Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization
Abstract
:1. Introduction
2. Target Selection Model
- n targets T1−Tn were found at time t0−t1.
- Calculate and filter the discovered debris to eliminate those that do not fall within the scope of the platform.
- Single target selection optimization. Calculate the relative position change of all targets that will enter the scope of action one by one according to their estimated tracks. Analyze their optimal action time when they can be effectively cleared (perigee is less than 200 km) to obtain the optimal driving time.
- Multi objective sequence optimization. With the goal of achieving the best overall driving effect throughout the entire time period, analyze the time conflict situation of the action window for all targets entering the range of action, resolve conflicts, and form a driving time sequence.
- After the target enters the range, it is sequentially driven according to the sequence.
2.1. Centimeter Space Debris Removal Scene
2.2. Single Debris Selection
2.2.1. Laser Impulse Calculation
2.2.2. Orbital Motion Model
2.3. Multiple Debris Selection
- , if there is no conflict, debris i should be added to the feasible solution.
- , while , a conflict resolution algorithm needs to be used.
- , some conflicts require the use of conflict resolution algorithms.
- , if there is a complete conflict and no solution, then debris i should be added to the tabu table.
3. Results and Discussion
3.1. Debris Removal Scenarios
3.2. Single Debris selection
3.3. Multi Debris Selection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, L.; Vladimir, A. Review of contact and contactless active space debris removal approaches. Prog. Aerosp. Sci. 2022, 134, 100858. [Google Scholar]
- Shan, M.; Shi, L. Comparison of Tethered Post-Capture System Models for Space Debris Removal. Aerospace 2022, 9, 33. [Google Scholar] [CrossRef]
- Barea, A.; Urrutxua, H.; Cadarso, L. Large-scale object selection and trajectory planning for multi-target space debris removal missions. Acta Astronaut. 2020, 170, 289–301. [Google Scholar] [CrossRef]
- Leomanni, M.; Bianchini, G.; Garulli, A.; Giannitrapani, A.; Quartullo, R. Orbit control techniques for space debris removal missions using electric propulsion. J. Guid. Control. Dyn. 2020, 43, 1259–1268. [Google Scholar] [CrossRef]
- Phipps, C.R.; Boustie, M.; Chevalier, J.M.; Baton, S.; Brambrink, E.; Berthe, L.; Schneider, M.; Videau, L.; Boyer, S.A.R.; Scharring, S. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength. J. Appl. Phys. 2017, 122, 193103. [Google Scholar] [CrossRef]
- Hakima, H.; Bazzocchi, M.C.F. Low-Thrust Trajectory Design for Controlled Deorbiting and Reentry of Space Debris. In Proceedings of the 2021 IEEE Aerospace Conference, Big Sky, MT, USA, 6–13 March 2021; Volume 50100, pp. 1–10. [Google Scholar]
- Jankovic, M.; Yüksel, M.; Babr, M.M.; Letizia, F.; Braun, V. Space debris ontology for ADR capture methods selection. Acta Astronaut. 2020, 173, 56–68. [Google Scholar] [CrossRef]
- Phipps, C.R.; Loktionov, E.Y.; Bonnal, C.; Boyer, S.A.E.; Sharaborova, E.; Tahan, G. Is laser space propulsion practical?: Review. Appl. Opt. 2021, 60, 1–11. [Google Scholar] [CrossRef]
- Chang, H.; Ye, J.; Zhou, W. Effects of Typical Laser Wavelength on Impulse Coupling Characteristics Ablated by Nanosecond Pulsed Laser with Al Target. J. Propuls. Technol. 2015, 36, 1754–1760. [Google Scholar]
- Stefan, S.; Jascha, W.; Eckel, H.A. Laser-based removal of irregularly shaped space debris. Opt. Eng. 2016, 56, 011007. [Google Scholar]
- Phipps, C.R.; Luke, J.; Funk, D.; Moore, D.; Glownia, J.; Lippert, T. Laser impulse coupling at 130 fs. Appl. Surf. Sci. 2006, 252, 4838–4844. [Google Scholar] [CrossRef]
- Mark, C.P.; Kamath, S. Review of Active Space Debris Removal Methods. Space Policy 2019, 47, 194–206. [Google Scholar] [CrossRef]
- Jiang, T.; Cao, Y.F.; Ding, M. Progress of Space Debris Detection Technology. Laser Optoelectron. Prog. 2022, 59, 1415010. [Google Scholar]
- Hakima, H.; Emami, M.R. Assessment of active methods for removal of LEO debris. Acta Astronaut. 2018, 144, 225–243. [Google Scholar] [CrossRef]
- Scharring, S.; Eisert, L.; Lorbeer, R.A. Momentum predictability and heat accumulation in laser-based space debris removal. Opt. Eng. 2018, 58, 011004. [Google Scholar] [CrossRef] [Green Version]
- Tsuno, K.; Wada, S.; Ogawa, T. Laser ablation induced impulse study for removal of space debris mission using small satellite. Appl. Phys. 2022, 128, 121–130. [Google Scholar] [CrossRef]
- Zhao, S.; Steindorfer, M.; Kirchner, G. Attitude analysis of space debris using SLR and light curve data measured with single-photon detector. Adv. Space Res. 2020, 65, 1518–1527. [Google Scholar] [CrossRef]
- Daisuke, S.; Yasuhiro, Y.; Toshiya, H.; Yuki, I.; Tadanori, F. Contactless attitude control of an uncooperative satellite by laser ablation. Acta Astronaut. 2022, 196, 275–281. [Google Scholar]
- Sagnières, L.B.M.; Sharf, I.; Deleflie, F. Simulation of long-term rotational dynamics of large space debris: A TOPEX/Poseidon case study. Adv. Space Res. 2020, 65, 1182–1195. [Google Scholar] [CrossRef]
- Ali, M. Interactive fuzzy Bayesian search algorithm: A new reinforced swarm intelligence tested on engineering and mathematical optimization problems. Expert Syst. Appl. 2022, 187, 115954. [Google Scholar]
- Ali, M.; Mahsa, M. Differential evolution method integrated with a fuzzy decision-making mechanism and Virtual Mutant agent: Theory and application. Appl. Soft Comput. 2021, 112, 107808. [Google Scholar]
- Ngoc, T.H.; Tien, V.T.N.; Nguyen, T.T.; Quoc-Manh, N. Optimizing Magnification Ratio for the Flexible Hinge Displacement Amplifier Mechanism Design. In Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development, Nha Trang, Vietnam, 12–15 November 2020; pp. 769–778. [Google Scholar]
- Al-Nimr, M.; Milhem, A.; Al-Bishawi, B.; Al Khasawneh, K. Integrating Transparent and Conventional Solar Cells TSC/SC. Sustainability 2020, 12, 7483. [Google Scholar] [CrossRef]
- Nazarenko, A.I.; Usovik, I.V. Space debris in low earth orbits region: Formation and reduction process analysis in past decade. Acta Astronaut. 2022, 194, 210231. [Google Scholar] [CrossRef]
- Sarkar, M.; Barad, S.; Mohit, A. Development of a novel autonomous space debris collision avoidance system for uncrewed spacecraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 2940–2952. [Google Scholar] [CrossRef]
- Driedger, M.; Asgari, A.; Ferguson, P. Feasibility of Gathering Resident Space Object Range Measurements Using In-Orbit Observers. IEEE J. Radio Freq. Identif. 2022, 6, 250–257. [Google Scholar] [CrossRef]
- Obukhov, V.A.; Kirillov, V.A.; Petukhov, V.G. Control of a service satellite during its mission on space debris removal from orbits with high inclination by implementation of an ion beam method. Acta Astronaut. 2022, 194, 390–400. [Google Scholar] [CrossRef]
- Carvalho, J.; Moraes, R.D.; Prado, A. Analysis of the orbital evolution of space debris using a solar sail and natural forces. Adv. Space Res. 2022, 70, 125–143. [Google Scholar] [CrossRef]
- Herrera-Jaramillo, D.A.; Henao-Bravo, E.E.; González Montoya, D.; Ramos-Paja, C.A.; Saavedra-Montes, A.J. Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter. Sustainability 2021, 13, 7689. [Google Scholar] [CrossRef]
- Miao, H.; Zhang, L.; Liu, S.; Zhang, S.; Memon, S.; Zhu, B. Laser Sealing for Vacuum Plate Glass with PbO-TiO2-SiO2-RxOy Solder. Sustainability 2020, 12, 3118. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Liu, G.; Pan, Q.T. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAAJ 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Jorgensen, M.K.; Sharf, I. Optimal planning for a multiple space debris removal mission using high-accuracy low-thrust transfers. Acta Astronaut. 2020, 172, 56–69. [Google Scholar] [CrossRef]
- Viavattene, G.; Devereux, E.; Snelling, D.; Payne, N.; Wokes, S.; Ceriotti, M. Design of multiple space debris removal missions using machine learning. Acta Astronaut. 2022, 193, 277–286. [Google Scholar] [CrossRef]
- Ajay, K.; Seema, B. Generalized Ant Colony Optimizer: Swarm-based meta-heuristic algorithm for cloud services execution. Computing 2019, 101, 1609–1632. [Google Scholar]
- Liu, S.; Zhang, Q.; Zhou, D. Obstacle Avoidance Path Planning of Space Manipulator Based on Improved Artificial Potential Field Method. J. Inst. Eng. 2014, 95, 31–39. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, H.; Yang, Y. Ant Colony Optimization-based Design of Multiple-target Active Debris Removal Mission. Trans. Jpn. Soc. Aeronaut. Space Sci. 2018, 61, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Stuart, J.; Howell, K.; Wilson, R. Application of multi-agent coordination methods to the design of space debris mitigation tours. Adv. Space Res. 2016, 57, 1680–1697. [Google Scholar] [CrossRef]
- Ntagiou, E.V.; Armellin, R.; Iacopino, C.; Policella, N.; Donati, A. Ant-based automated mission planning for data relay space missions. J. Aerosp. Inf. Syst. 2019, 16, 249–262. [Google Scholar] [CrossRef]
- Zhao, H.T.; Zhang, C.S. An online-learning-based evolutionary many-objective algorithm. Inf. Sci. 2020, 509, 1–21. [Google Scholar] [CrossRef]
- Maxim, A.D. An Adaptive Polyploid Memetic Algorithm for scheduling trucks at a cross-docking terminal. Inf. Sci. 2021, 565, 390–421. [Google Scholar]
- Junayed, P.; Arriana, L.N.; Amir, M.; Tian, G.D.; Li, Z.W.; Wang, H.; Maxim, A.D. Exact and metaheuristic algorithms for the vehicle routing problem with a factory-in-a-box in multi-objective settings. Adv. Eng. Inform. 2022, 52, 101623. [Google Scholar]
- Gholizadeh, H.; Fazlollahtabar, H.; Amir, M.F.F.; Maxim, A.D. Preventive maintenance for the flexible flowshop scheduling under uncertainty: A waste-to-energy system. Environ. Sci. Pollut. Res. 2021, 1–20. [Google Scholar] [CrossRef]
- Dulebenets, M.A.; Kavoosi, M.; Abioye, O.; Pasha, J. A Self-Adaptive Evolutionary Algorithm for the Berth Scheduling Problem: Towards Efficient Parameter Control. Algorithms 2018, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Masoud, R.; Nastaran, O.A.; Niloofar, A.S. Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. J. Ind. Manag. Optim. 2022, 18, 1035–1062. [Google Scholar]
Parameters Name | Value |
---|---|
Altitude | 650 km |
Inclination | 97.7° |
Right ascension | 120° |
Detection range | 200 km |
Laser driving range | 100 km |
Attitude pointing turning speed | 15°·s−1 |
Laser single pulse energy | 300 J |
Spot diameter | 15 cm |
Pulse width | 50 nm |
Repetition frequency | 100 Hz |
Debris No. | Start Point (s) | End Point (s) | Perigee before Ablation (km) | Perigee in the End (km) | Total Ablation Time (s) | Total Impulses (Counts) |
---|---|---|---|---|---|---|
5 | 3.366 | 9.1304 | 547.13 | 538.43 | 5.7644 | 577 |
9 | 0.4006 | 4.0593 | 646.80 | 644.98 | 3.6587 | 366 |
12 | 0.0025 | 1.0425 | 560.64 | 560.40 | 1.0400 | 104 |
13 | 0.1110 | 0.2911 | 551.62 | 540.51 | 0.1801 | 18 |
16 | 0.0559 | 1.0536 | 515.45 | 509.86 | 0.9977 | 100 |
20 | 0.0320 | 3.8829 | 485.59 | 482.39 | 3.8509 | 385 |
22 | 0.0198 | 2.6900 | 732.91 | 730.93 | 2.6702 | 267 |
23 | 2.4485 | 6.8648 | 578.77 | 333.93 | 4.4163 | 442 |
24 | 3.7218 | 64.6199 | 597.27 | 225.09 | 60.8981 | 6090 |
37 | 1.1161 | 24.2846 | 685.82 | 574.21 | 23.1685 | 2317 |
64 | 11.8880 | 104.4701 | 509.83 | 199.85 | 92.5821 | 9258 |
234 | 10.0590 | 167.2413 | 474.85 | 199.74 | 157.1823 | 15,718 |
370 | 24.1154 | 140.9113 | 520.92 | 199.78 | 116.7959 | 11,680 |
Parameters Name | Variable | Value |
---|---|---|
Number of ants | mAnt | 20 |
Transfer Rule Parameters | str | 0.5 |
Importance of pheromone | alpha | 1 |
Importance of heuristic function | beta | 3 |
Importance of waiting time | gama | 1 |
Importance of window width for orbit reduction | delta | 1 |
Pheromone volatilization factor | rho | 0.85 |
Maximum number of iterations | iter_max | 20 |
Stop condition for deviation of objective function | MaxStallGen | 5 |
Sequence No. | Debris No. | Start Point (s) | End Point (s) | Perigee before Ablation (km) | Perigee after Ablation (km) | Total Ablation Time (s) | Total Impulses (Counts) |
---|---|---|---|---|---|---|---|
7 | 64 | 11.8880 | 104.4701 | 509.8295 | 199.8850 | 92.5819 | 9259 |
16 | 269 | 108.8915 | 162.5621 | 595.7943 | 389.8226 | 53.6702 | 5367 |
18 | 234 | 167.2413 | 281.6858 | 474.8490 | 199.7381 | 114.4445 | 11,445 |
19 | 99 | 286.8095 | 468.8938 | 524.2445 | 450.2049 | 183.0840 | 18,309 |
Sequence No. | Debris No. | Start Point (s) | End Point (s) | Perigee before Ablation (km) | Perigee after Ablation (km) | Total Ablation Time (s) | Total Impulses (Counts) |
---|---|---|---|---|---|---|---|
1 | 306 | 0.8238 | 1.1715 | 554.2266 | 553.2588 | 0.3476 | 34 |
8 | 351 | 8.6938 | 50.4794 | 556.0903 | 455.0806 | 41.7860 | 4179 |
15 | 24 | 64.6202 | 162.1677 | 597.2702 | 227.3991 | 97.5478 | 9755 |
18 | 234 | 167.2413 | 281.6858 | 474.8490 | 199.7381 | 114.4445 | 11,445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Fu, H.; Shao, Z.; Wu, Q.; Chen, C. Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization. Sustainability 2023, 15, 10380. https://doi.org/10.3390/su151310380
Yang W, Fu H, Shao Z, Wu Q, Chen C. Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization. Sustainability. 2023; 15(13):10380. https://doi.org/10.3390/su151310380
Chicago/Turabian StyleYang, Wulin, Hongya Fu, Zhongxi Shao, Qiang Wu, and Chuan Chen. 2023. "Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization" Sustainability 15, no. 13: 10380. https://doi.org/10.3390/su151310380
APA StyleYang, W., Fu, H., Shao, Z., Wu, Q., & Chen, C. (2023). Target Selection for a Space-Energy Driven Laser-Ablation Debris Removal System Based on Ant Colony Optimization. Sustainability, 15(13), 10380. https://doi.org/10.3390/su151310380