Financial Technology Development and Green Total Factor Productivity
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. The Mechanism of Fintech’s Effects on GTFP
2.2. Nonlinear Relationship between Fintech and GTFP
2.3. The Moderating Effect of Fintech on GTFP
3. Econometric Model, Variables, and Data
3.1. Construction of the Econometric Model
3.2. Variable Definitions
3.2.1. Explained Variable
3.2.2. Core Explanatory Variable
3.2.3. Mediating and Moderating Variables
3.2.4. Control Variables
3.3. Sample Selection and Data Sources
4. Baseline Empirical Results and Economic Analysis
4.1. The Impact of Fintech on GTFP
4.2. Discussion and Treatment of Endogeneity
4.2.1. Instrumental Variable Method
4.2.2. GMM Dynamic Panel Analysis
4.3. Robustness Test
4.3.1. Replacing the Measurement Indicators of Fintech
4.3.2. Replacing the Explanatory Variable
4.3.3. Exclusion of Specific Samples
4.3.4. Winsorize
4.4. Further Analysis: Non-Linear Incentive Effect of Fintech on GTFP
5. Identification Test of the Mechanism of Fintech Affecting GTFP
6. Analysis of the Moderating Effect of Fintech on GTFP
6.1. Linear Moderating Effect
6.2. Nonlinear Moderating Effect
7. Research Conclusions and Policy Implications
7.1. Research Conclusions
7.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, D.; Zhang, Q. Evolution and Driving Forces of the Integration of Environmental Protection and Economic High-Quality Development. J. Quant. Tech. Econ. 2022, 39, 42–59. [Google Scholar] [CrossRef]
- Niu, H.; Yan, C. Environmental Taxation, Resource Allocation, and Economic High-Quality Development. World Econ. 2021, 44, 28–50. [Google Scholar] [CrossRef]
- Xiao, W.; Xue, T. Rising Labor Costs, Financing Constraints, and Total Factor Productivity Changes of Enterprises. World Econ. 2019, 42, 76–94. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, X.; Jiang, Y.; Zhang, B. Exploring the Direct and Spillover Effects of Aging on Green Total Factor Productivity in China: A Spatial Econometric Approach. Sustainability 2023, 15, 6709. [Google Scholar] [CrossRef]
- He, L.; Qi, X. Environmental Regulation and Green Total Factor Productivity-Evidence from Chinese Industrial Enterprises. Econ. Perspect. 2022, 736, 97–114. [Google Scholar]
- Zhou, Y.; Xu, Y.; Liu, C.; Fang, Z.; Fu, X.; He, M. The Threshold Effect of China’s Financial Development on Green Total Factor Productivity. Sustainability 2019, 11, 3776. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ling, Y. Structural Transformation, Total Factor Productivity, and High-Quality Development. Manag. World 2020, 36, 15–29. [Google Scholar] [CrossRef]
- Cai, W. The impact of banking market structure on firm productivity-empirical evidence from industrial firms. Financ. Res. 2019, 2019, 39–55. [Google Scholar]
- Tang, S.; Lai, X.; Huang, R. How does financial technology innovation affect total factor productivity: Promotion or inhibition?—Theoretical analysis framework and regional practice. China Soft. Sci. 2019, 343, 134–144. [Google Scholar]
- Song, M.; Zhou, P.; Si, H. Fintech and Total Factor Productivity of Firms-An “Empowerment” and Credit Rationing Perspective. China Ind. Econ. 2021, 2021, 138–155. [Google Scholar] [CrossRef]
- Sheng, T.; Fan, C. Fintech, optimal banking market structure and credit supply for micro and small enterprises. Financ. Res. 2020, 2020, 114–132. [Google Scholar]
- Chen, Z.; Jiang, K. Digital Financial Development and Enterprise Total Factor Productivity. Econ. Perspect. 2021, 728, 82–99. [Google Scholar]
- Tang, S.; Wu, X.; Zhu, J. Digital finance and corporate technology innovation-structural characteristics, mechanism identification and differences in effects under financial regulation. Manag. World 2020, 36, 52–66. [Google Scholar] [CrossRef]
- Zhu, T. A comprehensive analytical framework for the evolution of Fintech development in China. Financ. Regul. Res. 2018, 2018, 55–67. [Google Scholar] [CrossRef]
- Hou, C.; Li, B. Does fintech increase total factor productivity-empirical evidence from Peking University’s Digital Inclusive Finance Index. Financ. Econ. Sci. 2020, 12, 1–12. [Google Scholar]
- Wang, X. Internet finance helps to solve the problem of difficult financing for “long-tail” small and micro enterprises. Financ. Res. 2015, 2015, 128–139. [Google Scholar]
- Bunea, S.; Kogan, B.; Stolin, D. Banks versus fintech: At last, it’s official. J. Financ. Transform. 2016, 44, 1–25. [Google Scholar]
- Wang, J.; Zhang, Y.; Ma, X. Digital economy, resource mismatch and total factor productivity. Financ. Trade Res. 2022, 33, 10–26. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Robots and Jobs: Evidence from US Labor Markets. J. Political Econ. 2020, 128, 2188–2244. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Shi, Z.; Wu, G. The Impact of Digital Economy and Environmental Regulation on Green Total Factor Productivity. Nanjing Soc. Sci. 2022, 28, 12–20. [Google Scholar] [CrossRef]
- ShangGuan, X.; Ge, B. Digital Finance, Environmental Regulation, and High-Quality Economic Development. Mod. Financ. Econ. J. Tianjin Univ. Financ. Econ. 2021, 41, 84–98. [Google Scholar] [CrossRef]
- Cheng, W.; Qian, X. Digital Economy and Green Total Factor Productivity Growth of China’s Industry. Econ. Issues Explor. 2021, 2021, 124–140. [Google Scholar]
- Ma, G.; Lv, D.; Luo, Y.; Jiang, T. Environmental Regulation, Urban-Rural Income Gap and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 8995. [Google Scholar] [CrossRef]
- Hua, S.; Li, J. Can Environmental Regulatory Tools Promote Green Technological Innovation for Enterprises under the Digital Economy Conditions? Sci. Technol. Prog. Policy 2023, 40, 141–150. [Google Scholar] [CrossRef]
- Wang, X.; Song, M.; Yang, Y. Fintech, Financial Regulation, and High-Quality Development of Enterprises. Res. Financ. Econ. Issues 2023, 473, 87–99. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Han, C.; Zhu, W. The Impact of Digital Financial Development on Export Technological Complexity. World Econ. Stud. 2022, 342, 26–42. [Google Scholar] [CrossRef]
- Fuster, A.; Plosser, M.; Schnabl, P.; Vickery, J. The Role of Technology in Mortgage Lending. Rev. Financ. Stud. 2019, 32, 1854–1899. [Google Scholar] [CrossRef] [Green Version]
- Acemoglu, D.; Aghion, P.; Bursztyn, L.; Hemous, D. The Environment and Directed Technical Change. Am. Econ. Rev. 2012, 102, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Demertzis, M.; Merler, S.; Wolff, G. Capital markets union and the fintech opportunity. J. Financ. Regul. 2018, 4, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Xie, X.; Shen, Y.; Zhang, H.; Guo, F. Can Digital Finance Promote Entrepreneurship?—Evidence from China. Economics 2018, 17, 1557–1580. [Google Scholar] [CrossRef]
- Lee, H.; Yang, S.; Kim, K. The Role of Fintech in Mitigating Information Friction in Supply Chain Finance; ADB Economics Working Paper Series; ADB Publications: Manila, Philippines, 2019. [Google Scholar]
- Hopenhayn, H. Firms, Misallocation, and Aggregate Productivity: A Review. Soc. Sci. Electron. Publ. 2014, 6, 735–770. [Google Scholar] [CrossRef]
- Heiskanen, A. The technology of trust: How the Internet of things and blockchain could usher in a new era of construction productivity. Constr. Res. Innov. 2017, 8, 66–73. [Google Scholar] [CrossRef]
- Shen, Y.; Guo, P. Internet finance, technology spillovers and total factor productivity of commercial banks. Financ. Res. 2015, 2015, 160–175. [Google Scholar]
- Ba, S.; Bai, H.; Hu, W. Financial technology innovation, total factor productivity of firms and economic growth-based on a new structural economics perspective. Res. Financ. Econ. 2020, 2020, 46–53. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Z. Digital financial development in China: Present and future. Economics 2018, 17, 1489–1502. [Google Scholar] [CrossRef]
- Hsieh, C.; Klenow, P. Misallocation and Manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef] [Green Version]
- Pei, C.; Ni, J.; Li, Y. Analysis of the political economy of digital economy. Financ. Trade Econ. 2018, 39, 5–22. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, F.; Chen, J. The “digital divide” or the “information dividend”? Effective supply of information and farmers’ selling prices-an empirical study from a micro perspective. Economics 2013, 12, 1513–1536. [Google Scholar] [CrossRef]
- Yang, F.; Huang, Y. Corporate governance structure, information asymmetry and SME financing. Financ. Res. 2006, 2006, 159–166. [Google Scholar]
- Niu, Z.; Xu, C.; Wu, Y. Business environment optimization, human capital effect and firm labor productivity. Manag. World 2023, 39, 83–100. [Google Scholar] [CrossRef]
- Mankiw, N.; Romer, D.; Weil, D. A contribution to the empirics of economic growth. Q. J. Econ. 1992, 107, 407–437. [Google Scholar] [CrossRef]
- Daron, A.; Pascual, R. The race between man andmachine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar]
- Galor, O.; David, W. Population, Technology, and Growth: From Malthusian Stagnation to the Demographic Transition and beyond. Am. Econ. Rev. 2000, 90, 806–828. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Sun, R.; Yuan, C.; Sun, J. Enterprise Digital Transformation, Adjustment of Human Capital Structure, and Labor Income Share. Manag. World 2022, 38, 220–237. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, Z.; Liang, S. Digital economy, entrepreneurial activity and high quality development-empirical evidence from Chinese cities. Manag. World 2020, 36, 65–76. [Google Scholar] [CrossRef]
- Shang, X. A study on the mechanism of environmental regulation affecting the sustainability of economic growth-an empirical analysis based on the mediating effect. J. Yunnan Univ. Financ. Econ. 2022, 38, 1–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Kou, P. Environmental regulation, Internet penetration and corporate pollution emissions. Ind. Econ. Rev. 2018, 9, 128–139. [Google Scholar] [CrossRef]
- Ambec, S.; Cohen, M.; Elgie, S.; Lanoie, P. The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness? Rev. Environ. Econ. Policy 2013, 7, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Porter, M.; Linde, C. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Färe, R.; Grosskopf, S.; Pasurka, C.A., Jr. Environmental production functions and environmental directional distance functions. Energy 2007, 32, 1055–1066. [Google Scholar] [CrossRef]
- Yu, Y. Re-estimation of inter-provincial total factor productivity in China from a heterogeneity perspective: 1978–2012. Economics 2017, 16, 1051–1072. [Google Scholar] [CrossRef]
- Oh, D. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Fare, R.; Shawna, G. A comment on weak disposability in nonparametric production analysis. Am. J. Agric. Econ. 2009, 91, 535–538. [Google Scholar] [CrossRef]
- Shan, H. Re-estimation of capital stock K in China: 1952 to 2006. Res. Quant. Technol. Econ. 2008, 25, 17–31. [Google Scholar]
- Qiu, H.; Huang, Y.; Ji, Y. The Impact of Fintech on Traditional Banking Behavior-Based on the Perspective of Internet Wealth Management. Financ. Res. 2018, 2018, 17–29. [Google Scholar]
- Meng, N.; Su, Q.; Lei, H. How financial technology affects competition in the banking industry. Financ. Trade Econ. 2020, 41, 66–79. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, W. Price distortions, factor mismatches and efficiency losses: Theory and applications. Economics 2011, 10, 1401–1422. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H.; Hu, Y.; Li, C. Advanced human capital structure and economic growth. Econ. Res. 2018, 53, 50–63. [Google Scholar]
- Mukoyama, T. Innovation, imitation, and growth with cumulative technology. J. Monet. Econ. 2004, 50, 361–380. [Google Scholar] [CrossRef]
- Fariborz, M.; Tian, X.; Zhang, B.; Zhang, W. Stock Market Liberalization and Innovation. J. Financ. Econ. 2020, 8, 985–1014. [Google Scholar] [CrossRef]
- Li, C.; Yan, X.; Song, M.; Yang, W. Fintech and corporate innovation—Evidence from New Third Board listed companies. China Ind. Econ. 2020, 2020, 81–98. [Google Scholar] [CrossRef]
- Huang, Q.; Yu, Y.; Zhang, S. Internet development and manufacturing productivity improvement: Intrinsic mechanisms and China’s experience. China Ind. Econ. 2019, 377, 5–23. [Google Scholar] [CrossRef]
- Manacorda, M.; Tesei, A. Liberation technology: Mobile phones and political mobilization in Africa. Econometrica 2020, 88, 533–567. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.; Shin, Y. Dynamic Panels with Threshold Effect and Endogeneity. J. Econom. 2016, 195, 169–186. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T. Mediating and moderating effects in empirical studies of causal inference. China Ind. Econ. 2022, 380, 100–120. [Google Scholar] [CrossRef]
- Qiu, S.; Wang, Z.; Geng, S. How do environmental regulation and foreign investment behavior affect green productivity growth in the industrial sector? An empirical test based on Chinese provincial panel data. J. Environ. Manag. 2021, 287, 112282. [Google Scholar] [CrossRef]
Author(s) | Fintech/Digital Finance | Financial Regulation | Environmental Regulation | Mechanism Effect | GTFP |
---|---|---|---|---|---|
[9] | Yes | No | No | Yes | No |
[13] | Yes | Yes | No | Yes | No |
[10] | Yes | No | No | Yes | No |
[12] | Yes | No | No | Yes | No |
[5] | No | No | Yes | Yes | Yes |
[4] | No | No | No | No | Yes |
[6] | No | No | Yes | Yes | Yes |
[17] | Yes | Yes | No | Yes | No |
[21] | Yes | No | Yes | No | Yes |
[26] | No | No | No | No | Yes |
[27] | Yes | No | No | Yes | No |
[24] | Yes | No | Yes | Yes | No |
[28] | Yes | No | No | Yes | No |
[29] | No | No | Yes | Yes | No |
[30] | Yes | No | No | Yes | No |
[31] | Yes | Yes | No | Yes | No |
[22] | Yes | No | No | Yes | Yes |
[32] | Yes | Yes | No | Yes | No |
[14] | Yes | Yes | No | No | No |
This study | Yes | Yes | Yes | Yes | Yes |
Input/Output | Input/Output | Indicator Description |
---|---|---|
Input | Capital input | Referring to Shan Haojie (2008) [56], taking 2005 as the base period and using the perpetual inventory method calculate the capital input, the depreciation rate was set at 10.96%/billion CNY |
Labor input | Sum of the number of unit employees, private employees, and self-employed employees in each city/10,000 people | |
Energy input | Electricity consumption of each city as a proxy variable for energy consumption /10,000 TCE | |
Expected output | Real GDP | Real GDP of each city (based on 2005) (billion CNY) |
Non-desired output | Industrial sulfur dioxide emissions | Industrial sulfur dioxide (SO2) emissions (million tons) |
Industrial wastewater emissions | Industrial wastewater emissions (million tons) | |
Industrial soot emissions | Industrial soot emissions (million tons) |
Variable | N | Mean | Sd | Min | P50 | Max |
---|---|---|---|---|---|---|
GTFP_GML | 3113 | 1.0050 | 0.0520 | 0.4884 | 1.0011 | 1.6335 |
Fintech_P | 3113 | 5.1464 | 0.6595 | 2.9085 | 5.3532 | 6.0168 |
Fintech_B | 3113 | 4.9872 | 0.7903 | 0.6729 | 5.2406 | 5.9523 |
Fintech_D | 3113 | 5.1414 | 0.6139 | 1.9110 | 5.2459 | 6.0866 |
Innova_Q | 3113 | 4.8298 | 1.7966 | 0.0000 | 4.5850 | 10.8770 |
Innova_N | 3113 | 7.0968 | 1.5860 | 2.6391 | 6.9745 | 11.4340 |
Capital_M | 3113 | 0.3764 | 0.3221 | 0.0002 | 0.3252 | 3.3634 |
Labor_M | 3113 | 0.3682 | 0.3100 | 0.0007 | 0.2988 | 3.1416 |
Human_E | 3113 | 0.0185 | 0.0242 | 0.0003 | 0.0097 | 0.1311 |
Human_A | 3113 | 16.1950 | 0.6765 | 15.5610 | 15.9480 | 19.8252 |
Eregulat | 3113 | 0.6787 | 0.5566 | 0.0000 | 0.4266 | 2.5853 |
Fsupervis | 3113 | 0.0102 | 0.0109 | 0.0005 | 0.0064 | 0.1116 |
Gover | 3113 | 0.2005 | 0.1021 | 0.0352 | 0.1746 | 0.8717 |
Ecopen | 3113 | 0.1874 | 0.3045 | 0.0000 | 0.0770 | 4.6784 |
Urban | 3113 | 0.5547 | 0.1472 | 0.0649 | 0.5290 | 0.9973 |
Fincial | 3113 | 16.4050 | 1.1435 | 13.7230 | 16.1831 | 20.4202 |
IndStr | 3113 | 0.4692 | 0.1096 | 0.1068 | 0.4754 | 0.8934 |
Indus | 3113 | 0.4015 | 0.1215 | 0.03245 | 0.4056 | 0.8821 |
Popul | 3113 | 4.3752 | 3.3979 | 0.0510 | 3.6530 | 26.4810 |
Green | 3113 | 0.3942 | 0.0692 | 0.0036 | 0.4050 | 0.8925 |
Fdi | 3113 | 0.0167 | 0.0179 | 0.0000 | 0.0114 | 0.2116 |
InfStra | 3113 | 17.0810 | 7.2722 | 0.0005 | 15.6770 | 60.0705 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
L.Fintech_P | 0.0178 *** (4.4721) | 0.0135 ** (2.2875) | 0.0136 *** (5.9293) | 0.0163 *** (3.4491) | 0.0145 *** (4.2998) | 0.0227 *** (3.9538) |
Gover | −0.0004 (−0.0419) | −0.1852 * (−1.6261) | −0.0027 (−0.2322) | −0.1845 (−1.2969) | ||
Ecopen | −0.0052 (−1.3136) | −0.0067 (−1.1708) | −0.0043 (−1.0344) | −0.0057 (−0.9971) | ||
Urban | 0.0197 (0.0956) | −0.0765 * (−1.7174) | −0.0196 (−0.8750) | −0.0699 (−1.5111) | ||
Indus | −0.0161 (−0.6194) | −0.0096 (−0.1849) | −0.0143 (−0.5496) | −0.0093 (−0.1823) | ||
Fincial | 0.0043 * (1.6835) | 0.0051 * (1.6161) | 0.0043 *** (3.6791) | 0.0042 ** (2.4300) | ||
IndStr | −0.0334 * (−1.6477) | −0.0172 ** (−2.3612) | −0.0287 ** (−2.0615) | −0.0149 ** (−2.3183) | ||
Popul | 0.0000 (0.1174) | 0.0028 (0.4134) | ||||
Green | 0.0055 (0.2792) | 0.0270 (0.8726) | ||||
Fdi | 0.0134** (2.2407) | 0.2512** (2.0268) | ||||
Infstr | 0.0003 *** (2.8775) | 0.0006** (2.2499) | ||||
Cons | 0.9135 *** (17.2697) | 0.9358 (17.4054) | 0.8633 *** (18.7024) | 1.0972 *** (7.6931) | 0.8662 *** (10.4305) | 1.0370 *** (7.2836) |
City fixed | No | YES | No | YES | No | Yes |
Year fixed | No | YES | No | YES | No | Yes |
Adj. R2 | 0.5021 | 0.61001 | 0.5945 | 0.7271 | 0.6952 | 0.6838 |
N | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 |
Variable | GTFP_GML | ||
---|---|---|---|
(1) | (2) | (3) | |
Panel A Comprehensive Index of Fintech Development | |||
L2.Fintech_P | 0.0206 *** (7.7008) | ||
L3.Fintech_P | 0.0193 *** (7.7074) | ||
L4.Fintech_P | 0.0211 *** (5.7433) | ||
Controls | Yes | Yes | Yes |
Year/City fixed | Yes | Yes | Yes |
Adj. R2 | 0.5208 | 0.4792 | 0.4654 |
N | 2547 | 2264 | 1981 |
Panel B The Breadth of Fintech Development | |||
L2.Fintech_B | 0.0130 *** (3.9277) | ||
L3.Fintech_B | 0.0085 * (1.8621) | ||
L4.Fintech_B | 0.0033 (0.9516) | ||
Controls | Yes | Yes | Yes |
Year/City fixed | Yes | Yes | Yes |
Adj. R2 | 0.3208 | 0.3784 | 0.3656 |
N | 2547 | 2264 | 1981 |
Panel C The Depth of Fintech Development | |||
L2.Fintech_D | 0.0255 ** (2.2856) | ||
L3.Fintech_D | 0.0293 *** (3.9901) | ||
L4.Fintech_D | 0.0313 *** (3.6856) | ||
Controls | Yes | Yes | Yes |
Year/City fixed | Yes | Yes | Yes |
Adj. R2 | 0.4208 | 0.4812 | 0.4665 |
N | 2547 | 2264 | 1981 |
Panel A The Second-Stage Regression | ||||
Variable | TSLS | GMM Analysis | ||
(1) | (2) | (3) | (4) | |
L.GTFP | 0.1073 *** (5.4649) | 0.1140 *** (6.0710) | ||
L.Fintech_P | 0.0632 *** (3.7659) | 0.1403 *** (3.6390) | 0.0449 *** (4.2432) | 0.0309 *** (2.8325) |
Controls | No | Yes | No | Yes |
City fixed | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes |
D-W-H Test (p-value) | 27.4403 (0.000) | 22.1133 (0.000) | ||
K-P rk LM (p-value) | 39.1123 (0.000) | 24.1961 (0.000) | ||
K-P wald rk F (p-value) | 70.9419 (0.000) | 36.5875 (0.000) | ||
Hansen/Sargan (p-value) | 2.9897 (0.1184) | 3.5917 (0.1518) | 9.8577 (0.2326) | 5.6650 (0.1692) |
AR(1) (p-value) | 4.2605 (0.0000) | 3.0339 (0.0006) | ||
AR(2) (p-value) | 0.5282 (0.6041) | 0.6413 (0.5251) | ||
Adj. R2 | 0.4937 | 0.5546 | ||
N | 2830 | 2830 | 2547 | 2547 |
Panel B The First-Stage Regression | ||||
IV | (1) | (2) | (3) | (4) |
0.1461 *** (3.3238) | 0.2079 *** (6.3869) | |||
0.1112 *** (4.6138) | 0.1383 *** (3.7475) | |||
F (p-value) | 134.0743 (0.0000) | 95.1193 (0.0000) |
Variable | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Fintech_C | Fintech_N | GTFP_DDF | Exclusion of Specific Samples | Winsorized | |
L.Fintech_C | 0.0185 *** (2.9372) | ||||
L.Fintech_N | 0.0117 ** (2.2582) | ||||
L.Fintech_P | 0.0420 *** (7.4359) | 0.0347 *** (3.7553) | 0.0179 *** (4.3942) | ||
Controls | Yes | Yes | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes |
Adj. R2 | 0.5023 | 0.5041 | 0.5046 | 0.4459 | 0.4542 |
N | 2830 | 2830 | 2830 | 2600 | 2830 |
Panel A Threshold Effect Test Results | |||||||
Variable | Threshold Effect | SupW | BS | p-Value | Critical Value | ||
1% | 5% | 10% | |||||
Fintech_P | Single | 80.0305 *** | 1000 | 0.000 | 16.8911 | 12.6236 | 11.6284 |
Double | 54.8497 *** | 1000 | 0.007 | 24.6122 | 13.6262 | 11.5559 | |
Triple | 24.4906 | 1000 | 0.713 | 109.8550 | 92.7709 | 86.3673 | |
Panel B Threshold Estimation Results | |||||||
Threshold Type | Threshold Value 1 | Threshold Value 2 | |||||
Threshold Estimate | 95% Confidence Interval | Threshold Estimate | 95% Confidence Interval | ||||
Fintech_P | 5.6909 | [5.6902, 5.6911] | 5.8000 | [5.7911, 5.8049] | |||
Panel C Estimation Results of Dynamic Panel Threshold Model | |||||||
Variable | Coefficient | p-Value | |||||
L.GTFP | 0.1902 *** (4.0637) | 0.000 | |||||
0.0142 *** (4.9505) | 0.000 | ||||||
0.0090 ** (2.2511) | 0.025 | ||||||
0.0018 ** (2.0345) | 0.044 | ||||||
Controls | Yes | ||||||
Hansen J (p-value) | 47.0746 (0.151) | ||||||
Wald | 9638 *** | ||||||
N | 2547 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Capital_M | Labor_M | Human_E | Human_A | Innova_N | Innoa_Q | |
L.Fintech_P | −0.0896 ** (−2.3794) | −0.1145 *** (−2.8944) | 0.0035 ** (2.5043) | 0.4072 *** (3.9092) | 0.1848 * (1.7179) | 0.4207 *** (3.8758) |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
City fixed | Yes | Yes | Yes | Yes | Yes | Yes |
Year fixed | Yes | Yes | Yes | Yes | Yes | Yes |
N | 2830 | 2830 | 2830 | 2830 | 2830 | 2830 |
Adj. R2 | 0.8397 | 0.7539 | 0.9599 | 0.9598 | 0.9740 | 0.8345 |
Variable | (1) | (2) |
---|---|---|
Fsupervis | Eregulat | |
L.Fintech_P | 0.0222 ** (2.2348) | 0.0221 * (1.8207) |
L.Fsupervis | 0.0483 (0.0847) | |
L.Eregulat | −0.0821 *** (−4.7927) | |
L.Fintech_P × L.Fsupervis | 0.0111 ** (2.3615) | |
L.Fintech_P × L.Eregulat | 0.0022 (0.2845) | |
Controls | Yes | Yes |
City fixed | Yes | Yes |
Year fixed | Yes | Yes |
N | 2830 | 2830 |
Adj. R2 | 0.3034 | 0.3141 |
Panel A Threshold effect test results | |||||||
Variable | Threshold Effect | SupW | BS | p-Value | Critical Value | ||
1% | 5% | 10% | |||||
Fsupervis | Single | 17.0446 | 1000 | 0.000 | 13.6705 | 10.1751 | 8.3059 |
Double | 24.0863 | 1000 | 0.000 | 12.7142 | 11.0066 | 9.0383 | |
Triple | 14.4504 | 1000 | 0.420 | 39.1392 | 31.7894 | 28.0710 | |
Eregulat | Single | 29.4466 | 1000 | 0.000 | 19.7083 | 16.6235 | 14.4088 |
Double | 24.6195 | 1000 | 0.000 | 18.5559 | 15.0787 | 11.0093 | |
Triple | 15.1822 | 1000 | 0.700 | 85.0688 | 76.1750 | 60.5853 | |
Panel B Threshold estimation results | |||||||
Threshold Type | Threshold Value 1 | Threshold Value 2 | |||||
Threshold Estimate | 95% Confidence Interval | Threshold Estimate | 95% Confidence Interval | ||||
Fsupervis | 0.0136 | [0.0129, 0.0159] | 0.0461 | [0.0460, 0.0463] | |||
Eregulat | 0.4183 | [0.4050, 0.4187] | 1.4354 | [1.4292, 1.4363] |
(1) | (2) | |||
---|---|---|---|---|
Variable | Fsupervis | Eregulat | ||
Coefficient | p-Value | Coefficient | p-Value | |
L.GTFP | 0.1480 *** (3.2323) | 0.000 | 0.1127 *** (4.0226) | 0.000 |
0.0146 (1.5941) | 0.110 | −0.0168 * (1.8914) | 0.058 | |
0.1197 *** (5.4812) | 0.000 | 0.1044 *** (4.3907) | 0.000 | |
0.0144 ** (2.0630) | 0.040 | 0.0620 * (1.8144) | 0.070 | |
Controls | Yes | Yes | ||
Hansen J (p-value) | 22.4656 (0.309) | 17.7935 (0.449) | ||
Wald | 11204 *** | 9752 *** | ||
N | 2547 | 2547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Li, X. Financial Technology Development and Green Total Factor Productivity. Sustainability 2023, 15, 10309. https://doi.org/10.3390/su151310309
Hu W, Li X. Financial Technology Development and Green Total Factor Productivity. Sustainability. 2023; 15(13):10309. https://doi.org/10.3390/su151310309
Chicago/Turabian StyleHu, Wentao, and Xiaoxiao Li. 2023. "Financial Technology Development and Green Total Factor Productivity" Sustainability 15, no. 13: 10309. https://doi.org/10.3390/su151310309
APA StyleHu, W., & Li, X. (2023). Financial Technology Development and Green Total Factor Productivity. Sustainability, 15(13), 10309. https://doi.org/10.3390/su151310309