Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review
Abstract
:1. Introduction
2. Encapsulant Materials for Si-Cell PV Module
2.1. Elastomers as Encapsulant Materials
2.1.1. Poly-Ethylene–Vinyl–Acetate (EVA)
2.1.2. Silicones
2.2. Thermoplastics as Encapsulant Materials
2.2.1. Polyvinyl Butyral (PVB)
2.2.2. Ionomers
2.3. Thermoplastic Elastomers as Encapsulant Materials
2.3.1. Thermoplastic Silicone Elastomers (TPSE)
2.3.2. Thermoplastic Polyolefin (TPO)
2.3.3. Polyolefins Elastomers (POE)
3. Technologies for PV Cells Embedding
4. Additives for PV Module Encapsulants
4.1. Crosslinking Agents
4.2. Stabilizers: Antioxidants and UV Absorbers and Stabilizers
4.3. Adhesion Promoters
5. Encapsulant Materials for Organic and Perovskite Solar Cells
6. Conclusions and Future Perspectives in Module Design
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nye, D.E.E. Consuming Power: A Social History of American Energies Paperback; Massachusetts Institute of Technology, MIT Press: Cambridge, MA, USA, 1999; ISBN 978-0-202-14063-8. [Google Scholar]
- Hales, P.B. Energy, Power and Consumer Culture: Expanding the View. Amer. Q. 1999, 51, 718–725. [Google Scholar] [CrossRef]
- Sarver, T.; Al-Qaraghuli, A.; Azmerski, L.L. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renew. Sustain. Energy Rev. 2013, 22, 698–733. [Google Scholar] [CrossRef]
- Report by EU Commission on 13 September 2022, Brussels, Directorate-General for Energy: In Focus: Solar Energy—Harnessing the Power of the Sun. Available online: https://commission.europa.eu/news/focus-solar-energy-harnessing-power-sun-2022-09-13_en (accessed on 14 September 2022).
- IRENA Press Release, G7 Communiqué Echoes IRENA’s Call for Rapid Deployment of Renewables: The G7 Agreed on a Collective Increase of 150 GW of Offshore Wind and 1 TW of Solar PV by 2030, in Line with IRENA’s 1.5-Degree Pathway, on 18 April 2023. Available online: https://www.irena.org/ (accessed on 19 April 2023).
- Wohlgemuth, J.H.; Silverman, T.; Miller, D.C.; McNutt, P.; Kempe, M.D.; Deceglie, M. Evaluation of PV Module Field Performance. In Proceedings of the IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015. [Google Scholar] [CrossRef]
- Cabarrocas, P.R. Photovoltaics: New Materials for Better Efficiency, on 4 October 2022. Available online: https://www.polytechnique-insights.com/en/columns/energy/solar-panels-the-current-state-of-play/ (accessed on 5 October 2022).
- EU Innovation News: New Concept for Photovoltaic Cells Developed, on 15 November 2022. Available online: https://www.innovationnewsnetwork.com/new-concept-photovoltaic-cells-developed/27312/ (accessed on 16 November 2022).
- Cattaneo, G.; Levra, J.; Li, H.; Barth, V.; Sicot, L.; Richter, A.; Colletti, C.; Rametta, F.; Izzi, M.; Despeisse, M.; et al. Encapsulant Materials for High Reliable Bifacial Heterojunction Glass/Glass Photovoltaic Module. In Proceedings of the 47th IEEE Photovoltaic Specialists Conference, Calgary, BA, Canada, 15 June–21 August 2020; Volume 2020, pp. 1056–1061. [Google Scholar] [CrossRef]
- Bagher, A.M.; Vahid, M.; Mirhabibi, M. Types of Solar Cells and Application. Am. J. Opt. Photonics 2015, 3, 94–113. [Google Scholar] [CrossRef]
- Al-Ezzi, A.S.; Ansari, M.N.M. Photovoltaic Solar Cells: A Review. Appl. Syst. Innov. 2022, 5, 67. [Google Scholar] [CrossRef]
- Dambhare, M.V.; Bhavana Butey, S.V.M. Solar photovoltaic technology: A review of different types of solar cells and its future trends. J. Phys. Conf. Ser. 2021, 1913, 012053. [Google Scholar] [CrossRef]
- Sarah, K.S.; Roland, U.; Ephraim, O. A review of solar photovoltaic technologies. Int. J. Eng. Res. Technol. 2020, 9, 741–749. [Google Scholar]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Report on Photovoltaic Power Systems Programme—Designing New Materials for Photovoltaics: Opportunity for Lowering Cost and Increasing Performance through Advanced Material Innovation 2021—Report IEA-PVPS T13-13:2021; International Energy Agency (IEA): Paris, France, 2021. [Google Scholar]
- Backes, A.; Adamovic, N.; Schmid, U. New Light Management Concepts for Standard Si Solar Cells Fabricated by Embossing of Polycarbonate Front & Back Sheets. In Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 30 September–4 October 2013; pp. 3096–3098. [Google Scholar]
- Moschener, J.D.; Ravyts, S.; Van De Sande, W.; Daenen, M.; Driesen, J. Module-level Inverters and Converters for BIPV: Performance Limitations and Reliability Aspects. In Proceedings of the NREL PV Reliability Workshop 2020, Golden, CO, USA, 27 February 2020; p. 242. Available online: https://www.nrel.gov/pv/pvrw.html (accessed on 16 October 2020).
- Pern, J.F. Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure. Sol. Energy Mater. Sol. Cells 1996, 41–42, 587–615. [Google Scholar] [CrossRef]
- Pern, F.J. Module encapsulation materials, processing and testing. In Proceedings of the APP International PV Reliability Workshop, Shanghai, China, 4–5 December 2008. [Google Scholar]
- Kempe, M. Evaluation of encapsulant materials for PV application. Photovolt. Int. 2010, 9, 1049592. [Google Scholar]
- Gaume, J.; Taviot Gueho, C.; Cros, S.; Rivaton, A.; Therias, S.; Gardette, J.-L. Optimization of PVA Clay Nanocomposite for Ultra-Barrier Multilayer Encapsulation of organic solar cells. Sol. Energy Mater. Sol. Cells 2012, 99, 240–249. [Google Scholar] [CrossRef]
- Peike, C.; Dürr, I.; Hädrich, I.; Weiss, K.-A. Overview of PV module encapsulation materials. Photovolt. Int. 2013, 19, 85–92. [Google Scholar]
- Farrell, C.; Osman, A.I.; Zhang, X.; Murphy, A.; Doherty, R.; Morgan, K.; Rooney, D.W.; Harrison1, J.; Coulter, R.; Shen, D. Assessment of The Energy Recovery Potential ff Waste Photovoltaic (Pv) Modules. Sci. Rep. 2019, 9, 5267. [Google Scholar] [CrossRef]
- Green, M.A. Silicon photovoltaic modules: A brief history of the first 50 years. Prog. Photovolt. Res. Appl. 2005, 13, 447–455. [Google Scholar] [CrossRef]
- Rosenthal, A.L.; Lane, C.G. Field Test Results for the 6 MW Carrizo Solar Photovoltaic Power Plant Solar Cells: Their Science, Technology, Applications and Economics; Elsevier: Amsterdam, The Netherlands, 1991; pp. 563–571. [Google Scholar] [CrossRef]
- Baiamonte, M.; Therias, S.; Colletti, C.; Dintcheva, N.T. Encapsulant polymer blend films for bifacial heterojunction photovoltaic modules: Formulation, characterization and durability. Polym. Degrad. Stab. 2021, 193, 109716. [Google Scholar] [CrossRef]
- De Oliveira, M.C.C.; Diniz, A.S.A.C.; Viana, M.M.; Lins, V.F.C. The causes and effects of degradation of encapsulant ethylene vinyl acetate-copolymer (EVA) in crystalline silicon photovoltaic modules: A review. Renew. Sustain. Energy Rev. 2018, 81, 2299–2317. [Google Scholar] [CrossRef]
- Jin, J.; Chen, S.; Zhang, J. UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents. Polym. Degrad. Stab. 2010, 95, 725–732. [Google Scholar] [CrossRef]
- Miller, D.C.; Annigoni, E.; Ballion, A.; Bokria, J.G.; Bruckman, L.S.; Burns, D.M.; Chen, X.; Feng, J.; French, R.H.; Fowler, S.; et al. Degradation in PV encapsulant strength of attachment: An interlaboratory study towards a climate-specific test. In Proceedings of the IEEE 43rd Photovoltaic Specialists Conference, Portland, OR, USA, 5–10 June 2016. [Google Scholar] [CrossRef]
- Perret-Aebi, L.-E.; Li, H.-Y.; Théron, R.; Roeder, G.; Luo, Y.; Turlings, T.; Lange, R.F.M.; Ballif, C. Insights on EVA lamination process: Where do the bubbles come from? In Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 6–9 September 2010; pp. 4036–4038. [Google Scholar] [CrossRef]
- Park, N.C.; Jeong, J.S.; Kang, B.J.; Kim, D.H. The effect of encapsulant discoloration and delamination on the electrical characteristics of photovoltaic module. Microelectron. Reliab. 2013, 53, 1818–1822. [Google Scholar] [CrossRef]
- Sharma, V.; Chandel, S.S. Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renew. Sustain. Energy Rev. 2013, 27, 753–767. [Google Scholar] [CrossRef]
- Eitner, U.; Pander, M.; Kajari-Schröder, S.; Köntges, M.; Altenbach, H. Thermomechanics of PV Modules Including the Viscoelasticity of EVA. In Proceedings of the 26th European Photovoltaic Solar Energy, Hamburg, Germany, 5–8 September 2011. [Google Scholar]
- Sraisth, EU PVSEC: New Polyolefin-Based Backsheet Challenges Traditional PET Based Backsheet. 2017. Available online: https://www.pv-magazine.com/2017/10/03/eu-pvsec-new-polyolefin-based-backsheet-challenges-traditional-pet-based-backsheets/ (accessed on 23 April 2023).
- International Technology—Report on Roadmap for Photovoltaic (ITRPV) by VDMA—13 Edition March 2022. Available online: https://www.vdma.org/ (accessed on 23 April 2023).
- Miller, D.C.; Bokria, J.G.; Burns, D.M.; Fowler, S.; Gu, X.; Hacke, P.L.; Honeker, C.C.; Kempe, M.D.; Kohl, M.; Phillips, N.H.; et al. Degradation in PV Encapsulant Transmittance: Results of the First PVQAT TG5 Study. Prog. Photovolt. 2019, 30, 763–783. [Google Scholar]
- López-Escalante, M.; Caballero, L.J.; Martín, F.; Gabás, M.; Cuevas, A.; RamosBarrado, J. Polyolefin as PID-resistant encapsulant material in 5PV6 modules. Sol. Energy Mater. Sol. Cells 2016, 144, 691–699. [Google Scholar] [CrossRef]
- Habersberger, B.M.; Hacke, P.; Madenjian, L.S. Evaluation of the PID-s susceptibility of modules encapsulated in materials of varying resistivity. In Proceedings of the IEEE 7th World Conference, Waikoloa, HI, USA, 10–15 June 2018. [Google Scholar]
- Green, M.A. Price/efficiency correlations for 2004 photovoltaic modules. Progress Photovolt. Res. Appl. 2005, 13, 85–87. [Google Scholar] [CrossRef]
- Poulek, V.; Strebkov, D.S.; Persic, I.S.; Libra, M. Towards 50years lifetime of PV panels laminated with silicone gel technology. Solar Energy 2012, 86, 3103–3108. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Hacke, P.; Naumann, V.; Lausch, D.; Harvey, S.P.; Singh, J.P.; Chai, J.; Wang, Y.; Aberle, A.G.; et al. Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ. Sci. 2017, 10, 43–68. [Google Scholar] [CrossRef]
- Ketola, B.; McIntosh, K.; Norris, A.; Tomalia, M. Silicones for photovoltaic encapsulants. In Proceedings of the 23rd EU PVSEC, Valenzia, Spain, 1–4 September 2008. [Google Scholar]
- Ndiaye, A.; Charki, A.; Kobi, A.; Kébé, C.M.; Ndiaye, P.A.; Sambou, V. Degradations of silicon photovoltaic modules: A literature review. Sol. Energy 2013, 96, 140–151. [Google Scholar] [CrossRef]
- Sinha, A.; Sastry, O.S.; Gupta, R. Nondestructive characterization of encapsulant discoloration effects in crystalline-silicon PV modules. Sol. Energy Mater. Sol. Cells 2016, 155, 234–242. [Google Scholar] [CrossRef]
- Walwil, H.M.; Mukhaimer, A.; Al-Sulaiman, F.A.; Said, S.-A. Comparative studies of encapsulation and glass surface modification impacts on PV performance in a desert climate. Sol. Energy 2017, 142, 288–298. [Google Scholar] [CrossRef]
- Hara, K.; Ohwada, H.; Furihata, T.; Masuda, A. Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants. Jpn. J. Appl. Phys. 2018, 57, 27101. [Google Scholar] [CrossRef]
- Meena, R.; Kumar, S.; Gupta, R. Comparative investigation and analysis of delaminated and discolored encapsulant degradation in crystalline silicon photovoltaic modules. Sol. Energy 2020, 203, 114–122. [Google Scholar] [CrossRef]
- Carrot, C.; Bendaoud, A.; Pillon, C. Polyvinyl Butyral. In Handbook of Thermoplastics; CRC Press: Boca Raton, FL, USA, 2015; pp. 89–137. Available online: https://www.routledgehandbooks.com/doi/10.1201/b19190-4 (accessed on 22 December 2022).
- Chapuis, V.; Pélisset, S.; Raeis-Barnéoud, M.; Li, H.-Y.; Ballif, C.; Perret-Aebi, L.-E. Compressive-shear adhesion characterization of polyvinyl-butyral and ethylene-vinyl acetate at different curing times before and after exposure to damp-heat conditions. Prog. Photovolt. Res. Appl. 2014, 22, 405–414. [Google Scholar] [CrossRef]
- McNeill, I.C.; Mohammed, M.H. A cmparison of thermal degradation behaviourof ethylene-ethyl copolymer, low density polyethylene and poly(ethylene acrylate). Polym. Degrad. Stab. 1995, 48, 175–187. [Google Scholar] [CrossRef]
- Nagayama, K.; Kapur, J.; Morris, B.A. Influence of two-phase behavior of ethylene ionomers on diffusion of water. J. Appl. Polym. Sci. 2020, 137, 48929. [Google Scholar] [CrossRef]
- Adothu, B.; Bhatt, P.; Zele, S.; Oderkerk, J.; Costa, F.R.; Mallick, S. Investigation of newly developed thermoplastic polyolefin encapsulant principle properties for the c-Si PV module application. Mater. Chem. Phys. 2020, 243, 122660. [Google Scholar] [CrossRef]
- Oreski, G.; Wallner, G.; Randel, P. Characterization of a silicon based thermoplastic elastomer for PV encapsulation. In Proceedings of the 23rd EU PVSEC, Valenzia, Spain, 1–4 September 2008; pp. 2922–2924. [Google Scholar] [CrossRef]
- Lyu, Y.; Fairbrother, A.; Gong, M.; Kim, J.H.; Hauser, A.; O’Brien, G.; Gu, X. Drivers for the cracking of multilayer polyamide-based backsheets in field photovoltaic modules: In-depth degradation mapping analysis. Prog. Photovolt. Res. Appl. 2020, 28, 704–716. [Google Scholar] [CrossRef]
- Ellerm, R. Global Trends in Olefins TPE’s. 2004. Available online: www.robertellerassoc.com/articles/polyolefins04.pdf (accessed on 23 April 2023).
- Baiamonte, M.; Colletti, C.; Ragonesi, A.; Gerardi, C.; Dintcheva, N.T. Durability and performance of encapsulant films for bifacial heterojunction photovoltaic modules. Polymers 2022, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Zhang, Z.; Ju, C.; Dong, J.; Xia, Z.; Yan, X.; Xu, T.; Xing, G. Research on hot spot risk for high-efficiency solar module. Energy Procedia 2017, 130, 77–86. [Google Scholar] [CrossRef]
- Dupont: Photovoltaic Solution: Solar PV Backsheets: A Key Contributor in Ensuring Lifetime and Power Output. Available online: https://www.dupont.com/products/tedlar-backsheets.html (accessed on 23 April 2023).
- Dow Corning. Datasheets: PV-6010 Cell Encapsulant Kit; Dow Corning. 2013. Available online: https://www.dow.com/en-us (accessed on 23 April 2023).
- Manu Tayal. Targray Unveils BIPV Solar Module Line-up for Commercial, Residential Buildings. 24 May 2021. Available online: https://www.prweb.com/releases/targray_unveils_bipv_solar_module_line_up_for_commercial_residential_buildings/prweb17948541.htm (accessed on 23 April 2023).
- Kempe, M. Overview of scientific issues involved in selection of polymers for pv applications. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011. [Google Scholar] [CrossRef]
- Baiamonte, M.; Morici, E.; Colletti, C.; Dintcheva, N.T. Polar wax as adhesion promoter in polymeric blend films for durable photovoltaic encapsulants. Materials 2022, 15, 6751. [Google Scholar] [CrossRef]
- Uddin, A.; Upama, M.B.; Yi, H.; Duan, L. Encapsulant of organic and perovskite solar cells: A review. Coatings 2019, 9, 65. [Google Scholar] [CrossRef]
- Jin, J.; Chen, S.; Zhang, J. Investigation of UV aging influences on the crystallization of ethylene-vinyl acetate copolymer via successive self-nucleation and annealing treatment. J. Polym. Res. 2010, 17, 827–836. [Google Scholar] [CrossRef]
- Visco, A.; Solaro, C.; Iannazzo, D.; Di Marco, G. Comparison of physical-mechanical features of polyethylene based polymers employed as sealants in solar cells. Int. J. Polym. Anal. Charact. 2019, 24, 97–104. [Google Scholar] [CrossRef]
- Schlothauer, J.; Jungwirth, S.; Köhl, M.; Röder, B. Degradation of the encapsulant polymer in outdoor weathered photovoltaic modules: Spatially resolved inspection of EVA ageing by fluorescence and correlation to electroluminescence. Sol. Energy Mater. Sol. Cells 2012, 102, 75–85. [Google Scholar] [CrossRef]
- Spadaro, G.; Dispenza, C.; Visco, A.M.; Valenza, A. Gamma radiation of EVA-AA/MMA swollen systems to obtain mechanically improved blends. Marcromol. Symp. 2002, 180, 33–41. [Google Scholar] [CrossRef]
- Le Donne, A.; Dilda, M.; Crippa, M.; Acciarri, M.; Binetti, S. Rare earth organic complexes as down-shifters to improve Si-based solar cell efficiency. Opt. Mater. 2011, 33, 1012–1014. [Google Scholar] [CrossRef]
- Hayes, R.A.; Lenges, G.M.; Pesek, S.C.; Roulin, J. Low Modulus Solar Cell Encapsulant Sheets with Enhanced Stability and Adhesion. U.S. Patent 8168885, 5 January 2012. [Google Scholar]
- Shi, L.; Young, T.L.; Kim, J.; Sheng, Y.; Wang, L.; Chen, Y.; Feng, Z.; Keevers, M.J.; Hao, X.; Verlinden, P.J. Accelerated lifetime testing of organic–inorganic perovskite solar cells encapsulated by polyisobutylene. ACS Appl. Mater. Interfaces 2017, 9, 25073–25081. [Google Scholar] [CrossRef] [PubMed]
- Schut, J.H.; Shining Opportunities in Solar Films. Plastics Technology. Available online: http://search.ebscohost.com/login.aspx (accessed on 29 November 2018).
- Granstrom, J.; Swensen, J.; Moon, J.; Rowell, G.; Yuen, J.; Heeger, A. Encapsulation of organic light-emitting devices using a perfluorinated polymer. Appl. Phys. Lett. 2008, 93, 409. [Google Scholar] [CrossRef]
- Fu, Y.; Tsai, F.-Y. Air-stable polymer organic thin-film transistors by solution-processed encapsulation. Org. Electron. 2011, 12, 179–184. [Google Scholar] [CrossRef]
Encapsulant Materials | Main Physical Properties (*) | Advantages (+) | Disadvantages (−) |
---|---|---|---|
Elastomers | |||
EVA | Tg = −30/−40 °C E = 65 MPa RI = 1.48–1.50 | (+) good balance performance/costs (+) easy cell encapsulation (+) random radical crosslinking (+) good compatibility with additives, such as UV adsorbers, stabilizers, and antioxidants | (−) discoloration and yellowing (−) acetic acid formation as degradation product (−) EVA degradation products could react/interact with degradation products of stabilizers and antioxidants |
Silicones | Tg = −40/−50 °C E = 10 MPa RI = 1.35–1.50 | (+) excellent chemical inertia and oxidative and thermal resistance (+) very good transparency in UV range | (−) specific processing conditions and equipment (−) reinforcement additives must be used to improve the mechanical resistance (reduced mechanical resistance) |
Thermoplastics | |||
PVB | Tg = +10/+20°C E = 10 MPa RI = 1.48 | (+) current formulations based on PVB require bland vacuum lamination conditions (+) thermal stability and reduced aging rate(+) good transparency in UV range and low cost | (−) water uptake and hydrolysis (−) the considered formulations require high pressure and temperature during roll-to-roll lamination, combined with autoclave (−) use of different additives |
Ionomers | Tg = +40/+50°C E = 280 MPa RI = 1.49 | (+) very good UV resistance (+) very good mechanical performance | (−) high production (synthesis) costs (−) specific processing conditions and equipment |
Thermoplastic elastomers | |||
TPSE | Tg = −100 °C E = 250 MPa RI = 1.42 | (+) excellent mechanical properties in a large temperature range (+) good electrical insulation (+) physical crosslinking through hydrogen bonds | (−) high synthesis and production costs (−) specific lamination conditions |
TPO | Tg = −40/−60 °C E = 30 MPa RI = 1.48 | (+) good mechanical performance and UV resistance (+) low synthesis and production costs | (−) high water permeability (−) chemically crosslinked TPO shows discolouration and reduced UV resistance |
POE | Tg = −40/−70 °C E = 55 MPa RI = 1.48 | (+) low synthesis costs (+) good elasticity and toughness (+) good UV resistance and no discolouration | (−) reduced adhesion ability (−) chemically crosslinked POE shows discolouration |
Technology for Cells Embedding | Encapsulant Materials | Processing Conditions |
---|---|---|
Vacuum lamination | EVA, PVB, TPSE, TPO, POE ionomers | Tprocessing = 140–170 °C tprocessing = 7–20 min |
Roll-to-roll lamination combined with autoclave | PVB, TPSE | Tprocessing = 140–170 °C tprocessing = 7–20 min |
Casting process | Silicones | Tprocessing = 80 °C tprocessing = 20 min |
Encapsulant Additives | Advantages (+) | Disadvantages (−) |
---|---|---|
Crosslinkers | (+) formation of crosslinked structure for the encapsulant materials | (−) not enough control of radical random crosslinking process |
Antioxidants | (+) protection of encapsulants against thermal degradation during lamination and accidental hot spots occurrence | (−) products of degradation of thermal stabilizers could react with other degradation products |
UV absorbers and stabilizers | (+) protection of encapsulants against UV irradiation, slowing down the photoinduced degradation | (−) products of degradation of UV stabilizers could react with other degradation products |
Adhesion promoters | (+) promotion of adhesion between the cells and other components | (−) could cause premature encapsulant hazing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dintcheva, N.T.; Morici, E.; Colletti, C. Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review. Sustainability 2023, 15, 9453. https://doi.org/10.3390/su15129453
Dintcheva NT, Morici E, Colletti C. Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review. Sustainability. 2023; 15(12):9453. https://doi.org/10.3390/su15129453
Chicago/Turabian StyleDintcheva, Nadka Tz., Elisabetta Morici, and Claudio Colletti. 2023. "Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review" Sustainability 15, no. 12: 9453. https://doi.org/10.3390/su15129453
APA StyleDintcheva, N. T., Morici, E., & Colletti, C. (2023). Encapsulant Materials and Their Adoption in Photovoltaic Modules: A Brief Review. Sustainability, 15(12), 9453. https://doi.org/10.3390/su15129453