Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain
Abstract
:1. Introduction
2. Literature Review
2.1. The Peculiarities of the Agri-Food Supply Chains
2.2. Risks, Specific to the Agri-Food Supply Chains
3. Materials and Methods
3.1. The Determination of the Most Important Risks of Agri-Food Supply Chains
3.2. Using the Best-Worst-Method
3.3. Steps for Using the BWM Method
- Alternative solutions to the studied case are identified {c_1, c_2,…,c_n}.
- The best A_B (most influential or most important) and worst A_W (least influential or least important) alternatives are determined (Table 3)
- Using a rating scale from 1 to 9, pairwise analyzes are performed comparing the best alternative identified in the first step together with the rest (Table 4).
- 4.
- Using a rating scale from 1 to 9, pairwise analyzes are performed comparing the worst alternative identified in the first step together with the rest. The preference of the worst alternative over the rest is obtained by vector indicates the preference of the best alternative j compared to the worst alternative W.
- 5.
- Then the optimal weights of alternatives () are determined. With and the weight vector is calculated, which must meet such conditions: / = and / = ; j = 1, 2,..., n. The final decision is made according to the following decision:
3.4. Compatibility of Expert Opinions
4. Results and Discussion
4.1. Compatibility of Expert Opinions
4.2. The Evaluation of Root Risks in Agri-Food Supply Chains
4.3. The Determination of the Most Appropriate Risk Mitigation Techniques in the Agri-Food Supply Chains
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karwasra, K.; Soni, G.; Mangla, S.K.; Kazancoglu, Y. Assessing dairy supply chain vulnerability during the COVID-19 pandemic. Int. J. Logist. Res. Appl. 2021, 1–19. [Google Scholar] [CrossRef]
- Zhu, Z.; Chu, F.; Dolgui, A.; Chu, C.; Zhou, W.; Piramuthu, S. Recent advances and opportunities in sustainable food supply chain: A model-oriented review. Int. J. Prod. Res. 2018, 56, 5700–5722. [Google Scholar] [CrossRef] [Green Version]
- Aday, S.; Aday, M.S. Impact of COVID-19 on the food supply chain. Food Qual. Saf. 2020, 4, 167–180. [Google Scholar] [CrossRef]
- Jagtap, S.; Trollman, H.; Trollman, F.; Garcia-Garcia, G.; Parra-López, C.; Duong, L.; Martindale, W.; Munekata, P.E.; Lorenzo, J.M.; Hdaifeh, A.; et al. The Russia-Ukraine conflict: Its implications for the global food supply chains. Foods 2022, 11, 2098. [Google Scholar] [CrossRef]
- Chitrakar, B.; Zhang, M.; Bhandari, B. Improvement strategies of food supply chain through novel food processing technologies during the COVID-19 pandemic. Food Control 2021, 125, 108010. [Google Scholar] [CrossRef]
- Morkūnas, M.; Rudienė, E.; Ostenda, A. Can climate-smart agriculture help to assure food security through short supply chains? A systematic bibliometric and bibliographic literature review. Bus. Manag. Econ. Eng. 2022, 20, 207–223. [Google Scholar] [CrossRef]
- Volkov, A.; Morkunas, M.; Balezentis, T.; Streimikiene, D. Are agricultural sustainability and resilience complementary notions? Evidence from the North European agriculture. Land Use Policy 2022, 112, 105791. [Google Scholar] [CrossRef]
- Ihle, R.; Bar-Nahum, Z.; Nivievskyi, O.; Rubin, O.D. Russia’s invasion of Ukraine increased the synchronisation of global commodity prices. Aust. J. Agric. Resour. Econ. 2022, 66, 775–796. [Google Scholar] [CrossRef]
- Balezentis, T.; Zickiene, A.; Volkov, A.; Streimikiene, D.; Morkunas, M.; Dabkiene, V.; Ribasauskiene, E. Measures for the viable agri-food supply chains: A multi- criteria approach. J. Bus. Res. 2022, 155, 113417. [Google Scholar] [CrossRef]
- Raak, N.; Symmank, C.; Zahn, S.; Aschemann-Witzel, J.; Rohm, H. Processing-and product-related causes for food waste and implications for the food supply chain. Waste Manag. 2017, 61, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Omolayo, Y.; Feingold, B.J.; Neff, R.A.; Romeiko, X.X. Life cycle assessment of food loss and waste in the food supply chain. Resour. Conserv. Recycl. 2021, 164, 105119. [Google Scholar] [CrossRef]
- Luo, N.; Olsen, T.; Liu, Y.; Zhang, A. Reducing food loss and waste in supply chain operations. Transp. Res. Part E Logist. Transp. Rev. 2022, 162, 102730. [Google Scholar] [CrossRef]
- Rose, A. Defining and measuring economic resilience to disasters. Disaster Prev. Manag. Int. J. 2004, 13, 307–314. [Google Scholar] [CrossRef]
- Siche, R. What is the impact of the COVID-19 disease on agriculture? Sci. Agropecu. 2020, 11, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Manning, L.; Soon, J.M. Building strategic resilience in the food supply chain. Br. Food J. 2016, 118, 1477–1493. [Google Scholar] [CrossRef]
- Tukamuhabwa, B.R.; Stevenson, M.; Busby, J.; Zorzini, M. Supply chain resilience: Definition, review and theoretical foundations for further study. Int. J. Prod. Res. 2015, 53, 5592–5623. [Google Scholar] [CrossRef]
- Hendricks, K.B.; Singhal, V.R. The effect of supply chain glitches on shareholder wealth. J. Oper. Manag. 2003, 21, 501–522. [Google Scholar] [CrossRef]
- Hendricks, K.B.; Singhal, V.R. Association between supply chain glitches and operating performance. Manag. Sci. 2005, 51, 695–711. [Google Scholar] [CrossRef]
- Bottani, E.; Murino, T.; Schiavo, M.; Akkerman, R. Resilient food supply chain design: Modeling framework and metaheuristic solution approach. Comput. Ind. Eng. 2019, 135, 177–198. [Google Scholar] [CrossRef]
- Nakandala, D.; Lau, H.C.W. Innovative adoption of hybrid supply chain strategies in urban local fresh food supply chain. Supply Chain Manag. 2019, 24, 241–255. [Google Scholar] [CrossRef]
- Tendall, D.M.; Joerin, J.; Kopainsky, B.; Edwards, P.; Shreck, A.; Le, Q.B.; Krütli, P.; Grant, M.; Six, J. Food system resilience: Defining the concept. Glob. Food Secur. 2015, 6, 17–23. [Google Scholar] [CrossRef]
- Jonkman, J.; Bloemhof, J.M.; van der Vorst, J.G.A.J.; van der Padt, A. Selecting food process designs from a supply chain perspective. J. Food Eng. 2017, 195, 52–60. [Google Scholar] [CrossRef]
- Hendry, L.C.; Stevenson, M.; MacBryde, J.; Ball, P.; Sayed, M.; Liu, L. Local food supply chain resilience to constitutional change: The Brexit effect. Int. J. Oper. Prod. Manag. 2019, 39, 429–453. [Google Scholar] [CrossRef] [Green Version]
- Thilmany, D.; Canales, E.; Low, S.A.; Boys, K. Local food supply chain dynamics and resilience during COVID-19. Appl. Econ. Perspect. Policy 2021, 43, 86–104. [Google Scholar] [CrossRef]
- Rathore, R.; Thakkar, J.J.; Jha, J.K. A quantitative risk assessment methodology and evaluation of food supply chain. Int. J. Logist. Manag. 2017, 28, 1272–1293. [Google Scholar] [CrossRef]
- Chaudhuri, A.; Srivastava, S.K.; Srivastava, R.K.; Parveen, Z. Risk propagation and its impact on performance in food processing supply chain. J. Model. Manag. 2016, 11, 660–693. [Google Scholar] [CrossRef]
- Handayati, Y.; Simatupang, T.M.; Perdana, T. Agri-food supply chain coordination: The state-of-the-art and recent developments. Logist. Res. 2015, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.; Barata, J. Artificial intelligence in extended agri-food supply chain: A short review based on bibliometric analysis. Procedia Comput. Sci. 2021, 192, 3020–3029. [Google Scholar] [CrossRef]
- Peck, H. Resilience in the Food Chain: A Study of Business Continuity Management in the Food and Drink Industry. Final Report to the Department for Environment, Food and Rural Affairs. 2006. Available online: http://www.cips.org/Documents/Resources/Research/Defra%20report (accessed on 12 March 2023).
- Esteso, A.; Alemany, M.M.E.; Ortiz, Á. Impact of product perishability on agri-food supply chain design. Appl. Math. Model. 2021, 96, 20–38. [Google Scholar] [CrossRef]
- Nyamah, E.Y.; Jiang, Y.; Feng, Y.; Enchill, E. Agri-food supply chain performance: An empirical impact of risk. Manag. Decis. 2017. [Google Scholar] [CrossRef]
- Moazzam, M.; Akhtar, P.; Garnevska, E.; Marr, N.E. Measuring agri-food supply chain performance and risk through a new analytical framework: A case study of New Zealand dairy. Prod. Plan. Control 2018, 29, 1258–1274. [Google Scholar] [CrossRef]
- Ali, I.; Golgeci, I.; Arslan, A. Achieving resilience through knowledge management practices and risk management culture in agri-food supply chains. Supply Chain Manag. Int. J. 2023, 28, 284–299. [Google Scholar] [CrossRef]
- Davis, K.F.; Downs, S.; Gephart, J.A. Towards food supply chain resilience to environmental shocks. Nat. Food 2021, 2, 54–65. [Google Scholar] [CrossRef]
- Oglethorpe, D.; Heron, G. Testing the theory of constraints in UK local food supply chains. Int. J. Oper. Prod. Manag. 2013, 33, 1346–1367. [Google Scholar] [CrossRef]
- Davies, J.; Ollus, N. Labor exploitation as corporate crime and harm: Outsourcing responsibility in food production and cleaning services supply chains. Crime Law Soc. Chang. 2019, 72, 87–106. [Google Scholar] [CrossRef]
- Vlajic, J.V.; Van Der Vorst, J.G.A.J.; Haijema, R. A framework for designing robust food supply chains. Int. J. Prod. Econ. 2012, 137, 176–189. [Google Scholar] [CrossRef]
- Ivanov, D.; Dolgui, A.; Sokolov, B.; Ivanova, M. Literature review on disruption recovery in the supply chain. Int. J. Prod. Res. 2017, 55, 6158–6174. [Google Scholar] [CrossRef]
- Azizsafaei, M.; Sarwar, D.; Fassam, L.; Khandan, R.; Hosseinian-Far, A. A critical overview of food supply chain risk management. In Cybersecurity, Privacy and Freedom Protection in the Connected World: Proceedings of the 13th International Conference on Global Security, Safety and Sustainability, London, January 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 413–429. [Google Scholar]
- Manning, L.; Birchmore, I.; Morris, W. Swans and elephants: A typology to capture the challenges of food supply chain risk assessment. Trends Food Sci. Technol. 2020, 106, 288–297. [Google Scholar] [CrossRef]
- Tavakoli Haji Abadi, Y.; Avakh Darestani, S. Evaluation of sustainable supply chain risk: Evidence from the Iranian food industry. J. Sci. Technol. Policy Manag. 2023, 14, 127–156. [Google Scholar] [CrossRef]
- Ali, S.M.; Moktadir, M.A.; Kabir, G.; Chakma, J.; Rumi, M.J.U.; Islam, M.T. Framework for evaluating risks in food supply chain: Implications in food wastage reduction. J. Clean. Prod. 2019, 228, 786–800. [Google Scholar]
- Mogale, D.G.; Kumar, S.K.; Tiwari, M.K. Green food supply chain design considering risk and post-harvest losses: A case study. Ann. Oper. Res. 2020, 295, 257–284. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.I.; Haleem, A.; Jami, A.R. Prioritizing the risks in Halal food supply chain: An MCDM approach. J. Islam. Mark. 2022, 13, 45–65. [Google Scholar] [CrossRef]
- Oliveira, L.L.D.; da Silva, A.L.; Pereira, C.R.; Chaudhuri, A. The stakeholder’s roles in risk management related to food supply chain recalls: A systematic literature review. Int. J. Logist. Manag. 2023, 34, 106–129. [Google Scholar] [CrossRef]
- Behzadi, G.; O’Sullivan, M.J.; Olsen, T.L.; Zhang, A. Agribusiness supply chain risk management: A review of quantitative decision models. Omega 2018, 79, 21–42. [Google Scholar] [CrossRef]
- Ray, P. Agricultural supply chain risk management under price and demand uncertainty. Int. J. Syst. Dyn. Appl. (IJSDA) 2021, 10, 17–32. [Google Scholar] [CrossRef]
- El Ayoubi, M.S.; Radmehr, M. Green food supply chain management as a solution for the mitigation of food supply chain management risk for improving the environmental health level. Heliyon 2023, 9, e13264. [Google Scholar] [CrossRef]
- Ramos, E.; Pettit, T.J.; Habib, M.; Chavez, M. A model ISM-MICMAC for managing risk in agri-food supply chain: An investigation from the Andean region of Peru. Int. J. Value Chain Manag. 2021, 12, 62–85. [Google Scholar] [CrossRef]
- Hobbs, J.E. Food supply chains during the COVID-19 pandemic. Can. J. Agric. Econ./Rev. Can. D’agroeconomie 2020, 68, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. Correction to: Some mathematical concepts of the analytical hierarchy process. Behaviormetrik 2021, 48, 193–194. [Google Scholar] [CrossRef]
- Podvezko, V.; Podviezko, A. Methods of determining the significance of criteria. Lith. Math. Collect. Proc. Lith. Soc. Math. 2014, 55, 111–116. [Google Scholar]
- Simanaviciene, R.; Ustinovicius, L. A new approach to assessing the biases of decisions based on multiple attribute decision making methods. Elektron. Elektrotechnika 2012, 117, 29–32. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, S.; Zhao, H. Comprehensive benefit evaluation of eco-industrial parks by employing the best-worst method based on circular economy and sustainability. Environ. Dev. Sustain. 2018, 20, 1229–1253. [Google Scholar] [CrossRef]
- Pamučar, D.; Ecer, F.; Cirovic, G.; Arlasheedi, M.A. Application of improved best worst method (BWM) in real-world problems. Mathematics 2020, 8, 1342. [Google Scholar] [CrossRef]
- Akbari, M.; Meshram, S.G.; Krishna, R.S.; Pradhan, B.; Shadeed, S.; Khedher, K.M.; Sepehri, M.; Ildoromi, A.R.; Alimerzaei, F.; Darabi, F. Identification of the groundwater potential recharge zones using MCDM models: Full consistency method (FUCOM), best worst method (BWM) and analytic hierarchy process (AHP). Water Resour. Manag. 2021, 35, 4727–4745. [Google Scholar] [CrossRef]
- Vieira, F.C.; Ferreira, F.A.; Govindan, K.; Ferreira, N.C.; Banaitis, A. Measuring urban digitalization using cognitive mapping and the best worst method (BWM). Technol. Soc. 2022, 71, 102131. [Google Scholar] [CrossRef]
- Saaty, T.L.; Sodenkamp, M. Making decisions in hierarchical and network systems. Int. J. Appl. Decis. Sci. 2008, 1, 24. [Google Scholar] [CrossRef]
- Kalpoe, R. A Multi-Criteria Assessment to Determine the Customers’ Technology Preference in the Context of Apparel E-Commerce. 2020. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A17d3b44a-5235-4864-8619-8274ea470598 (accessed on 7 December 2022).
- Podvezko, V. Compatibility of expert estimates. Technol. Econ. Dev. Econ. 2005, XI, 101–107. [Google Scholar] [CrossRef]
- Mohammadi, M.; Rezaei, J. Bayesian best-worst method: A probabilistic group decision making model. Omega 2020, 96, 102075. [Google Scholar] [CrossRef]
- Acar, E.F.; Sun, L. A Generalized Kruskal–Wallis Test Incorporating Group Uncertainty with Application to Genetic Association Studies. Biometrics 2013, 69, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Septiani, W.; Marimin, M.; Herdiyeni, Y.; Haditjaroko, L. Method and approach mapping for agri-food supply chain risk management: A literature review. Int. J. Supply Chain Manag. 2016, 5, 51–64. [Google Scholar]
- Wei, Y.; Nan, H.; Wei, G. The impact of employee welfare on innovation performance: Evidence from China’s manufacturing corporations. Int. J. Prod. Econ. 2020, 228, 107753. [Google Scholar] [CrossRef]
- Addison, J.T.; Teixeira, P. Strikes, employee workplace representation, unionism, and industrial relations quality in European establishments. J. Econ. Behav. Organ. 2019, 159, 109–133. [Google Scholar] [CrossRef] [Green Version]
- Ben Ayed, R.; Hanana, M.; Ercisli, S.; Karunakaran, R.; Rebai, A.; Moreau, F. Integration of innovative technologies in the agri-food sector: The fundamentals and practical case of DNA-based traceability of olives from fruit to oil. Plants 2022, 11, 1230. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, S.; Lopez, C.; Chen, H.; Lu, H.; Mangla, S.K.; Elgueta, S. Risk analysis of the agri-food supply chain: A multi-method approach. Int. J. Prod. Res. 2020, 58, 4851–4876. [Google Scholar] [CrossRef]
- Apostolopoulos, N.; Ratten, V.; Petropoulos, D.; Liargovas, P.; Anastasopoulou, E. Agri-food sector and entrepreneurship during the COVID-19 crisis: A systematic literature review and research agenda. Strateg. Chang. 2021, 30, 159–167. [Google Scholar] [CrossRef]
- Arsawan, W.E.; Koval, V.; Suhartanto, D.; Babachenko, L.; Kapranova, L.; Suryantini, N.P.S. Invigorating supply chain performance in small medium enterprises: Exploring knowledge sharing as moderator. Bus. Manag. Econ. Eng. 2023, 21, 1–18. [Google Scholar] [CrossRef]
- Fellows, P.J. Food Processing Technology: Principles and Practice; Woodhead Publishing: Cambridge, MA, USA, 2022. [Google Scholar]
- Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Manag. 2013, 130, 375–385. [Google Scholar] [CrossRef]
- Golan, M.S.; Jernegan, L.H.; Linkov, I. Trends and applications of resilience analytics in supply chain modeling: Systematic literature review in the context of the COVID-19 pandemic. Environ. Syst. Decis. 2020, 40, 222–243. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.; Xia, J.; Li, Y.; Zhang, L.; Feng, H.; Zhang, X. Flexible sensing enabled agri-food cold chain quality control: A review of mechanism analysis, emerging applications, and system integration. Trends Food Sci. Technol. 2023, 133, 189–204. [Google Scholar] [CrossRef]
- Fung, F.; Wang, H.S.; Menon, S. Food safety in the 21st century. Biomed. J. 2018, 41, 88–95. [Google Scholar] [CrossRef]
- Giannakas, K.; Yiannaka, A. Food Fraud: Causes, Consequences, and Deterrence Strategies. Annu. Rev. Resour. Econ. 2023, 15. [Google Scholar] [CrossRef]
- Saunders, M.N.; Dietz, G.; Thornhill, A. Trust and distrust: Polar opposites, or independent but co-existing? Hum. Relat. 2014, 67, 639–665. [Google Scholar] [CrossRef] [Green Version]
- Wald, E. In-House Pay: Are Salaries, Stock Options, and Health Benefits a “Fee” Subject to a Reasonableness Requirement and Why the Answer Constitutes the Opening Shot in a Class War between Lawyer-Employees and Lawyer-Professionals. Nev. LJ 2019, 20, 243. [Google Scholar]
- Zavalko, N.A.; Kozhina, V.O.; Zhakevich, A.G.; Matyunina, O.E.; Lebedeva, O.Y. Methodical approaches to rating the quality of financial control at the enterprise. Calitatea 2017, 18, 69–72. [Google Scholar]
- Morkunas, M.; Skvarciany, V.; Titko, J. Development of autopoietic economic structures in the Baltic states: Analysis of factors. Equilibrium. Q. J. Econ. Econ. Policy 2017, 12, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Eičaitė, O.; Baležentis, T.; Ribašauskienė, E.; Morkūnas, M.; Melnikienė, R.; Štreimikienė, D. Measuring self-reported food loss in primary production: Survey-based insights from Central and Eastern Europe. Waste Manag. 2022, 143, 46–53. [Google Scholar] [CrossRef]
Risks Detected | Stages of the Food Supply Chain | ||||
---|---|---|---|---|---|
A | B | C | D | ||
Supply | Production | Distribution | Consumption | ||
1. | Failure of the supplier to ensure a stable supply of raw materials (products). | 1; 11; 20 | |||
2. | Absence (loss) of suppliers or dependence on several suppliers | 2; 7; 11; 17 | 5; 7; 11; 17 | 5; 7 | |
3. | Absence of a central contracting authority | 1 | |||
4. | Poor quality of supplied raw materials (products) | 1; 2; 4; 6 | 2; 6 | 15 | |
5. | Natural disasters of a global or local scale | 1; 3; 20 | 1; 3; 20 | 1; 3; 20 | 17; 20 |
6. | Workers’ strikes | 1; 10; 12 | 1; 10; 17 | 1; 17 | 1; 17 |
7. | Lack of qualified workers | 4; 5; 20 | 5; 17; 20 | ||
8. | Outdated, inefficient technologies or practices used | 1 | 1; 2; 8 | 1; 2; 8 | |
9. | Infrastructure problems | 3; 17; 20 | 3; 17; 20 | 3; 17; 20 | 3; 17; 20 |
10. | Infectious diseases of animals | 3 | 16 | ||
11. | Change in government regulations or safety standards | 2; 4; 18; 19 | 4; 19 | 4; 19 | 4; 18; 19 |
12. | Lack of supply visibility (location, quantity) | 2; 12; 17 | 2; 12 | ||
13. | Initial price volatility | 2; 8; 13 | 9:18 | ||
14. | Supply chain disruptions due to social or political unrest | 2; 3; 5 | 3; 5 | 3; 5 | 3; 5 |
15. | Poor supply contracts | 2; 7; 8 | 13; 17 | ||
16. | Short term raw materials or products (expiration issue) | 4; 6; 11; 12 | 4; 7; 11; 12 | 4; 8; 11 | 4; 8; 9; 11; 12; 16; 17 |
17. | Seasonality | 2; 7; 9; 16 | 9; 17 | 15; 17 | 9; 15; 17; 18 |
18. | Low consumption of raw materials | 6; 11 | |||
19. | Low line productivity | 6; 14 | 6; 9; 14 | ||
20. | Low quality of final products | 6; 9 | |||
21. | Variability of production processes, no established standards | 2; 17 | |||
22. | Food safety incidents | 3; 5; 12 | 2; 5; 12 | 2; 5; 14 | 5; 14 |
23. | Downtime (due to equipment failure, process disruptions, etc.) | 2 | 14 | ||
24. | Lack of formal production planning | 2; 14 | |||
25. | Lack of knowledge in effective distribution | 4 | |||
26. | Lack of smooth interconnection with other chain participants | 1; 12 | 4; 12 | 4 | 4 |
27. | Insufficient warehouse capacity | 1; 2; 9; 13 | |||
28. | Improper handling of production, loading and unloading in another place | 1; 7; 8 | |||
29. | Improper packaging and protection | 1; 8; 18 | |||
30. | Losses during transportation | 1; 15 | |||
31. | Vehicles not available on time | 1; 2 | |||
32. | Shipping/unloading delays | 2; 12; 17 | |||
33. | Shipping errors | 2; 8 | |||
34. | Poor logistics contracts | 2; 8; 14 | |||
35. | Transport failures | 2; 8; 11 | |||
36. | Failure to apply appropriate conditions (e.g., temperature). | 2; 12 | |||
37. | A sudden increase in demand | 1; 10; 11; 17 | |||
38. | Forecast discrepancies | 1; 9 | |||
39. | Fraud in the food sector | 1; 3; 7 | 1; 3; 7; 18 | 1; 2; 3; 18 | 1; 3; 18 |
40. | Product returns | 3; 5; 12; 14 | |||
41. | Market and pricing strategies, economic crises | 3; 7; 8; 9; 12 | 3; 9; 12; 14 | 3; 7; 12; 18 | 3; 11; 14 |
42. | Awkward shopping (no one stop scenario) | 3; 14 | |||
43. | Consumers’ personal beliefs, empathy for animals | 4; 12 |
Root Risk | Risk Mitigation Alternatives | Category of Solution |
---|---|---|
Root Risk 1 | ||
Natural disasters of a global or local scale |
| For prevention, to eliminate the consequences |
| For prevention, to eliminate the consequences | |
| To eliminate the consequences | |
| For prevention | |
Root Risk 2 | ||
Workers’ strikes |
| For prevention |
| For prevention, to eliminate the consequences | |
| For prevention, to eliminate the consequences | |
Root Risk 3 | ||
Change in government regulations or safety standards |
| To eliminate the consequences |
| To eliminate the consequences | |
| For preparation | |
Root Risk 4 | ||
Rapid deterioration of raw materials (expiration), seasonality |
| t eliminate the consequences |
| For prevention | |
| To eliminate the consequences | |
Root Risk 5 | ||
Food safety incidents |
| For prevention, to eliminate the consequences |
| To eliminate the consequences | |
| To eliminate the consequences | |
Root Risk 6 | ||
Fraud in the food sector |
| For prevention |
| For prevention | |
| For prevention | |
Root Risk 7 | ||
Market and pricing strategies, economic crises |
| For prevention |
| For prevention, to eliminate the consequences | |
| For prevention |
Estimate | Definition | Explanation |
---|---|---|
1 | Equally important | The significance of both indicators in relation to the research object is the same |
3 | Moderately important | One indicator is slightly more important than the other |
5 | Important | One indicator is more important than the other |
7 | Major | One indicator is much more important than the other |
9 | Absolutely important | One indicator is incomparably more important than the other |
1, 4, 6, 8 | Intermediate values | Used to reach a compromise when making decisions between two side-by-side options |
The Best Alternative | The Worst Alternative | ||
---|---|---|---|
Criterion (X) | A | B | |
The Best Alternative Compared to Others | Alternative C | Alternative D | Alternative E |
Best alternative: A | |||
Other Alternatives Compared to the Worst | Worst Alternative: B | ||
Alternative C | |||
Alternative D | |||
Alternative E |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
CI value | 0.00 | 0.44 | 1.00 | 1.63 | 2.30 | 3.00 | 3.73 | 4.47 | 5.23 |
Test Statistics | Value |
---|---|
Kruskal–Wallis H | 7.8 |
df | 7 |
Asymp. Sig. | 0.351 |
Experts | The Ratio of Compatibility between Opinions | The Average of the Concordance of All Expert Opinions | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Valued Factors | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | All Responses Received | After Eliminating Inconsistent Responses | |
Root Risk 1 | 0.02 | 0.03 | 0.04 | 0.03 | 0.23 | 0.06 | 0.06 | 0.04 | 0.05 | 0.05 | |
Root Risk 2 | 0.08 | 0.04 | 0.05 | 0.00 | 0.09 | 0.05 | 0.04 | 0.29 | 0.06 | 0.06 | |
Root Risk 3 | 0.05 | 0.02 | 0.11 | 0.02 | 1.28 | 0.06 | 0.07 | 0.02 | 0.06 | 0.04 | |
Root Risk 4 | 0.05 | 0.00 | 0.07 | 0.00 | 0.93 | 0.55 | 0.55 | 0.03 | 0.10 | 0.07 | |
Root Risk 5 | 0.00 | 0.00 | 0.00 | 0.08 | 1.16 | 0.24 | 0.03 | 0.05 | 0.07 | 0.05 | |
Root Risk 6 | 0.07 | 0.02 | 0.17 | 0.36 | 0.05 | 0.11 | 0.17 | 0.04 | 0.07 | 0.07 | |
Root Risk 7 | 0.03 | 0.02 | 0.02 | 0.05 | 0.02 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuizinaitė, J.; Morkūnas, M.; Volkov, A. Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain. Sustainability 2023, 15, 9378. https://doi.org/10.3390/su15129378
Kuizinaitė J, Morkūnas M, Volkov A. Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain. Sustainability. 2023; 15(12):9378. https://doi.org/10.3390/su15129378
Chicago/Turabian StyleKuizinaitė, Jurgita, Mangirdas Morkūnas, and Artiom Volkov. 2023. "Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain" Sustainability 15, no. 12: 9378. https://doi.org/10.3390/su15129378
APA StyleKuizinaitė, J., Morkūnas, M., & Volkov, A. (2023). Assessment of the Most Appropriate Measures for Mitigation of Risks in the Agri-Food Supply Chain. Sustainability, 15(12), 9378. https://doi.org/10.3390/su15129378