, S.; Ullah, A.; Khan, M.Q.; Hussain, N.; Khatri, M.; Bie, X.; Lee, J.; Kim, I.S. An Optimistic Approach “from Hydrophobic to Super Hydrophilic Nanofibers” for Enhanced Absorption Properties. Polym. Test. 2020, 90, 106683. [Google Scholar] [CrossRef]
- Morillo Martín, D.; Faccini, M.; García, M.A.; Amantia, D. Highly Efficient Removal of Heavy Metal Ions from Polluted Water Using Ion-Selective Polyacrylonitrile Nanofibers. J. Environ. Chem. Eng. 2018, 6, 236–245. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation and Adsorption Behavior of Aminated Electrospun Polyacrylonitrile Nanofiber Mats for Heavy Metal Ion Removal. ACS Appl. Mater. Interfaces 2010, 2, 3619–3627. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.C.; Matsuura, T.; Tabe, S.; Ismail, A.F. Preparation and Characterization of Electro-Spun Nanofiber Membranes and Their Possible Applications in Water Treatment. Sep. Purif. Technol. 2013, 102, 118–135. [Google Scholar] [CrossRef]
- Chitpong, N.; Husson, S.M. Polyacid Functionalized Cellulose Nanofiber Membranes for Removal of Heavy Metals from Impaired Waters. J. Memb. Sci. 2017, 523, 418–429. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Sun, B.; Li, Y.; Li, Y.; Yang, R.; Wang, C. Branched Polyethylenimine Grafted Electrospun Polyacrylonitrile Fiber Membrane: A Novel and Effective Adsorbent for Cr(vi) Remediation in Wastewater. J. Mater. Chem. A 2017, 5, 1133–1144. [Google Scholar] [CrossRef]
- Ullah, S.; Hashmi, M.; Lee, J.; Youk, J.H.; Kim, I.S. Recent Advances in Pre-Harvest, Post-Harvest, Intelligent, Smart, Active, and Multifunctional Food Packaging. Fibers Polym. 2022, 23, 2063–2074. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Shen, L.; Wang, X.; Hsiao, B.S. Ionic Cross-Linked Poly(Acrylonitrile-Co-Acrylic Acid)/Polyacrylonitrile Thin Film Nanofibrous Composite Membrane with High Ultrafiltration Performance. Ind. Eng. Chem. Res. 2017, 56, 3077–3090. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, Q.; Pan, X.; Jin, Y.; Lu, W.; Ding, D.; Guo, Q. Graphene Oxide/Polyacrylonitrile Fiber Hierarchical-Structured Membrane for Ultra-Fast Microfiltration of Oil-Water Emulsion. Chem. Eng. J. 2017, 307, 643–649. [Google Scholar] [CrossRef]
- Almasian, A.; Jalali, M.L.; Fard, G.C.; Maleknia, L. Surfactant Grafted PDA-PAN Nanofiber: Optimization of Synthesis, Characterization and Oil Absorption Property. Chem. Eng. J. 2017, 326, 1232–1241. [Google Scholar] [CrossRef]
- Sarwar, M.N.; Ullah, A.; Haider, M.K.; Hussain, N.; Ullah, S.; Hashmi, M.; Khan, M.Q.; Kim, I.S. Evaluating Antibacterial Efficacy and Biocompatibility of PAN Nanofibers Loaded with Diclofenac Sodium Salt. Polymers 2021, 13, 510. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.G.; Chun, Y.J.; Kim, C.H.; Choi, U.S. Removal of Cu(II) and Cr(VI) Ions from Aqueous Solution Using Chelating Fiber Packed Column: Equilibrium and Kinetic Studies. J. Hazard. Mater. 2011, 194, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhang, G.; Liang, S.; Wang, P. Microwave Assisted Preparation of Thio-Functionalized Polyacrylonitrile Fiber for the Selective and Enhanced Adsorption of Mercury and Cadmium from Water. ACS Sustain. Chem. Eng. 2017, 5, 6054–6063. [Google Scholar] [CrossRef]
- Kampalanonwat, P.; Supaphol, P. Preparation of Hydrolyzed Electrospun Polyacrylonitrile Fiber Mats as Chelating Substrates: A Case Study on Copper(II) Ions. Ind. Eng. Chem. Res. 2011, 50, 11912–11921. [Google Scholar] [CrossRef]
- Pajooheshfar, S.P.; Saeedi, M. Adsorptive Removal of Phenol from Contaminated Water and Wastewater by Activated Carbon, Almond, and Walnut Shells Charcoal. Water Environ. Res. 2009, 81, 641–648. [Google Scholar] [CrossRef]
- Richardson, J.C. Precipitation of Gold by Charcoal. Nature 1899, 59, 1899. [Google Scholar] [CrossRef] [Green Version]
- Kingman, F. Adsorption of Hydrogen on Charcoal. Nature 1931, 127, 1931. [Google Scholar] [CrossRef]
- Saifuddin, M.N.; Kumaran, P. Removal of Heavy Metal from Industrial Wastewater Using Chitosan Coated Oil Palm Shell Charcoal. Electron. J. Biotechnol. 2005, 8, 43–53. [Google Scholar]
- Shibata, S.I.; Kang, B.S.; Oyabu, T.; Kimura, H.; Nanto, H. Air Purification Capability of Charcoal and Its Evaluation. IEEJ Trans. Electr. Electron. Eng. 2010, 5, 603–607. [Google Scholar] [CrossRef]
- Firth, J.B.; Watson, F.S. The Catalytic Decomposition of Hydrogen Peroxide Solution by Animal Charcoal: The Production of Highly Active Charcoals. Trans. Faraday Soc. 1924, 20, 370–377. [Google Scholar] [CrossRef]
- Halder, K.K.; Sachdev, V.K.; Tomar, M.; Gupta, V. EMI Shielding of ABS Composites Filled with Different Temperature-Treated Equal-Quantity Charcoals. RSC Adv. 2019, 9, 23718–23726. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Hashmi, M.; Kharaghani, D.; Khan, M.Q.; Saito, Y.; Yamamoto, T.; Lee, J.; Kim, I.S. Antibacterial Properties of in Situ and Surface Functionalized Impregnation of Silver Sulfadiazine in Polyacrylonitrile Nanofiber Mats. Int. J. Nanomed. 2019, 14, 2693–2703. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, N.; Atassi, Y. Enhancement of Removal Efficiency of Heavy Metal Ions by Polyaniline Deposition on Electrospun Polyacrylonitrile Membranes. Water Sci. Eng. 2021, 14, 129–138. [Google Scholar] [CrossRef]
- Qiao, M.; Kong, H.; Ding, X.; Hu, Z.; Zhang, L.; Cao, Y.; Yu, M. Study on the Changes of Structures and Properties of PAN Fibers during the Cyclic Reaction in Supercritical Carbon Dioxide. Polymers 2019, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Y.; Huang, M.; Ma, H.L.; Zhang, Z.Q.; Gao, J.M.; Zhu, Y.L.; Han, X.J.; Guo, X.Y. Preparation of a Carbon-Based Solid Acid Catalyst by Sulfonating Activated Carbon in a Chemical Reduction Process. Molecules 2010, 15, 7188–7196. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Wu, D.; Zhao, Y.; Wei, A.; Wei, Q.; Fong, H. Electrospun AOPAN/RC Blend Nanofiber Membrane for Efficient Removal of Heavy Metal Ions from Water. J. Hazard. Mater. 2018, 344, 819–828. [Google Scholar] [CrossRef]
- Chaúque, E.F.C.; Dlamini, L.N.; Adelodun, A.A.; Greyling, C.J.; Catherine Ngila, J. Modification of Electrospun Polyacrylonitrile Nanofibers with EDTA for the Removal of Cd and Cr Ions from Water Effluents. Appl. Surf. Sci. 2016, 369, 19–28. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, L.; Gao, A.; Tong, Y.; Shi, F. Thermal Analysis and Crystal Structure of Poly(Acrylonitrile-Co-Itaconic Acid) Copolymers Synthesized in Water. Polymers 2020, 12, 221–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sr. No | Sample Code | Weight Proportions |
---|---|---|
1 | 3% HC/PAN | 3% HC |
2 | 5% HC/PAN | 5% HC |
3 | 10% HC/PAN | 10% HC |
Properties | 3% HC/PAN | 5% HC/PAN | 10% HC/PAN |
---|---|---|---|
Elastic modulus | 0.1375 | 0.01753 | 0.0895 |
Elongation at break | 18.19 | 15.1 | 16.4 |
Tensile strength | 2.3 MPa | 2.20 MPa | 1.17 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, S.; Ohsawa, O.; Ishaq, T.; Hashmi, M.; Sarwar, M.N.; Zhu, C.; Ge, Y.; Jang, Y.; Kim, I.S. Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater. Sustainability 2023, 15, 9365. https://doi.org/10.3390/su15129365
Ullah S, Ohsawa O, Ishaq T, Hashmi M, Sarwar MN, Zhu C, Ge Y, Jang Y, Kim IS. Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater. Sustainability. 2023; 15(12):9365. https://doi.org/10.3390/su15129365
Chicago/Turabian StyleUllah, Sana, Osamu Ohsawa, Tehmeena Ishaq, Motahira Hashmi, Muhammad Nauman Sarwar, Chunhong Zhu, Yan Ge, Yeonju Jang, and Ick Soo Kim. 2023. "Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater" Sustainability 15, no. 12: 9365. https://doi.org/10.3390/su15129365
APA StyleUllah, S., Ohsawa, O., Ishaq, T., Hashmi, M., Sarwar, M. N., Zhu, C., Ge, Y., Jang, Y., & Kim, I. S. (2023). Fabrication of Novel Hemp Charcoal Nanofiber Membrane for Effectual Adsorption of Heavy Metal Ions from Wastewater. Sustainability, 15(12), 9365. https://doi.org/10.3390/su15129365