Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model
Abstract
:1. Introduction
- According to the principle of time frequency analysis, the CEEMDAN method [39,40,41] is used to decompose the landslide displacement into multiple subsequences. In this method, the original data are decomposed into different frequency data series with local characteristics, and the data characteristics of each frequency in landslide displacement are highlighted.
- This paper analyzes the landslide situation in the study area and proposed two new concepts, using the landslide displacement of the previous month to represent the current state of the landslide and quantifying the difference between two consecutive months of displacement data as the trend of landslide change, adding relevant data of landslide prediction and creating conditions for improving the performance of landslide prediction.
- To consider the factors affecting landslide displacement more comprehensively, this paper combines two correlation degree calculation methods, GRA [42,43,44] and MIC [45,46], to obtain the GRA–MIC method. This method comprehensively selects the influencing factors from two perspectives, which is helpful to further improve the accuracy of the landslide displacement prediction model.
- Combined with the ability of the CNN model [47] to extract local features of data and the BiLSTM model [48,49] to process time series data, the CNN–BiLSTM model was constructed to predict landslide displacement. This paper combines the two models to effectively improve the prediction performance [50].
2. Materials and Methods
2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
- (1)
- Similar to EEMD, the signal + is decomposed n times by EMD in the CEEMDAN method, and the first mode functions are obtained by mean calculation:
- (2)
- Calculate the first margin signal as
- (3)
- The EMD algorithm is used to decompose the signal + n times and then obtain the second mode functions as
- (4)
- For , calculate the kth residual signal as
- (5)
- The calculation process of step (3) is repeated, and the k + 1 mode functions are obtained as
- (6)
- Steps (4) and (5) are repeated until the residual signal meets the termination condition of the decomposition, and K mode functions are finally obtained. The final residual signal of the decomposition is
2.2. Grey Relation Analysis and Maximal Information Coefficient
2.3. CNN–BiLSTM Model
2.4. Performance Indicators
3. Results
3.1. Real Case
3.2. Analysis of Factors Influencing Landslide Displacement
3.3. Decomposition of Original Data
3.4. GRA–MIC Algorithm Calculation of the Correlation
3.5. Predicted Landslide Displacement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohanty, U.C.; Prasad, K.B.; Mohapatra, M.; Sarat, C.S. Guest editorial to the special issue of natural hazards: Climate change and coastal vulnerability. Nat. Hazards 2020, 102, 553–555. [Google Scholar] [CrossRef]
- Mahdi, P.; Amiya, G.; Hamid, R.P.; Fatemeh, R.; Saro, L. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci. Total Environ. 2020, 741, 139937. [Google Scholar]
- Suk, W.K.; Kun, W.C.; Minseok, K.; Filippo, C.; Byoungkoo, C.; Jung, I.S. Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea. Landslide 2021, 18, 569–582. [Google Scholar]
- Minu, T.A.; Neelima, S.; Maria, A.B.; Biswajeet, P.; Binh, T.P.; Samuele, S. Using Field-Based Monitoring to Enhance the Performance of Rainfall Thresholds for Landslide Warning. Water 2020, 12, 3453. [Google Scholar]
- Rahat, K.; Suhail, Y.; Abdul, H.; Uddin, M.I. Exploring a Design of Landslide Monitoring System. Complexity 2021, 2021, 5552417. [Google Scholar]
- Leijin, L.; Feng, H.; Hongjiang, L. The use of remote sensing satellite using deep learning in emergency monitoring of high-level landslides disaster in Jinsha River. J. Supercomput. 2021, 77, 8728–8744. [Google Scholar]
- Rodriguez-Caballero, E.; Rodriguez-Lozano, B.; Segura-Tejada, R.; Blanco-Sacristán, J.; Cantón, Y. Landslides on dry badlands: UAV images to identify the drivers controlling their unexpected occurrence on vegetated hillslopes. J. Arid. Environ. 2021, 187, 104434. [Google Scholar] [CrossRef]
- Moritz, G.; John, S.; Kurosch, T. Internet of Things Geosensor Network for Cost-Effective Landslide Early Warning Systems. Sensors 2021, 21, 2609. [Google Scholar]
- Pietro, M.; Mariano, D.N.; Luigi, G.; Massimo, R.; Chester, S.; Mariagiulia, A.C.; Diego, D.M. Landslide Awareness System (LAwS) to Increase the Resilience and Safety of Transport Infrastructure: The Case Study of Pan-American Highway (Cuenca–Ecuador). Remote Sens. 2021, 13, 1564. [Google Scholar]
- Ascanio, R.; Samuele, S.; Vanessa, C.; Antonio, M.; Angela, G.; Nicola, C. Definition of 3D rainfall thresholds to increase operative landslide early warning system performances. Landslide 2020, 18, 1045–1057. [Google Scholar]
- National Bureau of Statistics of the People’s Republic of China. In China Statistical Yearbook; China Statistics Press: Beijing, China, 2021.
- Won, Y.L.; Seon, K.P.; Hyo, H.S. The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea. Landslide 2021, 18, 1721–1739. [Google Scholar]
- Wang, C.; Zhao, Y.; Bai, L.; Guo, W.; Meng, Q. Landslide Displacement Prediction Method Based on GA-Elman Model. Appl. Sci. 2021, 11, 11030. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Huang, B.; Ren, X.; Liu, C.; Hu, B.; Chen, Z. Landslide displacement prediction based on multi-source data fusion and sensitivity states. Eng. Geol. 2020, 271, 105608. [Google Scholar] [CrossRef]
- Li, S.H.; Wu, L.; Chen, J.J.; Huang, R. Multiple data-driven approach for predicting landslide deformation. Landslide 2020, 17, 709–718. [Google Scholar] [CrossRef]
- Wu, L.Z.; Li, S.H.; Huang, R.Q.; Xu, Q. A new grey prediction model and its application to predicting landslide displacement. Appl. Soft Comput. 2020, 95, 106543. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, H.; Xu, Q.; Lu, Z.; Liao, L.; Li, H.; Hao, L. A Graph Convolutional Incorporating GRU Network for Landslide Displacement Forecasting Based on Spatiotemporal Analysis of GNSS Observations. Remote Sens. 2022, 14, 1016. [Google Scholar] [CrossRef]
- Lian, C.; Zhu, L.; Zeng, Z.; Su, Y.; Yao, W.; Tang, H. Constructing prediction intervals for landslide displacement using bootstrapping random vector functional link networks selective ensemble with neural networks switched. Neurocomputing 2018, 291, 1–10. [Google Scholar] [CrossRef]
- Long, J.; Li, C.; Liu, Y.; Feng, P.; Zuo, Q. A multi-feature fusion transfer learning method for displacement prediction of rainfall reservoir-induced landslide with step-like deformation characteristics. Eng. Geol. 2022, 297, 106494. [Google Scholar] [CrossRef]
- Xie, P.; Zhou, A.; Chai, B. The Application of Long Short-Term Memory(LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides. IEEE Access. 2019, 7, 54305–54311. [Google Scholar] [CrossRef]
- Han, H.; Shi, B.; Zhang, L. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change. Eng. Geol. 2021, 280, 105876. [Google Scholar] [CrossRef]
- Li, S.; Wu, N. A new grey prediction model and its application in landslide displacement prediction. Chaos Solitons Fractals 2021, 147, 110969. [Google Scholar] [CrossRef]
- Deng, L.; Smith, A.; Dixon, N.; Yuan, H. Machine learning prediction of landslide deformation behaviour using acoustic emission and rainfall measurements. Eng. Geol. 2021, 293, 106315. [Google Scholar] [CrossRef]
- Hu, X.; Wu, S.; Zhang, G.; Zheng, W.; Liu, C.; He, C.; Liu, Z.; Guo, X.; Zhang, H. Landslide displacement prediction using kinematics-based random forests method: A case study in Jinping Reservoir Area, China. Eng. Geol. 2021, 283, 105975. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, K.; Wang, W.; Meng, Y.; Yang, L.; Huan, H. Hydrodynamic landslide displacement prediction using combined extreme learning machine and random search support vector regression model. Eur. J. Environ. Civ. Eng. 2020, 2020, 2345–2357. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; He, Z.; Tan, J.; Li, C. A novel displacement prediction method using gated recurrent unit model with time series analysis in the Erdaohe landslide. Nat. Hazards 2021, 105, 783–813. [Google Scholar] [CrossRef]
- Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides 2019, 16, 677–694. [Google Scholar] [CrossRef]
- Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model. Landslide 2017, 15, 475–488. [Google Scholar] [CrossRef]
- Liu, Z.; Guo, D.; Lacasse, S.; Li, J.; Yang, B.; Choi, J. Algorithms for intelligent prediction of landslide displacements. J. Zhejiang Univ. Sci. A 2020, 21, 412–429. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Huang, J.; Wen, T.; Ma, J.; Zhang, J. A comparative study of different machine learning methods for reservoir landslide displacement prediction. Eng. Geol. 2022, 298, 106544. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction Model Using Time Series Analysis Method and Modified LSTM Model. Electronics 2022, 11, 1519. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction based on Time Series Analysis and Double-BiLSTM Model. Int. J. Environ. Res. Public Health 2022, 19, 2077. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, L.; Gui, L.; Du, J.; Do, H.M. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model. Landslides 2019, 17, 567–583. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, G.; Dong, J. Prediction of landslide displacement with step-like curve using variational mode decomposition and periodic neural network. Bull. Eng. Geol. Environ. 2021, 80, 3783–3799. [Google Scholar] [CrossRef]
- Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical modedecomposition and long short-term memory neural network in Three Gorgesarea, China. Comput. Geosci. 2018, 111, 87–96. [Google Scholar] [CrossRef]
- Cai, Z.; Xu, W.; Meng, Y.; Chong, S.; Wang, R. Prediction of landslide displacement based on GA-LSSVM with multiple factors. Bull. Eng. Geol. Environ. 2015, 75, 637–646. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Ying, C.; Emanuele, I.; Bayes, A.; Filippo, C. Displacement prediction of step-likelandslide by applying a novel kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Yin, K.; Zhang, G.; Gui, L.; Yang, B.; Liu, L. Landslide displacement prediction using discrete wavelet transform and extreme learning machine based on chaos theory. Environ. Earth Sci. 2016, 75, 1376. [Google Scholar] [CrossRef]
- Yi, W.; Chuannuo, X.; Yu, W.; Cheng, X. A comprehensive diagnosis method of rolling bearing fault based on CEEMDAN-DFA-improved wavelet threshold function and QPSO-MPE-SVM. Entropy 2021, 23, 1142. [Google Scholar]
- Peterson, O.J.; Siaw, F.; Anokye, M.A.; Samuei, A.; Emmaniel, N.G.; Prof, D.A.; George, T. COVID-19 as Information Transmitter to Global Equity Markets: Evidence from CEEMDAN-Based Transfer Entropy Approach. Math. Probl. Eng. 2021, 2021, 8258778. [Google Scholar]
- Cem, E.; Mustafa, T. Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN). Energy 2022, 249, 123785. [Google Scholar]
- Vishnu, P.M.; Anil, K.B.; Srinivasa, R.S. Grey Relational Analysis-Based Objective Function Optimization for Predictive Torque Control of Induction Machine. IEEE Trans. Ind. Appl. 2020, 57, 835–844. [Google Scholar]
- Arash, K.; Ali, P.; Ali, S.; Tao, M. Optimization of a novel photovoltaic thermal module in series with a solar collector using Taguchi based grey relational analysis. Sol. Energy 2021, 215, 492–507. [Google Scholar]
- Senthilkumar, S.; Karthick, A.; Madavan, R.; Moshi AA, M.; Bharathi, S.S.; Saroja, S.; Dhanalakshmi, C.S. Optimization of Transformer Oil blended with Natural Ester Oils using Taguchi-based Grey Relational Analysis. Fuel 2021, 288, 119629. [Google Scholar] [CrossRef]
- Reshef, D.N.; Reshef, Y.; Grossman, S.R.; Lander, E.S.; Finucane, H.K.; McVean, G.; Turnbaugh, P.J.; Mitzenmacher, M.; Sabeti, P.C. Detecting novel associations in large data sets. Science 2011, 334, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Yalan, J.; Chaoshun, L.; Zhixin, Y.; Yujie, Z.; Xianbo, W. Remaining Useful Life Estimation Combining Two-Step Maximal Information Coefficient and Temporal Convolutional Network With Attention Mechanism. IEEE Access. 2021, 9, 16323–16336. [Google Scholar]
- Young, R.C.; Rhee, M.K. Face Video Retrieval Based on the Deep CNN With RBF Loss. IEEE Trans. Image Process. 2021, 30, 1015–1029. [Google Scholar]
- Zian, L.; Ji, Y.; Liang, W.; Sun, X. Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model. Mathematics 2022, 10, 2203. [Google Scholar]
- Yujie, F.; Jian, L.; Yang, L.; Suge, W.; Deyu, L.; Xiaoli, L. Multiple Perspective Attention Based on Double BiLSTM for Aspect and Sentiment Pair Extract. Neurocomputing 2021, 438, 302–311. [Google Scholar]
- Zhenzhu, M.; Jinxin, Z.; Yating, H.; Christophe, A. Temporal Prediction of Landslide-Generated Waves Using a Theoretical–Statistical Combined Method. J. Mar. Sci. Eng. 2023, 11, 1151. [Google Scholar]
- Du, H.; Song, D.; Chen, Z.; Shu, H.; Guo, Z. Prediction model oriented for landslide displacement with step-like curve by applying ensemble empirical mode decomposition and the PSO-ELM method. J. Clean. Prod. 2020, 270, 122248. [Google Scholar] [CrossRef]
- Zhen, G.; Bin, Y.; Mengyan, H.; Wensi, W.; Yu, J.; Fang, Z. A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient. Aerosp. Sci. Technol. 2021, 116, 106822. [Google Scholar]
- Benyang, Z.; Wei, L.; Li, X.; Shiyu, L.; Yang, Z.; Huang, Y.; Zhou, M. A CNN-based FBG demodulation method adopting the GAF-assisted ascending dimension of complicated signal. Opt. Commun. 2021, 499, 127296. [Google Scholar]
- Ningtao, C.; Dajing, C.; Bin, L.; Jing, F.; Hongyang, W. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier. Biosens. Bioelectron. 2021, 186, 113246. [Google Scholar]
- Yu, C.; Fang, R.; Liang, T.; Sha, Z.; Li, S.; Yi, Y.; Zhou, W.; Song, H. Stock Price Forecast Based on CNN-BiLSTM-ECA Model. Sci. Program. 2021, 2021, 2446543. [Google Scholar]
- Mohammed, A.B.; Muhammad, Y.N.; Imad, E.A.; Shaharin, A.S. BiLSTM Network-Based Approach for Solar Irradiance Forecasting in Continental Climate Zones. Energies 2022, 15, 2226. [Google Scholar]
- Devi, K.; Paulraj, D.; Muthusenthil, B. Deep Learning Based Security Model for Cloud based Task Scheduling. KSII Trans. Internet Inf. Syst. 2020, 14, 3663–3679. [Google Scholar]
- Lian, C.; Zeng, Z.; Wang, X.; Yao, W.; Su, Y.; Tang, H. Landslide displacement interval prediction using lower upper bound estimation method with pre-trained random vector functional link network initialization. Neural Netw. 2020, 130, 286–296. [Google Scholar] [CrossRef]
- Xing, Y.; Yue, J.; Chen, C.; Qin, Y.; Hu, J. A hybrid prediction model of landslide displacement with risk-averse adaptation. Comput. Geosci. 2020, 141, 104527. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [Google Scholar] [CrossRef]
- Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Eng. Geol. 2017, 218, 173–186. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Wen, T.; Ma, J. A hybrid intelligent approach for constructing landslide displacement prediction intervals. Appl. Soft Comput. 2019, 81, 105506. [Google Scholar] [CrossRef]
Landslide Displacement | Influencing Factors | Influencing Factor Subsequences | |||||
---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | ||
IMF1 | Precipitation | 0.794 | 0.712 | 0.715 | 0.674 | 0.622 | / |
Reservoir water level | 0.791 | 0.782 | 0.712 | 0.623 | / | / | |
State of landslide | 0.904 | 0.805 | 0.625 | / | / | / | |
Trend of landslide | 0.887 | 0.836 | 0.735 | 0.721 | 0.749 | 0.671 | |
IMF2 | Precipitation | 0.755 | 0.691 | 0.707 | 0.672 | 0.616 | / |
Reservoir water level | 0.755 | 0.738 | 0.689 | 0.622 | / | / | |
State of landslide | 0.793 | 0.904 | 0.623 | / | / | / | |
Trend of landslide | 0.804 | 0.797 | 0.724 | 0.701 | 0.703 | 0.627 | |
R | Precipitation | 0.620 | 0.619 | 0.590 | 0.623 | 0.900 | / |
Reservoir water level | 0.638 | 0.639 | 0.616 | 0.927 | / | / | |
State of landslide | 0.605 | 0.603 | 0.989 | / | / | / | |
Trend of landslide | 0.623 | 0.628 | 0.602 | 0.726 | 0.607 | 0.491 |
Landslide Displacement | Influencing Factors | Influencing Factor Subsequences | |||||
---|---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | ||
IMF1 | Precipitation | 0.194 | 0.212 | 0.264 | 0.269 | 0.337 | / |
Reservoir water level | 0.263 | 0.235 | 0.290 | 0.337 | / | / | |
State of landslide | 0.338 | 0.266 | 0.337 | / | / | / | |
Trend of landslide | 0.304 | 0.291 | 0.247 | 0.273 | 0.329 | 0.337 | |
IMF2 | Precipitation | 0.255 | 0.300 | 0.337 | 0.482 | 0.531 | / |
Reservoir water level | 0.268 | 0.238 | 0.331 | 0.381 | / | / | |
State of landslide | 0.319 | 0.757 | 0.531 | / | / | / | |
Trend of landslide | 0.179 | 0.304 | 0.306 | 0.303 | 0.400 | 0.512 | |
R | Precipitation | 0.309 | 0.370 | 0.954 | 0.852 | 0.913 | / |
Reservoir water level | 0.423 | 0.468 | 0.837 | 0.789 | / | / | |
State of landslide | 0.323 | 0.538 | 0.679 | / | / | / | |
Trend of landslide | 0.236 | 0.382 | 0.598 | 0.978 | 0.842 | 0.877 |
Models | MAE | MAPE | RMSE | R2 (%) | Minimum Error | Maximum Error | Total Error |
---|---|---|---|---|---|---|---|
CNN–BiLSTM | 1.789 | 0.078 | 2.206 | 99.84 | 0.02 | 6.77 | 25.62 |
CNN–BiLSTM with GRA | 2.335 | 0.103 | 2.981 | 99.70 | 0.02 | 6.54 | 28.02 |
CNN–BiLSTM with MIC | 2.323 | 0.102 | 3.240 | 99.65 | 0.18 | 7.51 | 28.04 |
CNN–BiLSTM without Both | 3.630 | 0.161 | 4.238 | 99.40 | 0.82 | 8.52 | 43.56 |
Models | MAE | MAPE | RMSE | R2 (%) | Minimum Error | Maximum Error | Total Error |
---|---|---|---|---|---|---|---|
CNN–BiLSTM | 1.789 | 0.078 | 2.206 | 99.84 | 0.02 | 6.77 | 25.62 |
CNN–RNN | 3.841 | 0.167 | 5.018 | 99.17 | 0.31 | 12.28 | 46.09 |
CNN–LSTM | 3.063 | 0.137 | 4.012 | 99.47 | 0.23 | 9.36 | 36.76 |
CNN–GRU | 3.302 | 0.144 | 4.578 | 99.31 | 0.64 | 12.69 | 39.62 |
BiLSTM | 5.018 | 0.220 | 6.300 | 98.70 | 0.36 | 11.24 | 60.19 |
RNN | 5.442 | 0.239 | 7.274 | 98.26 | 0.07 | 11.93 | 58.11 |
LSTM | 4.888 | 0.215 | 7.013 | 98.38 | 0.74 | 15.79 | 77.49 |
GRU | 6.076 | 0.266 | 7.203 | 98.29 | 1.21 | 13.37 | 72.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Ji, Y.; Sun, X. Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model. Sustainability 2023, 15, 10071. https://doi.org/10.3390/su151310071
Lin Z, Ji Y, Sun X. Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model. Sustainability. 2023; 15(13):10071. https://doi.org/10.3390/su151310071
Chicago/Turabian StyleLin, Zian, Yuanfa Ji, and Xiyan Sun. 2023. "Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model" Sustainability 15, no. 13: 10071. https://doi.org/10.3390/su151310071
APA StyleLin, Z., Ji, Y., & Sun, X. (2023). Landslide Displacement Prediction Based on CEEMDAN Method and CNN–BiLSTM Model. Sustainability, 15(13), 10071. https://doi.org/10.3390/su151310071