Improving Soil Properties by Sand Application in the Saline-Alkali Area of the Middle and Lower Reaches of the Yellow River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Assays
2.4. Statistical Analyses
3. Results
3.1. Effects of Sand Addition on Physical Properties of Soil in the Field
3.2. Effects of Sand Addition on the Soil’s Chemical Properties in the Field
3.3. Effects of Sand Addition on the Soil’s Enzyme-Activity Properties in the Field
3.4. Correlation between the Enzyme Activities and Physicochemical Properties of the Soil
3.5. Principal Component Analysis of the Properties of Saline-Sodic Soil
4. Discussion
5. Practical Implication of the Study
6. Conclusions and Recommendations
- 1.
- Sand application can be considered as a cost-effective method to improve soil quality and structure in arid and semi-arid saline-sodic agricultural ecosystems. It is recommended that further research be conducted to investigate the optimal amount and frequency of sand application for different soil types and cropping systems.
- 2.
- The soil’s AN, AP, and TSC were identified as the crucial factors affecting the soil’s properties. Therefore, it is recommended that these soil parameters be monitored regularly and managed appropriately to maintain or improve soil quality.
- 3.
- Cropping year was found to have a positive effect on the soil’s properties. Therefore, it is recommended that crop rotation and other sustainable farming practices be implemented to improve soil quality over time.
- 4.
- This study was conducted in an arid and semi-arid saline-sodic agricultural ecosystem, and further research is needed to determine whether similar results can be achieved for other soil types and in other climatic conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhaduri, D.; Saha, A.; Desai, D.; Meena, H. Restoration of carbon and microbial activity in salt-induced soil by application of peanut shell biochar during short-term incubation study. Chemosphere 2016, 148, 86–98. [Google Scholar] [CrossRef]
- Cao, D.; Li, Y.; Liu, B.; Kong, F.; Tran, L.-S.P. Adaptive Mechanisms of Soybean Grown on Salt-Affected Soils. Land Degrad. Dev. 2017, 29, 1054–1064. [Google Scholar] [CrossRef]
- Liu, W.Q.; Xu, X.; Lu, F.; Cao, J.; Li, P.; Fu, T.; Chen, G.; Su, Q. Three-dimensional soil salinity mapping in the southern coastal area of Laizhou Bay, China. Land Degrad. Dev. 2018, 29, 3772–3782. [Google Scholar] [CrossRef]
- Mao, P.; Zhang, Y.; Cao, B.; Guo, L.; Shao, H.; Cao, Z.; Jiang, Q.; Wang, X. Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere. Sci. Total Environ. 2016, 568, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Chen, Q.; Li, Y.; Zhuo, Y.Q.; Xu, L.Z. Research on saline-alkali soil amelioration with FGD gypsum. Resour. Conserv. Recycl. 2016, 121, 82–92. [Google Scholar] [CrossRef]
- Alster, C.J.; German, D.P.; Lu, Y.; Allison, S.D. Microbial enzymatic responses to drought and to nitrogen addition in a southern California grassland. Soil Biol. Biochem. 2013, 64, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Azeez, J.O.; Van Averbeke, W.; Okorogbona, A.O.M. Differential responses in pumpkin yield (Cucurbita maxima L.) and nightshade (Solanum retroflexum Dun.) to the application of three animal manures. Bioresour. Technol. 2010, 101, 2499–2505. [Google Scholar] [CrossRef]
- Busscher, W.; Bjorneberg, D.; Sojka, R. Field application of PAM as an amendment in deep-tilled US southeastern coastal plain soils. Soil Tillage Res. 2009, 104, 215–220. [Google Scholar] [CrossRef]
- Clark, G.; Dodgshun, N.; Sale, P.; Tang, C. Changes in chemical and biological properties of a sodic clay subsoil with addition of organic amendments. Soil Biol. Biochem. 2007, 39, 2806–2817. [Google Scholar] [CrossRef]
- Ahmad, S.; Ghafoor, A.; Akhtar, M.E.; Khan, M.Z. Implication of gypsum rates to optimise hydraulic conductivity for var-iable-texture saline-sodic soils reclamation. Land Degrad. Dev. 2016, 27, 550–560. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Li, Y.; Gao, B.; Tang, Y.; Xie, J.; Zhao, H. Remediation of saline-sodic soil using organic and inorganic amendments: Physical, chemical, and enzyme activity properties. J. Soils Sediments 2019, 20, 1454–1467. [Google Scholar] [CrossRef]
- Shao, H.; Chu, L.; Lu, H.; Qi, W.; Chen, X.; Liu, J.; Kuang, S.; Tang, B.; Wong, V. Towards sustainable agriculture for the salt-affected soil. Land Degrad. Dev. 2018, 30, 574–579. [Google Scholar] [CrossRef]
- Bai, Y.; Zang, C.; Gu, M.; Shao, H.; Guan, Y.; Wang, X.; Zhou, X.; Shan, Y.; Feng, K. Sewage sludge as an initial fertility driver for rapidly improving mudflat salt soils. Sci. Total Environ. 2017, 578, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Ali, M.; Turi, J.A.; Manan, A.; Al-Dala’ien, R.N.S.; Rashid, K. Potential use of recycled materials on rooftops to improve thermal comfort in sustainable building construction projects. Front. Built Environ. 2022, 8, 235. [Google Scholar] [CrossRef]
- Ahmad, M.; Beddu, S.; binti Itam, Z.; Alanimi, F.B.I. State-of-the-art compendium of macro and micro energies. Adv. Sci. Technol. Res. J. 2019, 13, 88–109. [Google Scholar] [CrossRef]
- Wang, Q.L.; Cao, Y.; Wang, B. Effects of sand covering on physicochemical properties of saline-alkali soil and ryegrass growth. Land Dev. Eng. Res. 2018, 3, 53–57. [Google Scholar]
- Bezdicek, D.; Beaver, T.; Granatstein, D. Subsoil ridge tillage and lime effects on soil microbial activity, soil pH, erosion, and wheat and pea yield in the Pacific Northwest, USA. Soil Tillage Res. 2003, 74, 55–63. [Google Scholar] [CrossRef]
- Yao, L.; Liu, T.X. Study on soil chemical characteristics in Kerqin Desert. J. Inn. Mong. Agric. Univ. 2005, 26, 35–38. [Google Scholar]
- Zheng, B.Z. Technical Guide for Soil Analysis; China Agriculture Press: Beijing, China, 2013. [Google Scholar]
- Guan, S.Y. Soil Enzyme and Its Research Methods Beijing; Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Shi, B.; Zhang, J.; Wang, C.; Ma, J.; Sun, W. Responses of hydrolytic enzyme activities in saline-alkaline soil to mixed inorganic and organic nitrogen addition. Sci. Rep. 2018, 8, 4543. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Liu, Y.; Luo, J.; Qin, M.; Johnson, N.C.; Öpik, M.; Vasar, M.; Chai, Y.; Zhou, X.; Mao, L.; et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. New Phytol. 2018, 220, 1222–1235. [Google Scholar] [CrossRef] [Green Version]
- Khotabaei, M.; Emami, H.; Astaraei, A.R.; Fotovat, A. Improving Soil Physical Indicators by Soil Amendment to a Saline-Sodic Soil. Desert 2013, 18, 73–78. [Google Scholar] [CrossRef]
- He, K.; He, G.; Wang, C.; Zhang, H.; Xu, Y.; Wang, S.; Kong, Y.; Zhou, G.; Hu, R. Biochar amendment ameliorates soil properties and promotes Miscanthus growth in a coastal saline-alkali soil. Appl. Soil Ecol. 2020, 155, 103674. [Google Scholar] [CrossRef]
- Mose, A.A.; Mostaf, A.; David, J.B.; Phan Tran, L.-S. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad. Dev. 2018, 29, 3783–3794. [Google Scholar]
- Ganjegunte, G.; Ulery, A.; Niu, G.; Wu, Y. Organic carbon, nutrient, and salt dynamics in saline soil and switchgrass (Panicum virgatum L.) irrigated with treated municipal wastewater. Land Degrad. Dev. 2017, 29, 80–90. [Google Scholar] [CrossRef]
- Han, J.C.; Liu, S.; Zhang, Y. Sand stabilisation effect of feldspathic sandstone during the fallow period in mu us sandy land. J. Geogr. Sci. 2015, 25, 428–436. [Google Scholar] [CrossRef]
- Ullah, S.; Barykin, S.; Jianfu, M.; Saifuddin, T.; Khan, M.A.; Kazaryan, R. Green Practices in Mega Development Projects of China–Pakistan Economic Corridor. Sustainability 2023, 15, 5870. [Google Scholar] [CrossRef]
- Ssaharti, M. The Impact of Crypto Currencies on the Economy and The Financial Industry. J. Adv. Humanit. Res. 2022, 1, 60–69. [Google Scholar] [CrossRef]
- Rengasamy, P. Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: An overview. Aust. J. Exp. Agric. 2002, 42, 351–361. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Limitation of Salt Stress to Plant Growth. In Plant Toxicology; Taylor & Francis Group: Abingdon, UK, 2004; pp. 191–224. [Google Scholar] [CrossRef]
- El-Halim, A.A.A.; Lennartz, B. Amendment with sugarcane pith improves the hydrophysical characteristics of saline-sodic soil. Eur. J. Soil Sci. 2017, 68, 327–335. [Google Scholar] [CrossRef]
- Fan, Y.; Shen, W.; Cheng, F. Reclamation of two saline-sodic soils using vinegar residue and silicon-potash fertiliser. Soil Res. 2018, 56, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Shaygan, M.; Baumgartl, T.; Arnold, S.; Reading, L.P. The effect of soil physical amendments on reclamation of a saline-sodic soil: Simulation of salt leaching using HYDRUS-1D. Soil Res. 2018, 56, 829–845. [Google Scholar] [CrossRef]
- Feng, H.; Wang, S.; Gao, Z.; Wang, Z.; Ren, X.; Hu, S.; Pan, H. Effect of land use on the composition of bacterial and fungal communities in saline–sodic soils. Land Degrad. Dev. 2019, 30, 1851–1860. [Google Scholar] [CrossRef]
- Liu, G.M.; Zhang, X.C.; Wang, X.P.; Shao, H.B.; Yang, J.S.; Wang, X.P. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 2017, 237, 274–279. [Google Scholar]
- Beddu, S.; Manan, T.S.B.A.; Nazri, F.M.; Kamal, N.L.M.; Mohamad, D.; Itam, Z.; Ahmad, M. Sustainable Energy Recovery from the Malaysian Coal Bottom Ash and the Effects of Fineness in Improving Concrete Properties. Front. Energy Res. 2022, 10, 940883. [Google Scholar] [CrossRef]
- Wang, S.; Tang, J.; Li, Z.; Liu, Y.; Zhou, Z.; Wang, J.; Qu, Y.; Dai, Z. Carbon Mineralization under Different Saline—Alkali Stress Conditions in Paddy Fields of Northeast China. Sustainability 2020, 12, 2921. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Tang, J.; Li, Z.; Yang, W.; Duan, Y. The Influence of Soil Physico-Chemical Properties and Enzyme Activities on Soil Quality of Saline-Alkali Agroecosystems in Western Jilin Province, China. Sustainability 2018, 10, 1529. [Google Scholar] [CrossRef] [Green Version]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, J.; Yang, H.; Liu, J.; Shao, P. Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Sci. Total Environ. 2021, 756, 143801. [Google Scholar] [CrossRef]
- Zhang, X.L.; Ma, M.; Wu, Z.Z.; Zhang, Z.Z.; Gao, R.; Shi, L.Y. Effects of Helianthus annuus varieties on rhizosphere soil enzyme activities and microbial community functional diversity of saline-alkali land in Xinjiang. Acta Ecol. Sin. 2017, 37, 1659–1666. [Google Scholar]
- Liu, W.; Hou, J.; Wang, Q.; Ding, L.; Luo, Y. Isolation and characterisation of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 2014, 117, 303–308. [Google Scholar] [CrossRef]
- Salwan, R.; Sharma, A.; Sharma, V. Microbes mediated plant stress tolerance in saline agricultural ecosystem. Plant Soil 2019, 442, 1–22. [Google Scholar] [CrossRef]
- Dixit, V.K.; Misra, S.; Mishra, S.K.; Tewari, S.K.; Joshi, N.; Chauhan, P.S. Characterization of plant growth-promoting alkalotolerant Alcaligenes and Bacillus strains for mitigating the alkaline stress in Zea mays. Antonie Leeuwenhoek 2020, 113, 889–905. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
PH 1:5 | 8.77 |
EC 1:2.5/(mS cm−1) | 4.28 |
Total salt content/(%) | 8.82 |
Bulk density/(g cm−3) | 1.62 |
Organic matter/(g kg−1) | 3.32 |
Available nitrogen/(mg kg−1) | 32.11 |
Available phosphorus/(mg kg−1) | 10.14 |
Amylase activities/(mg g−1 24 h−1) | 0.96 |
Urease activity/(mg g−1 24 h−1) | 0.08 |
Alkaline phosphatase activity/(mg g−1 24 h−1) | 0.13 |
Catalase activity/(mL g−1 h−1) | 2.51 |
Year | Sand (+/−) | pH | EC/(mS cm−1) | TSC/(%) | BD/(g cm−3) |
---|---|---|---|---|---|
2017 | − | 8.77 ± 0.15 | 4.28 ± 0.45 | 8.67 ± 0.45 | 1.62 ± 0.14 |
2018 | − | 8.67 ± 0.23 | 4.31 ± 0.22 | 8.62 ± 0.55 | 1.67 ± 0.11 |
2019 | − | 8.75 ± 0.19 | 4.26 ± 0.15 | 8.53 ± 0.42 | 1.56 ± 0.15 |
2020 | − | 8.74 ± 0.11 | 4.28 ± 0.21 | 8.62 ± 0.33 | 1.61 ± 0.17 |
2017 | + | 7.79 ± 0.13 b | 1.11 ± 0.15 b | 3.27 ± 0.45 | 1.47 ± 0.11 |
2018 | + | 8.35 ± 0.10 a | 1.32 ± 0.21 a | 3.76 ± 0.75 | 1.42 ± 0.12 |
2019 | + | 8.21 ± 0.09 a | 1.26 ± 0.07 a | 3.45 ± 0.23 | 1.43 ± 0.13 |
2020 | + | 8.24 ± 0.11 a | 1.32 ± 0.13 a | 3.23 ± 0.34 | 1.46 ± 0.15 |
Summary of treatment effects | |||||
Year (Y) | F-value | 3.36 | 2.33 | 4.32 | 0.15 |
p-value | 0.06 | ns | ns | ns | |
Sand addition (S) | F-value | 123.30 | 1371.44 | 538.44 | 16.36 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | |
Y × S | F-value | 2.74 | 0.18 | 0.20 | 0.01 |
p-value | ns | ns | ns | ns |
Year | Sand (+/−) | OC/(g kg−1) | AN/(mg kg−1) | AP/(mg kg−1) |
---|---|---|---|---|
2017 | − | 3.19 ± 0.12 b | 32.82 ± 1.67 a | 9.51 ± 0.90 b |
2018 | − | 3.64 ± 0.21 a | 30.21 ± 2.28 b | 10.40 ± 0.74 b |
2019 | − | 3.32 ± 0.25 b | 32.92 ± 2.14 a | 10.42 ± 1.30 b |
2020 | − | 3.38 ± 0.24 ab | 34.15 ± 1.06 a | 12.51 ± 0.46 a |
2017 | + | 3.82 ± 0.10 c | 35.57 ± 3.08 d | 12.17 ± 1.16 d |
2018 | + | 3.97 ± 0.14 b | 41.23 ± 1.71 c | 15.11 ± 0.93 c |
2019 | + | 4.03 ± 0.11 ab | 46.10 ± 3.61 b | 17.68 ± 1.06 b |
2020 | + | 4.14 ± 0.14 a | 49.36 ± 1.12 a | 19.02 ± 0.85 a |
Summary of treatment effects | ||||
Year (Y) | F-value | 5.66 | 75.06 | 111.15 |
p-value | 0.02 | <0.001 | <0.001 | |
Sand addition (S) | F-value | 106.90 | 237.67 | 271.30 |
p-value | <0.001 | <0.001 | <0.001 | |
Y × S | F-value | 2.07 | 41.87 | 30.86 |
p-value | ns | <0.001 | <0.001 |
Year | Sand (+/−) | Amy /(mg g−1 24 h−1) | Ure /(mg g−1 24 h−1) | Alp /(mg g−1 24 h−1) | Cat /(mL g−1 h−1) | |
---|---|---|---|---|---|---|
2017 | − | 0.94 ± 0.125 | 0.08 ± 0.007 | 0.13 ± 0.010 a | 2.51 ± 0.013 b | |
2018 | − | 1.01 ± 0.045 | 0.07 ± 0.005 | 0.11 ± 0.009 bc | 2.44 ± 0.010 b | |
2019 | − | 0.98 ± 0.048 | 0.07 ± 0.009 | 0.09 ± 0.010 c | 2.67 ± 0.005 a | |
2020 | − | 0.97 ± 0.017 | 0.08 ± 0.012 | 0.11 ± 0.010 ab | 2.66 ± 0.007 a | |
2017 | + | 1.21 ± 0.058 b | 0.11 ± 0.013 b | 0.20 ± 0.007 b | 2.74 ± 0.019 c | |
2018 | + | 1.43 ± 0.137 a | 0.11 ± 0.007 b | 0.20 ± 0.007 b | 3.13 ± 0.012 b | |
2019 | + | 1.46 ± 0.216 a | 0.16 ± 0.025 a | 0.23 ± 0.031 a | 3.55 ± 0.026 a | |
2020 | + | 1.51 ± 0.044 a | 0.16 ± 0.032 a | 0.24 ± 0.030 a | 3.61 ± 0.028 a | |
Summary of treatment effects | ||||||
Year (Y) | F-value | 13.07 | 10.09 | 3.03 | 298.6 | |
p-value | <0.001 | 0.002 | 0.088 | <0.001 | ||
Sand addition (S) | F-value | 183.08 | 101.22 | 324.91 | 802.0 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | ||
Y × S | F-value | 9.94 | 7.36 | 19.80 | 118.0 | |
p-value | 0.003 | 0.009 | <0.001 | <0.001 |
Principal Component | Eigenvalue | Proportion Explained /(%) | Cumulative Proportion /(%) |
---|---|---|---|
1 | 64.514 | 92.777 | 92.777 |
2 | 3.466 | 4.984 | 97.756 |
3 | 1.261 | 1.814 | 99.571 |
4 | 0.185 | 0.267 | 99.838 |
5 | 0.042 | 0.060 | 99.898 |
6 | 0.027 | 0.039 | 99.938 |
7 | 0.019 | 0.028 | 99.967 |
8 | 0.012 | 0.018 | 99.985 |
9 | 0.009 | 0.013 | 100 |
10 | 0.000 | 0.000 | 100 |
11 | 0.000 | 0.000 | 100 |
Trait | PCA1 | PCA2 | PCA3 |
---|---|---|---|
pH | −0.193 | 0.228 | −0.009 |
EC (mS cm−1) | −1.113 | 0.791 | −0.087 |
TSC (%) | −1.966 | 1.347 | −0.121 |
BD (g/cm3) | −0.077 | 0.020 | −0.013 |
OC (g kg−1) | 0.263 | −0.115 | −0.045 |
AN (mg kg−1) | 6.213 | 0.581 | 0.397 |
AP (mg kg−1) | 3.005 | 0.002 | −0.925 |
Amy (mg g−1 24 h−1) | 0.196 | −0.052 | −0.018 |
Ure (mg g−1 24 h−1) | 0.027 | −0.007 | 0.000 |
Alp (mg g−1 24 h−1) | 0.046 | −0.018 | 0.001 |
Cat (mL g−1 24 h−1) | 0.377 | −0.008 | −0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Yang, C.; Zhang, H.; Li, J. Improving Soil Properties by Sand Application in the Saline-Alkali Area of the Middle and Lower Reaches of the Yellow River, China. Sustainability 2023, 15, 9437. https://doi.org/10.3390/su15129437
Wang J, Yang C, Zhang H, Li J. Improving Soil Properties by Sand Application in the Saline-Alkali Area of the Middle and Lower Reaches of the Yellow River, China. Sustainability. 2023; 15(12):9437. https://doi.org/10.3390/su15129437
Chicago/Turabian StyleWang, Jian, Chenxi Yang, Haiou Zhang, and Juan Li. 2023. "Improving Soil Properties by Sand Application in the Saline-Alkali Area of the Middle and Lower Reaches of the Yellow River, China" Sustainability 15, no. 12: 9437. https://doi.org/10.3390/su15129437
APA StyleWang, J., Yang, C., Zhang, H., & Li, J. (2023). Improving Soil Properties by Sand Application in the Saline-Alkali Area of the Middle and Lower Reaches of the Yellow River, China. Sustainability, 15(12), 9437. https://doi.org/10.3390/su15129437