Responses of Soil CO2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Methods for Soil and Leaf Sampling and Chemical Analyses
2.4. Tree Growth Measurements
2.5. Soil CO2 Emission Sample Collection and Measurements
2.6. Statistical and Analysis Methods
3. Results
3.1. Effects of Soil Temperature and Moisture on Soil CO2 Emission
3.2. Monthly Dynamic of Soil CO2 Flux
3.3. Effects of N and P Additions on Soil CO2 Emissions
3.4. Structural Equation Modeling of CO2 Emissions under N and P Additions
3.5. Effects on Tree Productivity
4. Discussion
4.1. Effects of N and P Addition on Soil CO2 Flux
4.1.1. Effect of N-Alone Addition
4.1.2. Effect of P-Alone Addition
4.1.3. Effects of N and P Interaction
4.2. Effects of N and P Addition on Tree Growth
4.3. Management Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jassal, R.S.; Black, T.A.; Trofymow, J.A.; Roy, R.; Nesic, Z. Soil CO2 and N2O flux dynamics in a nitrogen-fertilized Pacific Northwest Douglas-fir stand. Geoderma 2010, 157, 118–125. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis, Intergovernmental Panel on Climate Change, Working Group 3, Third Assessment Report; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Jenssen, M.; Butterbach-Bahl, K.; Hofmann, G.; Papen, H. Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands: 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition. For. Ecol. Manag. 2002, 167, 135–147. [Google Scholar] [CrossRef]
- Gruber, N.; Galloway, J.N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.C.; Townsend, A.R. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc. Natl. Acad. Sci. USA 2006, 103, 10316–10321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.; Fang, Y.T.; Li, D.J.; Wang, H. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Glob. Chang. Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Liu, L.; Greaver, T.L. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett. 2010, 13, 819–828. [Google Scholar] [CrossRef]
- Keith, H.; Jacobsen, K.L.; Raison, R.J. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest. Plant Soil 1997, 190, 127–141. [Google Scholar] [CrossRef]
- Steudler, P.; Garcia-Montiel, D.; Piccolo, M.; Neill, C.; Melillo, J.; Feigl, B.; Cerri, C. Trace gas responses of tropical forest and pasture soils to N and P fertilization. Glob. Biogeochem. Cycles 2002, 16, 1023. [Google Scholar] [CrossRef]
- Homeier, J.; Hertel, D.; Camenzind, T.; Cumbicus, N.L.; Maraun, M.; Martinson, G.O.; Poma, L.N.; Rillig, M.C.; Sandmann, D.; Scheu, S.; et al. Tropical Andean forests are highly susceptible to nutrient inputs--rapid effects of experimental N and P addition to an Ecuadorian montane forest. PLoS ONE 2012, 7, e47128. [Google Scholar] [CrossRef]
- Goswami, S.; Fisk, M.C.; Vadeboncoeur, M.A.; Garrison-Johnston, M.; Yanai, R.D.; Fahey, T.J. Phosphorus limitation of aboveground production in northern hardwood forests. Ecology 2018, 99, 438–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappe-George, M.O.; Gärdenäs, A.I.; Kleja, D.B. The impact of four decades of annual nitrogen addition on dissolved organic matter in a boreal forest soil. Biogeosciences 2013, 10, 1365–1377. [Google Scholar] [CrossRef] [Green Version]
- DeForest, J.L.; Snell, R.S. Tree growth response to shifting soil nutrient economy depends on mycorrhizal associations. New Phytol. 2020, 225, 2557–2566. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Clare, S.; Mack, M.C.; Brooks, M. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 2013, 94, 1540–1551. [Google Scholar] [CrossRef] [Green Version]
- Tian, D.; Li, P.; Fang, W.; Xu, J.; Luo, Y.; Yan, Z.; Zhu, B.; Wang, J.; Xu, X.; Fang, J. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences 2017, 14, 3461–3469. [Google Scholar] [CrossRef] [Green Version]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Chen, Y.; Zhang, H.; Zhou, Z. The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain, Shanxi Province. J. Nanjing For. Univ. (Nat. Sci.) 2019, 43, 85–91. [Google Scholar]
- Yuan, L.; Li, W.; Chen, W.; Zhang, J.; Cai, Z. Characteristics of nitrogen deposition in Daiyun Mountain National Nature Reserve. Environ. Sci. 2016, 37, 4142–4146. [Google Scholar]
- Nadelhoffer, K.J.; Emmett, B.A.; Gundersen, P.; Kjønaas, O.J.; Koopmans, C.J.; Schleppi, P.; Tietema, A.; Wright, R.F. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nat. Int. Wkly. J. Sci. 1999, 398, 145–148. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Fu, X.; Dai, X.; Kou, L.; Xu, M.; Chen, S.; Chen, F.; Wang, H. Mechanisms driving ecosystem carbon sequestration in a Chinese fir plantation: Nitrogen versus phosphorus fertilization. Eur. J. For. Res. 2019, 138, 863–873. [Google Scholar] [CrossRef]
- Zhang, M.; Niu, Y.; Wang, W.; Bai, S.; Luo, H.; Tang, L.; Chen, F.; Xu, Z.; Guo, X. Responses of microbial function, biomass and heterotrophic respiration, and organic carbon in fir plantation soil to successive nitrogen and phosphorus fertilization. Appl. Microbiol. Biotechnol. 2021, 105, 8907–8920. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, T.; Wei, L.; Shu, Y. The spatial distribution of forest carbon sinks and sources in China. Chin. Sci. Bull. 2012, 57, 1699–1707. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. The 8th Forest Resources Inventory Results and Analysis in China. For. Econ. 2014, 37, 6–8. [Google Scholar]
- Li, J.; Bai, Y.F.; Peng, Y.; Jiang, C.Q.; Wang, S.L.; Sun, R.; Xu, R. Research on Carbon Sequestration of Chinese Fir Plantation Management in Huitong County, Hunan. For. Sci. Res. 2017, 30, 436–443. [Google Scholar]
- Shi, Z.J.; Bai, Y.F.; Sun, R.; Peng, Y.; Jiang, C.Q.; Wang, S.L. Comparison of carbon storage of two restoration models after cutting Chinese fir plantation. For. Sci. Res. 2017, 30, 214–221. [Google Scholar]
- Selvaraj, S.; Duraisamy, V.; Huang, Z.; Guo, F.; Ma, X.J.G. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil properties. Geoderma 2017, 306, 127–134. [Google Scholar] [CrossRef]
- Farooq, T.H.; Yan, W.; Rashid, M.; Tigabu, M.; Wu, P. Chinese fir (Cunninghamia lanceolata) a green gold of China with continues decline in its productivity over the successive rotations: A review. Appl. Ecol. Environ. Res. 2019, 17, 11055–11067. [Google Scholar] [CrossRef]
- Li, R.; Yu, D.; Zhang, Y.; Han, J.; Zhang, W.; Yang, Q.; Gessler, A.; Li, M.-H.; Xu, M.; Guan, X.; et al. Investment of needle nitrogen to photosynthesis controls the nonlinear productivity response of young Chinese fir trees to nitrogen deposition. Sci. Total Environ. 2022, 840, 156537. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, G.; Wei, Y.; Dong, Y.; Jiao, R. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci. Rep. 2021, 11, 9081. [Google Scholar] [CrossRef] [PubMed]
- Li, B.J.; Chen, G.S.; Lu, X.C.; Jiao, H.B. Effects of Nitrogen and Phosphorus Additions on Soil N2O Emissions and CH4 Uptake in a Phosphorus-Limited Subtropical Chinese Fir Plantation. Forests 2022, 13, 772. [Google Scholar] [CrossRef]
- Zhang, Q.X.; Chen, J.; Wang, X.T.; Wang, N.; Bai, S.B. Short-term response of Chinese fir plantation soil greenhouse gas emissions to Phyllostachys edulis invasion and logging. J. Zhejiang A F Univ. 2021, 38, 703–711. [Google Scholar]
- Sun, Y.; Wang, G.; Hou, J.; Mo, L. Biomass estimation model and its universality of Cunninghamia lanceolata in Lin’an. J. Zhejiang For. Sci. Technol. 2018, 38, 50–56. [Google Scholar]
- Wang, Z.; Ineson, P. Methane oxidation in a temperate coniferous forest soil: Effects of inorganic N. Soil Biol. Biochem. 2003, 35, 427–433. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Wen, X.; Wang, Y. CH4 emission flux from soil of pine plantations in the qianyanzhou red earth hill region of China. Chin. J. Plant Ecol. 2008, 32, 431–439. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Liu, J.; Jiang, P.; Wu, J.; Zhou, G.; Li, Y. Effects of Nitrogen Deposition on Soil Biochemical Properties and Enzymes Activities in Moso Bamboo (Phyllostachys edulis) Forest. J. Soil Water Conserv. 2020, 34, 277–284. [Google Scholar]
- Gao, W.; Yang, H.; Li, S.; Kou, L. Responses of soil CO2, CH4 and N2O fluxes to N, P, and acid additions in mixed forest in subtropical China. J. Resour. Ecol. 2017, 8, 154–164. [Google Scholar]
- Gao, Q.; Hasselquist, N.J.; Palmroth, S.; Zheng, Z.; You, W. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest. Soil Biol. Biochem. 2014, 76, 297–300. [Google Scholar] [CrossRef]
- Liu, C.; Dong, Y.; Sun, Q.; Jiao, R. Soil bacterial community response to short-term manipulation of the nitrogen deposition form and dose in a Chinese fir plantation in Southern China. Water Air Soil Pollut. 2016, 227, 447. [Google Scholar] [CrossRef]
- Zhao, B.; Geng, Y.; Cao, J.; Yang, L.; Zhao, X. Contrasting responses of soil respiration components in response to five-year nitrogen addition in a Pinus tabulaeformis forest in northern China. Forests 2018, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Chen, H.Y.H.; Ruan, H. Global negative effects of nitrogen deposition on soil microbes. Int. Soc. Microb. Ecol. 2018, 12, 1817–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Ai, J.; Song, X.; Li, Q.; Zhang, J. Effects of simulated nitrogen deposition and phosphorus addition on soil respiration in Chinese fir forest. J. Zhejiang A F Univ. 2021, 38, 494–501. [Google Scholar]
- Liu, L.; Gundersen, P.; Zhang, T.; Mo, J. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 2012, 44, 31–38. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, B. A global meta-analysis of soil respiration and its components in response to phosphorus addition. Soil Biol. Biochem. 2019, 135, 38–47. [Google Scholar] [CrossRef]
- Allison, S.D.; Czimczik, C.I.; Treseder, K.K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Glob. Chang. Biol. 2008, 14, 1156–1168. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, Y.; Jiang, P.; Zhou, G.; Shen, Z.; Liu, J.; Wang, Z. Effects of fertilization on soil CO2 flux in Castanea mollissima stand. Chin. J. Appl. Ecol. 2013, 24, 2431–2439. [Google Scholar]
- Shi, L.; Dech, J.P.; Yao, H.; Zhao, P. The effects of nitrogen addition on dissolved carbon in boreal forest soils of northeastern China. Sci. Rep. 2019, 9, 8274. [Google Scholar] [CrossRef] [Green Version]
- Long, M.; Wu, H.; Smith, M.D.; La Pierre, K.J.; Lü, X.; Zhang, H.; Han, X.; Yu, Q. Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant Soil 2016, 408, 475–484. [Google Scholar] [CrossRef]
- Deng, M.; Liu, L.; Sun, Z.; Piao, S.; Ma, Y.; Chen, Y.; Wang, J.; Qiao, C.; Wang, X.; Li, P. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytol. 2016, 212, 1019–1029. [Google Scholar] [CrossRef] [Green Version]
- Sager, E.P.S.; Hutchinson, T.C. The effects of UV-B, nitrogen fertilization, and springtime warming on sugar maple seedlings and the soil chemistry of two central Ontario forests. Can. J. For. Res. 2005, 35, 2432–2446. [Google Scholar] [CrossRef]
- Nakaji, T.; Fukami, M.; Dokiya, Y.; Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees 2001, 15, 453–461. [Google Scholar] [CrossRef]
- Fownes, J.H.; Harrington, R.A. Seedling response to gaps: Separating effects of light and nitrogen. For. Ecol. Manag. 2004, 203, 297–310. [Google Scholar] [CrossRef]
- Nasto, M.K.; Winter, K.; Turner, B.L.; Cleveland, C.C. Nutrient acquisition strategies augment growth in tropical N2-fixing trees in nutrient-poor soil and under elevated CO2. Ecology 2019, 100, e02646. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Hui, D.; Wallace, L.; Luo, Y. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycles 2005, 19, GB2014. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zhu, B. A review on the effects of nitrogen and phosphorus addition on tree growth and productivity in forest ecosystems. Chin. J. Plant Ecol. 2020, 44, 583–597. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Porder, S.; Chadwick, H. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen—Phosphorus interactions. Ecol. Appl. 2010, 20, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Báez, S.; Homeier, J. Functional traits determine tree growth and ecosystem productivity of a tropical montane forest: Insights from a long-term nutrient manipulation experiment. Glob. Chang. Biol. 2018, 24, 399–409. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, Z.; Luo, Y.; Zhao, P.; Mo, J. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Glob. Chang. Biol. 2019, 25, 3018–3030. [Google Scholar] [CrossRef]
- Li, Y.; Tian, D.; Yang, H.; Niu, S. Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Funct. Ecol. 2018, 32, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wang, Y.P.; Yang, Y.; Yu, M.; Yan, J. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type. Plant Soil 2019, 440, 523–537. [Google Scholar] [CrossRef]
- Wright, S.J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 2019, 89, e01382. [Google Scholar] [CrossRef]
- Čapek, P.; Manzoni, S.; Kaštovská, E.; Wild, B.; Diáková, K.; Bárta, J.; Schnecker, J.; Biasi, C.; Martikainen, P.J.; Alves, R.J.E.; et al. A plant-microbe interaction framework explaining nutrient effects on primary production. Nat. Ecol. Evol. 2018, 2, 1588–1596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | CK | LP | HP | HN | HNLP | HNHP |
---|---|---|---|---|---|---|
NH4+ (mg/kg) | 12.62 (0.76) b | 11.61 (0.86) b | 12.80 (1.17) b | 14.22 (1.97) a | 14.87 (2.08) a | 12.88 (1.36) b |
NO3− (mg/kg) | 3.71 (0.076) b | 4.78 (0.42) ab | 3.86 (0.18) b | 4.46 (0.36) b | 4.80 (0.33) ab | 5.89 (0.30) a |
MBN (mg/kg) | 54.21 (9.5) a | 22.23 (1.4) b | 24.08 (1.2) b | 54.53 (9.3) a | 32.39 (4.4) b | 28.55 (4.2) b |
MBC (mg/kg) | 137.55 (9.1) b | 173.94 (18.9) a | 206.76 (15.6) a | 158.65 (11.4) ab | 159.07 (7.7) ab | 198.59 (12.7) a |
WSOC (mg/kg) | 46.93 (2.9) c | 80.20 (3.5) ab | 96.48 (5.8) a | 62.69 (5.2) c | 63.37 (2.0) bc | 91.50 (3.8) a |
Leaf N (g/kg) | 7.55 (0.11) a | 8.00 (0.27) a | 7.05 (0.30) a | 7.96 (0.81) a | 8.75 (0.99) a | 9.22 (0.86) a |
Soil TN (g/kg) | 0.86 (0.036) a | 0.90 (0.04) a | 0.91 (0.043) a | 1.04 (0.095) a | 1.00 (0.097) a | 1.00 (0.082) a |
SOC (%) | 1.55 (0.031) ab | 1.67 (0.10) ab | 1.86 (0.12) a | 1.47 (0.06) b | 1.81 (0.11) ab | 1.57 (0.048) ab |
Soil TP (g/kg) | 0.13 (0.014) b | 0.14 (0.01) b | 0.23 (0.024) a | 0.13 (0.011) b | 0.13 (0.008) b | 0.15 (0.025) ab |
Treatment | CO2 (mg/m2/h) | Treatment | 4 Months | All Months | ||
---|---|---|---|---|---|---|
4 Months | All Months | |||||
CK | 346 (33.0) b | 318 (23.9) a | N application | F | 1.82 | 0.51 |
HN | 426 (38.1) ab | 339 (24.8) a | p | 0.18 | 0.48 | |
HNLP | 514 (38.2) a | 382 (27.4) a | P application | F | 11.87 | 4.03 |
LP | 555 (39.1) a | 402 (29.3) a | p | <0.05 | <0.05 | |
HNHP | 548 (21.4) a | 413 (25.3) a | N*P Interaction | F | 2.07 | 0.79 |
HP | 478 (23.9) ab | 369 (23.2) a | p | 0.13 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, X.; Li, B.; Chen, G. Responses of Soil CO2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation. Sustainability 2023, 15, 9466. https://doi.org/10.3390/su15129466
Lu X, Li B, Chen G. Responses of Soil CO2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation. Sustainability. 2023; 15(12):9466. https://doi.org/10.3390/su15129466
Chicago/Turabian StyleLu, Xiaochen, Binjie Li, and Guangsheng Chen. 2023. "Responses of Soil CO2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation" Sustainability 15, no. 12: 9466. https://doi.org/10.3390/su15129466
APA StyleLu, X., Li, B., & Chen, G. (2023). Responses of Soil CO2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation. Sustainability, 15(12), 9466. https://doi.org/10.3390/su15129466