A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure
Abstract
:1. Introduction
2. Related Work
2.1. Low-Carbon Product Design
2.2. Product Configuration
2.3. Carbon-Neutral and Carbon Dioxide Removal Technologies
3. Optimization Model
3.1. Problem Description
3.2. Constraints
3.2.1. Decision Variables Constraints
3.2.2. Compatibility Constraints
3.2.3. Dependence Constraints
3.3. Product Cost Model
3.4. Carbon-Neutral Cost Model
3.4.1. Carbon Emissions
- (1)
- Gs
- (2)
- Ge
- (3)
- Gc
- (4)
- Gr
3.4.2. Unit Carbon Removal Cost
3.4.3. Carbon-Neutral Cost
4. Utilized Algorithm
4.1. Encoding of Chromosome
4.2. Population Initialization and Chromosome-Repairing
4.3. Crossover and Mutation
4.4. Selection Mechanism and Elitist Strategy
5. Case Study
5.1. Problem Context
5.2. Implementation and Results
5.3. Comparison and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tseng, M.M.; Jiao, J.; Merchant, M.E. Design for Mass Customization. CIRP Ann. 1996, 45, 153–156. [Google Scholar] [CrossRef]
- Silveira, G.D.; Borenstein, D.; Fogliatto, F.S. Mass customization: Literature review and research directions. Int. J. Prod. Econ. 2000, 72, 1–13. [Google Scholar] [CrossRef]
- Sabin, D.; Weigel, R. Product Configuration Frameworks-A Survey. IEEE Intell. Syst. Appl. 1998, 13, 42–49. [Google Scholar] [CrossRef]
- Tong, Y.; Tang, Z.; Mei, S.; Qiao, L.; Gong, Z. Research on customer-oriented optimal configuration of product scheme based on Pareto genetic algorithm. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 229, 148–156. [Google Scholar]
- Liu, D.Z.; Li, Z.K. Joint decision-making of product family configuration and order allocation by coordinating suppliers under disruption risks. J. Eng. Des. 2021, 32, 213–246. [Google Scholar] [CrossRef]
- Becker, S.; Bouzdine-Chameeva, T.; Jaegler, A. The carbon neutrality principle: A case study in the French spirits sector. J. Clean. Prod. 2020, 274, 122739. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, D.; Yin, L.; Salido, M.A.; Giret, A.; Xu, Y. Bi-objective optimization for low-carbon product family design. Robot. Comput.-Integr. Manuf. 2016, 41, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.F.; Zhang, S.Y.; Hu, Z.Y.; Yu, G.; Pei, C.H.; Sa, R.N. Identification of connection units with high GHG emissions for low-carbon product structure design. J. Clean. Prod. 2012, 27, 118–125. [Google Scholar] [CrossRef]
- Tang, D.; Wang, Q.; Ullah, I. Optimisation of product configuration in consideration of customer satisfaction and low carbon. Int. J. Prod. Res. 2016, 55, 3349–3373. [Google Scholar] [CrossRef]
- Yang, D.; Li, J.; Wang, B.; Jia, Y.-J. Module-Based Product Configuration Decisions Considering Both Economical and Carbon Emission-Related Environmental Factors. Sustainability 2020, 12, 1145. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.C. The construction of a collaborative framework in support of low carbon product design. Robot. Comput.-Integr. Manuf. 2013, 29, 174–183. [Google Scholar] [CrossRef]
- He, B.; Wang, J.; Huang, S.; Wang, Y. Low-carbon product design for product life cycle. J. Eng. Des. 2015, 26, 321–339. [Google Scholar] [CrossRef]
- Peng, J.; Li, W.; Li, Y.; Xie, Y.; Xu, Z. Innovative product design method for low-carbon footprint based on multi-layer carbon footprint information. J. Clean. Prod. 2019, 228, 729–745. [Google Scholar] [CrossRef]
- He, B.; Huang, S.; Wang, J. Product Low-Carbon Design using Dynamic Programming Algorithm. Int. J. Precis. Eng. Manuf.-Green Technol. 2015, 2, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Kuo, T.C.; Chen, H.M.; Liu, C.Y.; Tu, J.-C.; Yeh, T.-C. Applying multi-objective planning in low-carbon product design. Int. J. Precis. Eng. Manuf. 2014, 15, 241–249. [Google Scholar] [CrossRef]
- Song, J.-S.; Lee, K.-M. Development of a low-carbon product design system based on embedded GHG emissions. Resour. Conserv. Recycl. 2010, 54, 547–556. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, S.; Lou, S.; Gao, Y.; Feng, Y. Knowledge-based integrated product design framework towards sustainable low-carbon manufacturing. Adv. Eng. Inform. 2021, 48, 101258. [Google Scholar] [CrossRef]
- Lin, K.; Liming, W.; Fangyi, L.; Xiaoteng, L.; Jianfeng, L.; Yan, M.; Bo, C.; Jing, G. Multi-layer integration framework for low carbon design based on design features. J. Manuf. Syst. 2021, 61, 223–238. [Google Scholar]
- Liu, A.; Zhu, Q.; Ji, X.; Lu, H.; Tsai, S.B.; Wang, J.; Liang, B. Novel Method for Perceiving Key Requirements of Customer Collaboration Low-Carbon Product Design. Int. J. Environ. Res. Public Health 2018, 15, 1446. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, F. Differential game modelling of joint carbon reduction strategy and contract coordination based on low-carbon reference of consumers. J. Clean. Prod. 2020, 277, 123798. [Google Scholar]
- He, B.; Tang, W.; Huang, S.; Hou, S.; Cai, H. Towards low-carbon product architecture using structural optimization for lightweight. Int. J. Adv. Manuf. Technol. 2015, 83, 1419–1429. [Google Scholar] [CrossRef]
- Jiao, J.; Simpson, T.W.; Siddique, Z. Product family design and platform-based product development: A state-of-the-art review. J. Intell. Manuf. 2007, 18, 5–29. [Google Scholar] [CrossRef]
- Liu, X.; Du, G.; Jiao, R.J.; Xia, Y. Co-evolution of product family configuration and supplier selection: A game-theoretic bilevel optimisation approach. J. Eng. Des. 2018, 29, 201–234. [Google Scholar] [CrossRef]
- Luo, X.; Li, W.; Kwong, C.K.; Cao, Y. Optimisation of product family design with consideration of supply risk and discount. Res. Eng. Des. 2015, 27, 37–54. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Li, Y.; Chu, X. Research on the module configuration of complex products considering the evolution of the product family. J. Intell. Fuzzy Syst. 2020, 39, 4577–4595. [Google Scholar] [CrossRef]
- Xiao, W.; Du, G.; Zhang, Y.; Liu, X. Coordinated optimization of low-carbon product family and its manufacturing process design by a bilevel game-theoretic model. J. Clean. Prod. 2018, 184, 754–773. [Google Scholar] [CrossRef]
- Kim, S.; Moon, S.K. Sustainable product family configuration based on a platform strategy. J. Eng. Des. 2017, 28, 731–764. [Google Scholar] [CrossRef]
- Badurdeen, F.; Aydin, R.; Brown, A. A multiple lifecycle-based approach to sustainable product configuration design. J. Clean. Prod. 2018, 200, 756–769. [Google Scholar] [CrossRef]
- Wei, J.; Zhao, K.; Zhang, L.; Yang, R.; Wang, M. Exploring development and evolutionary trends in carbon offset research: A bibliometric perspective. Environ. Sci. Pollut. Res. 2021, 28, 18850–18869. [Google Scholar] [CrossRef]
- Attahiru, Y.B.; Aziz, M.M.A.; Kassim, K.A.; Shahid, S.; Wan Abu Bakar, W.A.; Nsashruddin, T.F.; Rahman, F.A.; Ahamed, M.I. A review on green economy and development of green roads and highways using carbon neutral materials. Renew. Sustain. Energy Rev. 2019, 101, 600–613. [Google Scholar] [CrossRef]
- Kilian, B.; Hettinga, J.; Jiménez, G.A.; Molina, S.; White, A. Case study on Dole’s carbon-neutral fruits. J. Bus. Res. 2012, 65, 1800–1810. [Google Scholar] [CrossRef]
- Schoedel, A.; Ji, Z.; Yaghi, O.M. The role of metal–organic frameworks in a carbon-neutral energy cycle. Nat. Energy 2016, 1, 16034. [Google Scholar] [CrossRef]
- Lovell, H.; Liverman, D. Understanding Carbon Offset Technologies. New Political Econ. 2010, 15, 255–273. [Google Scholar] [CrossRef]
- Terlouw, T.; Bauer, C.; Rosa, L.; Mazzotti, M. Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy Environ. Sci. 2021, 14, 1701–1721. [Google Scholar] [CrossRef]
- Hepburn, C.; Adlen, E.; Beddington, J.; Carter, E.A.; Fuss, S.; Mac Dowell, N.; Minx, J.C.; Smith, P.; Williams, C.K. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Krishnan, V. Integrated Component and Supplier Selection for a Product Family. Prod. Oper. Manag. 1999, 8, 163–181. [Google Scholar] [CrossRef]
- Luo, X.G.; Kwong, C.K.; Tang, J.F.; Deng, S.F.; Gong, J. Integrating supplier selection in optimal product family design. Int. J. Prod. Res. 2011, 49, 4195–4222. [Google Scholar] [CrossRef]
- Steiner, W.J.; Hruschka, H. A Probabilistic One-Step Approach to the Optimal Product Line Design Problem Using Conjoint and Cost Data; The Berkeley Electronic Press: Berkeley, CA, USA, 2002. [Google Scholar]
- Simpson, T.W.; D’Souza, B.S. Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm. Concurr. Eng.-Res. Appl. 2004, 12, 119–129. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
No. | Carbon Dioxide Removal Technology | Carbon Dioxide Removal Potential (Mt CO2/yr) | Breakeven Cost ($) |
---|---|---|---|
1 | Chemicals from CO2 | 20 | 120 |
2 | Concrete building materials | 750 | 20 |
3 | CO2 enhanced oil recovery | 950 | −7.5 |
4 | Bioenergy with carbon capture and storage | 2750 | 110 |
5 | Enhanced weathering | 3000 | 100 |
6 | Forestry techniques | 2050 | −15 |
7 | Soil carbon sequestration techniques | 3800 | −55 |
8 | Biochar | 1150 | −65 |
Supplier | Module Instance | The Distance Between Supplier and the Company (km) | Transportation Time (h) | Carbon Dioxide Removal Technology Number |
---|---|---|---|---|
S1 | M11, M12 | 530 | 66 | 1, 4, 5, 8 |
S2 | M13, M14 | 640 | 84 | 1, 2, 4, 5 |
S3 | M21, M31 | 720 | 104 | 2, 4, 5, 7 |
S4 | M22, M32 | 485 | 72 | 2, 4, 5, 6 |
S5 | M23, M33 | 620 | 83 | 1, 3, 4, 8 |
S6 | M24, M34 | 690 | 77 | 1, 2, 5, 6 |
S7 | M25, M35 | 780 | 90 | 3, 4, 5, 7 |
S8 | M41 | 390 | 56 | 2, 3, 5, 8 |
S9 | M42 | 550 | 74 | 3, 4, 5, 6 |
S10 | M43 | 530 | 68 | 1, 5, 6, 8 |
S11 | M51, M52 | 460 | 78 | 1, 2, 5, 7 |
S12 | M53 | 580 | 87 | 2, 4, 5, 7 |
S13 | M61, M62 | 300 | 18 | 3, 4, 5, 7 |
S14 | M63, M64, M65 | 470 | 22 | 2, 4, 6, 8 |
S15 | M71 | 375 | 69 | 2, 4, 7, 8 |
S16 | M72, M73 | 310 | 66 | 1, 3, 5, 7 |
Instance | Variable Unit Cost ($) | Purchase Cost ($) | Mass (kg) | Manufacturing Time (h) | Carbon Emission (kg) |
---|---|---|---|---|---|
M11 | 0.4 | 47.74 | 7.8 | 9.5 | 6.8 |
M12 | 0.3 | 44.02 | 7.2 | 10.7 | 6.4 |
M13 | 0.2 | 46.5 | 7.9 | 12.6 | 7 |
M14 | 0.3 | 41.385 | 7.3 | 12.1 | 5.7 |
M21 | 0.2 | 89.59 | 8.4 | 17.6 | 7.2 |
M22 | 0.1 | 86.025 | 8.7 | 15.1 | 7.9 |
M23 | 0.2 | 86.8 | 8.6 | 18.4 | 7.2 |
M24 | 0.1 | 87.73 | 8.5 | 18.7 | 7.8 |
M25 | 0.2 | 78.12 | 8.9 | 17.7 | 7.5 |
M31 | 0.2 | 91.605 | 11.1 | 19 | 9 |
M32 | 0.2 | 89.745 | 11.1 | 18.9 | 7.6 |
M33 | 0.1 | 92.38 | 11.7 | 17.5 | 8.1 |
M34 | 0.4 | 97.96 | 10.7 | 18.6 | 7.7 |
M35 | 0.4 | 95.945 | 11.4 | 16.7 | 8.9 |
M41 | 0.2 | 78.74 | 9.5 | 22.8 | 8 |
M42 | 0.2 | 87.575 | 7.8 | 20.1 | 9.1 |
M43 | 0.2 | 74.865 | 8.1 | 21.1 | 9.3 |
M51 | 0.4 | 232.5 | 66.7 | 46.1 | 21.2 |
M52 | 0.2 | 258.85 | 68.9 | 45.4 | 20.8 |
M53 | 0.1 | 226.3 | 70 | 43.5 | 22.4 |
M61 | 0.3 | 50.685 | 6.9 | 7.8 | 5.2 |
M62 | 0.2 | 50.84 | 6 | 7.5 | 5.3 |
M63 | 0.2 | 47.585 | 6.7 | 9 | 5.6 |
M64 | 0.2 | 49.135 | 6.3 | 9.2 | 5.1 |
M65 | 0.1 | 48.98 | 7.6 | 6.7 | 5.8 |
M71 | 0.1 | 154.535 | 28.6 | 27.6 | 14.9 |
M72 | 0.4 | 145.855 | 32.6 | 30 | 14.2 |
M73 | 0.4 | 157.015 | 26.8 | 26.7 | 15.2 |
Object | Carbon Dioxide Removal Technology | Unit carbon Removal Cost ($/t CO2) |
---|---|---|
Enterprise | 1, 2, 5, 6 | 49.25 |
Consummer | 2, 5, 6, 7 | 7.84 |
Recycling plants | 1, 3, 4, 7 | 11.81 |
Carbon Emission Control Budget | 86$ | 84$ | 82$ | 80$ |
---|---|---|---|---|
Optimal configuration result | M14, M25, M32, M43, M51, M65, M72 | M14, M25, M35, M43, M51, M63, M72 | M12, M25, M35, M43, M51, M63, M72 | M12, M25, M35, M43, M52, M63, M71 |
Total product cost ($) | 713.25 | 718.36 | 720.99 | 755.52 |
Carbon emission amount (kgCO2e) | 8418.81 | 8421.78 | 8415.68 | 8402.34 |
Carbon-neutral cost ($) | 85.80 | 82.80 | 81.17 | 79.98 |
Model | PC-SINGLE | PC-CE |
---|---|---|
Solving algorithm | GA | NSGA-II |
Population size | 150 | 100 |
Number of iterations | 50 | 100 |
Crossover rate | 0.8 | 0.9 |
Mutation rate | 0.2 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, G.; Li, Z.; He, C. A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure. Sustainability 2023, 15, 10358. https://doi.org/10.3390/su151310358
Zou G, Li Z, He C. A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure. Sustainability. 2023; 15(13):10358. https://doi.org/10.3390/su151310358
Chicago/Turabian StyleZou, Guangyu, Zhongkai Li, and Chao He. 2023. "A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure" Sustainability 15, no. 13: 10358. https://doi.org/10.3390/su151310358
APA StyleZou, G., Li, Z., & He, C. (2023). A New Product Configuration Model for Low Product Cost and Carbon-Neutral Expenditure. Sustainability, 15(13), 10358. https://doi.org/10.3390/su151310358