Advanced Treatment of the Municipal Wastewater by Lab-Scale Hybrid Ultrafiltration
Abstract
:1. Introduction
2. Materials and Methods
- -
- Hybrid adsorption/ultrafiltration (PAC/UF),
- -
- Hybrid adsorption/coagulation/ultrafiltration using ferric chloride (PAC/FeCl3/UF) and natural coagulant isolated from bean seeds (PAC/COA/UF).
3. Results and Discussion
3.1. Removal of Organic Micropollutants
3.2. Removal of Inorganic Micropollutants
3.3. Removal of Effluent Organic Matter and Nutrients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marjanović, T.; Bogunović, M.; Prodanović, J.; Banduka, N.; Maletić, S.; Zrnić Tenodi, K.; Ivančev-Tumbas, I. Lab-scale testing of green coagulant activity for metals and As removal from municipal wastewater treatment plant effluent. Chem. Pap. 2022, 76, 6851–6860. [Google Scholar] [CrossRef]
- Carletti, G.; Fatone, F.; Bolzonella, D.; Cecchi, F. Occurrence and fate of heavy metals in large wastewater treatment plants treating municipal and industrial wastewaters. Water Sci. Technol. 2008, 9, 1329–1336. [Google Scholar] [CrossRef]
- Directive 2013/39/EU of the European Parliament and of the Council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17.
- Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. Off. J. Eur. Union 2000, L327, 1–72.
- Directive 2008/105/EC of the European Parliament and of the Council on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 740 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council. Off. J. Eur. Union 2008, L78, 40–42.
- Liška, I.; Wagner Sengl, M.; Deutsch, K.; Slobodník, J. Joint Danube Survey 3—A Comprehensive Analysis of Danube Water Quality. In Final Scientific Report; International Commission for the Protection of the Danube River: Vienna, Austria, 2015; ISBN 978-3-200-03795-3. [Google Scholar]
- Regulation (EU) 2020/741 of The European Parliament and of The Council on minimum requirements for water reuse. Off. J. Eur. Union 2020, L177, 32–55.
- Salgot, M.; Huertas, E.; Hollender, J.; Dott, W.; Weber, S.; Schaefer, A.; Khan, S.; Bis, B.; Aharoni, A.; Cikurel, H.; et al. Guideline for Quality Standards for Water Reuse in Europe; Graficas Rey S.L.Publisher: Barcelona, Spain, 2007; ISBN 978-84-611-4827-1. [Google Scholar]
- Bogunović, M.; Ivančev-Tumbas, I.; Česen, M.; Đaković Sekulić, T.; Prodanović, J.; Tubić, A.; Heath, D.; Heath, E. Removal of selected emerging micropollutants from wastewater treatment plant effluent by advanced non-oxidative treatment A lab-scale case study from Serbia. Sci. Total Environ. 2021, 765, 142764. [Google Scholar] [CrossRef]
- Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; et al. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon. Sci. Total Environ. 2013, 461–462, 480–498. [Google Scholar] [CrossRef]
- Löwenberg, J.; Zenker, A.; Baggenstos, M.; Koch, G.; Kazner, C.; Wintgens, T. Comparison of two PAC/UF processes for the removal of micropollutants from wastewater treatment plant effluent: Process performance and removal efficiency. Water Res. 2014, 56, 26–36. [Google Scholar] [CrossRef]
- Schwaller, C.; Hoffmann, G.; Hiller, C.X.; Helmreich, B.; Drewes, J.E. Inline dosing of powdered activated carbon and coagulant prior to ultrafiltration at pilot-scale—Effects on trace organic chemical removal and operational stability. Chem. Eng. J. 2021, 414, 128801. [Google Scholar] [CrossRef]
- Ivančev-Tumbas, I.; Hoffmann, G.; Hobby, R.; Kerkez, Đ.; Tubić, A.; Babić-Nanić, S.; Panglisch, S. Removal of Diclofenac from Water by In/Out PAC/UF Hybrid Process. Environ. Technol. 2017, 39, 2315–2320. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Rathinam, K.; Martschin, M.; Ivančev-Tumbas, I.; Panglisch, S. Influence of Carbon Agglomerate Formation on Micropollutants Removal in Combined PAC-Membran Filtration Processes for Advanced Wastewater Treatment. Water 2021, 13, 3578. [Google Scholar] [CrossRef]
- Sheng, C.; Nnanna, A.G.A.; Liu, Y.; Vargo, J.D. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system. Sci. Total Environ. 2016, 550, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Ulbricht, M.; Hu, C.; Fan, H.; Wang, X.; Pan, Y.; Hosseini, S.; Panglisch, S.; Bruggen, B.; Wang, Z. Membrane Life Cycle Management: An Exciting Opportunity for Advancing the Sustainability Features of Membrane Separations, Environ. Sci. Technol. 2023, 57, 3013–3020. [Google Scholar] [CrossRef]
- Pistocchi, A.; Andersen, H.R.; Bertanza, G.; Brander, A.; Choubert, J.M.; Cimbritz, M.; Drewes, J.E.; Koehler, C.; Krampe, J.; Launay, M.; et al. Treatment of micropollutants in wastewater: Balancing effectiveness, costs and implications. Sci. Total Environ. 2022, 850, 157593. [Google Scholar] [CrossRef]
- Panglisch, S.; Jagemann, P.; Hoffmann, G.; Antakyali, D. Abschlussbericht zum Untersuchungs- und Entwicklungsvorhaben im Bereich Abwasser zum Themenschwerpunkt, Optimierter Einsatz von Pulveraktivkohle und Ultrafiltration als 4. Reinigungsstufe; AZ.: 17-04.02.01-9a/2016; Ministerium für Umwelt, Landwirtschaft, Natur- und Verbraucherschutz des Landes Nordrhein-Westfalen: Düsseldorf, Germany, 2016.
- Saravia, F.; Frimmel, F.H. Role of NOM in the performance of adsorption-membrane hybrid systems applied for the removal of pharmaceuticals. Desalination 2008, 224, 168–171. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, G.; Đolić, B.; Gernjak, W.; Heath, E.; Ivančev-Tumbas, I.; Karaolia, P.; Ribeiro, L.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Matsui, Y.; Hasegawa, H.; Ohno, K.; Matsushita, T.; Mima, S.; Kawase, Y.; Aizawa, T. Effects of super-powdered activated carbon pretreatment on coagulation and trans-membrane pressure buildup during microfiltration. Water Res. 2009, 43, 5160–5170. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; ISBN 978-087553-013-0. [Google Scholar]
- US EPA. Nitrogen, Kjeldahl, Total (Colorimetric, Titrimetric, Potentiometric); Method 351.3; US EPA: Washington, DC, USA, 1978.
- SRPS EN ISO 6878; 2008 Water quality—Determination of Phosphorus—Spectrometric Method with Ammonium Molybdate. Institute for Standardization: Belgrade, Serbia, 2008.
- US EPA. Flame Atomic Absorption Spectrophotometry; Method 7000b; US EPA: Washington, DC, USA, 2007.
- US EPA. Graphite Furnace Atomic Absorption Spectrophotometry; Method 7010; US EPA: Washington, DC, USA, 2007.
- Garcia-Ivars, J.; Durá-María, J.; Moscardó-Carreño, C.; Carbonell-Alcaina, C.; Alcaina-Miranda, M.I.; Iborra-Clar, M.I. Rejection of trace pharmaceutically active compounds present in municipal wastewaters using ceramic fine ultrafiltration membranes: Effect of feed solution pH and fouling phenomena. Sep. Purif. Technol. 2017, 175, 58–71. [Google Scholar] [CrossRef]
- Semiao, A.J.C.; Schaefer, A.I. Xenobiotics Removal by Membrane Technology: An Overview. In Xenobiotics in the Urban Water Cycle, 1st ed.; Fatta-Kassinos, D., Bester, K., Kummerer, K., Eds.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Chon, K.; Cho, J.; Shon, H.K. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: Removal of nutrients and micropollutants, and characterization of membrane foulants. Bioresour. Technol. 2013, 141, 109–116. [Google Scholar] [CrossRef]
- Acero, J.L.; Benitez, F.T.; Real, F.J.; Teva, F. Coupling of adsorption, coagulation, and ultrafiltration processes for the removal of emerging contaminants in a secondary effluent. Chem. Eng. J. 2012, 210, 1–8. [Google Scholar] [CrossRef]
- Kovalova, L.; Knappe, D.R.U.; Lehnberg, K. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. 2013, 20, 3607–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Ma, H.; Wang, Q.; Zhu, C.; He, A. Complexation behaviour and removal of organic-Cr(III) complexes from the environment: A review, Ecotoxicol. Environ. Saf. 2022, 240, 113676. [Google Scholar] [CrossRef] [PubMed]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Deshayes, S.; Zedek, S.; Cren-Oliv, C.; Cartiser, N.; Eudes, N.; Bressy, A.; Caupos, E.; et al. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res. 2015, 72, 315. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Yoom, H.; Son, H.; Seo, C.; Kim, K.; Lee, Y.; Kim, Y.M. Removal efficiency of organic micropollutants in successive wastewater treatment steps in a full-scale wastewater treatment plant: Bench-scale application of tertiary treatment processes to improve removal of organic micropollutants persisting after secondary treatment. Chemosphere 2022, 288, 132629. [Google Scholar] [CrossRef]
- Petrović, M.; Škrbić, B.; Živančev, J.; Ferrando-Climent, L.; Barcelo, D. Determination of 81 pharmaceutical drugs by high-performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Sci. Total Environ. 2014, 468–469, 415–428. [Google Scholar] [CrossRef]
- Česen, M.; Ahel, M.; Terzić, S.; Heath, D.; Heath, E. The occurrence of contaminants of emerging concern in Slovenian and Croatian wastewaters and receiving Sava river. Sci. Total Environ. 2019, 650, 2446–2453. [Google Scholar] [CrossRef]
- Rueda-Márquez, J.; Moreno-Andrés, J.; Rey, A.; Corada-Fernánde, C.; Mikola, A.; Manzano, A.; Levchuk, I. Post-treatment of real municipal wastewater effluents by means of granular activated carbon (GAC) based catalytic processes: A focus on abatement of pharmaceutically active compounds. Water Res. 2021, 192, 116833. [Google Scholar] [CrossRef]
- Kapelewska, J.; Kotowska, U.; Karpińska, J.; Kowalczuk, D.; Arciszewska, A.; Świrydo, A. Occurrence, removal, mass loading and environmental risk assessment of emerging organic contaminants in leachates, groundwaters and wastewaters. Microchem. J. 2018, 137, 292. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, S. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res. 2018, 129, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Szabová, P.; Hencelová, K.; Sameliaková, Z.; Marcová, T.; Staňová, A.V.; Grabicová, K.; Bodík, I. Ozonation: Effective way for removal of pharmaceuticals from wastewater. Monatshefte für Chemie–Chem. Mon. 2020, 151, 685. [Google Scholar] [CrossRef]
- Karelid, V.; Larsson, G.; Bjorlenius, B. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants. J. Environ. Manag. 2017, 193, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef] [PubMed]
- Cuderman, P.; Heath, E. Determination of UV filters and antimicrobial agents in environmental water samples. Anal. Bioanal. Chem. 2006, 387, 1343–1350. [Google Scholar] [CrossRef]
Parameter | Unit | Result |
---|---|---|
pH | - | 8.20 ** |
COD a | mg O2/L | 38.3 ** |
Total nitrogen | mg N/L | 14.3 * |
Total phosphorus | mg P/L | 1.91 ** |
Arsenic | µg/L | 13.0 ** |
Chromium | µg/L | 30.0 ** |
Copper | µg/L | 3.30 ** |
Zinc | µg/L | 24.0 ** |
Ibuprofen | µg/L | 0.02 ** |
Caffeine | µg/L | 0.06 ** |
Diclofenac | µg/L | 1.02 ** |
Organic Micropollutant | IB | CF | DCF | ||||||
---|---|---|---|---|---|---|---|---|---|
Cycle | I | II | III | I | II | III | I | II | III |
% | % | % | % | % | % | % | % | % | |
UF | −18 | 59 | −21 | 34 | - * | 68 | 17 | ** | - * |
PAC/UF 5 mg/L | 52 | - * | 34 | 58 | 65 | 87 1 | 39 | - * | 54 |
PAC/FeCl3/UF 5 mg/L PAC/4 mg/L Fe (III) | 55 | -* | 45 | 87 | 42 | 87 1 | 49 | - * | 83 1 |
PAC/nCOA/UF 2 5 mg/L PAC/33µL/L nCOA | - * | −13 | - * | 47 | 37 | - * | - * | 50 | - * |
Process | The Dominant Form of Inorganic Micropollutant at pH 8 | Analytical Method Bias % | Removal % | Standard Deviation % | ||
---|---|---|---|---|---|---|
I Cycle | II Cycle | III Cycle | ||||
UF | Zn2+ | 9–20 | 42 | 32 | 29 | 7 |
Cr(OH)3 | 20–24 | 47 | 28 | 49 | 12 | |
CuOH+ | 20–22 | 15 | 15 | 18 | 2 | |
HAsO42− | 9–10 | −3.0 | −4.0 | 0.0 | 2 | |
PAC/UF 5 mg/L PAC | Zn2+ | 9–20 | 50 | 44 | 44 | 3 |
Cr(OH)3 | 20–24 | 75 | 33 | 63 | 22 | |
CuOH+ | 20–22 | 19 | 13 | 19 | 3 | |
HAsO42− | 9–10 | 6.0 | −1.0 | −4.0 | 5 | |
PAC/FeCl3/UF 5 mg/L PAC/4 mg/L Fe(III) | Zn2+ | 9–20 | 78 | 84 | 87 | 5 |
Cr(OH)3 | 20–24 | 41 | 87 | 66 | 23 | |
CuOH+ | 20–22 | 40 | 42 | 37 | 3 | |
HAsO42− | 9–10 | 19 | 18 | 13 | 3 | |
PAC/nCOA/UF 5 mg/L PAC/33 µL/L nCOA | Zn2+ | 9–20 | 65 | 71 | 59 | 6 |
Cr(OH)3 | 20–24 | 71 | 58 | 76 | 9 | |
CuOH+ | 20–22 | 28 | 31 | 50 | 12 | |
HAsO42− | 9–10 | 0.0 | −4.0 | −22 * | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marjanović, T.; Bogunović, M.; Tenodi, S.; Vasić, V.; Kerkez, D.; Prodanović, J.; Ivančev-Tumbas, I. Advanced Treatment of the Municipal Wastewater by Lab-Scale Hybrid Ultrafiltration. Sustainability 2023, 15, 9519. https://doi.org/10.3390/su15129519
Marjanović T, Bogunović M, Tenodi S, Vasić V, Kerkez D, Prodanović J, Ivančev-Tumbas I. Advanced Treatment of the Municipal Wastewater by Lab-Scale Hybrid Ultrafiltration. Sustainability. 2023; 15(12):9519. https://doi.org/10.3390/su15129519
Chicago/Turabian StyleMarjanović, Tijana, Minja Bogunović, Slaven Tenodi, Vesna Vasić, Djurdja Kerkez, Jelena Prodanović, and Ivana Ivančev-Tumbas. 2023. "Advanced Treatment of the Municipal Wastewater by Lab-Scale Hybrid Ultrafiltration" Sustainability 15, no. 12: 9519. https://doi.org/10.3390/su15129519
APA StyleMarjanović, T., Bogunović, M., Tenodi, S., Vasić, V., Kerkez, D., Prodanović, J., & Ivančev-Tumbas, I. (2023). Advanced Treatment of the Municipal Wastewater by Lab-Scale Hybrid Ultrafiltration. Sustainability, 15(12), 9519. https://doi.org/10.3390/su15129519