A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art
Abstract
:1. Introduction
2. Sources of CO2
3. Approaches to Reduce CO2 Emission
4. Conventional CO2 Reduction Processes
- Pre-combustion: whereby CO2 is extracted from fossil fuels before they are burned [37].
- Oxyfuel combustion: whereby pure oxygen (instead of air) is used to combust fossil fuels, producing only CO2 and water vapor. The latter is separated from the CO2 via condensation, and pure CO2 is collected and used in many ways [38]. Formic acid and its esters, formamides, methanol, dimethyl carbonate, alkylene carbonates, carbamic acid esters, lactones, carboxylic acids, and polycarbonates are a few examples of the products that can be made using it as a feedstock [39].
5. Chemical CO2 Capturing Methods
5.1. Absorption
5.1.1. Physical Absorption
5.1.2. Chemical Absorption
5.1.3. Adsorption
6. Advances in State-Of-The-Art
7. Biological Processes
7.1. Bacteria-Based Processes
7.2. Cyanobacteria-Based Process
Species | Type | Initial CO2 Concentration in the Feed (% v/v) | % CO2 Removal | Fixation Rate (g L−1 d−1) | Products (Concentrations) | Source |
---|---|---|---|---|---|---|
H. stevensii | Bacteria | 5–15 (±1) | 98 | 0.174–0.218 g L−1 d−1 | Dodecanol, Tetradecanol, Pentadecanol | [88] |
Alkalibaculum bacchi | Bacteria | 15–30 | - | - | Ethanol (1.7 g/L) | [30] |
Scenedesmus obliquus CNW-N | Bacteria | 2.5% | 840.6–1435.90 | Carbohydrate (1420.6 mg/L d), Lipid (840.6 mg/ L d) | [103] | |
Synechocystis sp. PCC6803 | Cyanobacteria | - | - | - | Acetone (36 mg/L), Ethanol (5.5 g/L), Ethylene (171 µg/L per day), Fatty acids (197 mg/L) | [98,99] |
Synechococcus elongatus sp. PCC 7942 | Cyanobacteria | - | - | - | 2,3 Butanediol (2.4 g/L), 1-Butanol (30 mg/L), Isobutanol (450 mg/L) | [98] |
Scenedesmus sp. | Bacteria | 7% | 85% | Biodiesel | [104] | |
Chlorococcum littorale | Green Algae | 5% | - | - | Biomass | [105] |
Synechococcus elongatus | Cyanobacteria | 0.04 to 60% | - | - | [106] | |
Chlorella sp. | Bacteria | 0.04 to 11.6% | 60% | Biogas | [107] | |
Genetically modified Acetobacterium woodii | Bacteria | 15–60% | 99% | Acetate (50 g/L) | [77] | |
Acetoanaerobium noterae | Bacteria | 25–60% | 95.4% (conversion to acetate 34%) | 2.7% | Acetate (0.3 g/L) and CH4 > 95% | [108] |
Clostridium ljungdahlii | Bacteria | - | - | - | Acetate: (1.68 g/L/d) | [109] |
Tetraselmis suecica | Bacteria | 0.04–30% | 96.89 mg L−1 d−1 | Organic acid | [110] |
7.3. Algae-Based Process
7.3.1. Prospective of Algae in Process
- High nutrient removal: algae efficiently remove nutrients like nitrogen and phosphorus, helping to mitigate water pollution and prevent eutrophication in water bodies.
- Effective carbon sequestration: algae capture and store CO2, reducing greenhouse gas emissions and contributing to climate change mitigation efforts.
- Renewable resources: the harvested algal biomass can be utilized for the production of various valuable products, contributing to the development of a sustainable bioeconomy.
- Energy-efficient: algae-based wastewater treatment and CO2 capture systems can operate with low energy requirements compared to traditional treatment processes or other carbon capture technologies.
- Potential for decentralized systems: algae cultivation systems can be implemented at different scales, allowing for localized wastewater treatment and CO2 capture in areas with limited infrastructure.
7.3.2. Added Values from the Using Algae
7.4. H2-Based Process
8. The Current and Future Trends of the
9. The Techno-Economic Assessment (TEA) of Technologies
- ➢
- ➢
- Cost Reduction: optimizing the process conditions, improving catalysts or enzyme efficiencies, and scaling up production would produce a cost-effective process.
- ➢
- Feedstock Availability: the availability and cost of capturing the CO2 as feedstock significantly impact the economic feasibility of
- ➢
- Market Potential: evaluations of the proposed technologies should consider the dynamics of the market, including demand, pricing, competition, and regulatory frameworks.
- ➢
- Value-Added Products: the potential and revenue of any is highly correlated to the final product (biofuels, chemicals, polymers, and pharmaceuticals).
- ➢
- Process Optimization: the importance of process optimization to achieve feasible technology was emphasized. Practices such as strain engineering, metabolic pathway optimization, and fermentation conditions would have a direct impact on the process economy.
- ➢
- Scale-Up Challenges: scaling up any processes from laboratory to industrial scale poses challenges. There is an urgent need for robust and efficient bioreactor systems, optimal process design, and cost-effective downstream processing to achieve economic feasibility at larger scales.
- ➢
- Policy Support: supportive policies, such as carbon pricing mechanisms, renewable energy standards, and incentives for CO2 utilization technologies, are key factors in enhancing the economic viability of projects.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sowiżdżał, A.; Starczewska, M.; Papiernik, B. Future Technology Mix—Enhanced Geothermal System (EGS) and Carbon Capture, Utilization, and Storage (CCUS)—An Overview of Selected Projects as an Example for Future Investments in Poland. Energies 2022, 15, 3505. [Google Scholar] [CrossRef]
- Anwar, M.; Fayyaz, A.; Sohail, N.; Khokhar, M.; Baqar, M.; Yasar, A.; Rasool, K.; Nazir, A.; Raja, M.; Rehan, M.; et al. CO2 utilization: Turning greenhouse gas into fuels and valuable products. J. Environ. Manag. 2020, 260, 110059. [Google Scholar] [CrossRef] [PubMed]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent advances in microbial CO2 fixation and conversion to value-added products. Chem. Eng. J. 2020, 390, 124584. [Google Scholar] [CrossRef]
- Bierwirth, P. Carbon Dioxide Toxicity and Climate Change: A Major Unapprehended Risk for Human Health; ResearchGate: Berlin, Germany, 2019. [Google Scholar]
- Bonfim-Rocha, L.; Silva, A.B.; de Faria, S.H.B.; Vieira, M.F.; de Souza, M. Production of Sodium Bicarbonate from CO2 Reuse Processes: A Brief Review. Int. J. Chem. React. Eng. 2019, 18, 20180318. [Google Scholar] [CrossRef]
- Esposito, E.; Dellamuzia, L.; Moretti, U.; Fuoco, A.; Giorno, L.; Jansen, J.C. Simultaneous production of biomethane and food grade CO2 from biogas: An industrial case study. Energy Environ. Sci. 2018, 12, 281–289. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, S.Y.; Li, H.; Cai, J.; Olabi, A.G.; Anthony, E.J.; Manovic, V. Recent advances in carbon dioxide utilization. Renew. Sustain. Energy Rev. 2020, 125, 109799. [Google Scholar] [CrossRef]
- Riegler, P.; Chrusciel, T.; Mayer, A.; Doll, K.; Weuster-Botz, D. Reversible retrofitting of a stirred-tank bioreactor for gas-lift operation to perform synthesis gas fermentation studies. Biochem. Eng. J. 2018, 141, 89–101. [Google Scholar] [CrossRef]
- Stoll, I.K.; Boukis, N.; Sauer, J. Syngas Fermentation to Alcohols: Reactor Technology and Application Perspective. Chem. Ing. Tech. 2020, 92, 125–136. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Kennes, C.; Lens, P.N. Enhanced solventogenesis in syngas bioconversion: Role of process parameters and thermodynamics. Chemosphere 2022, 299, 134425. [Google Scholar] [CrossRef]
- Mathews, S.L.; Epps, M.J.; Blackburn, R.K.; Goshe, M.B.; Grunden, A.M.; Dunn, R.R. Public questions spur the discovery of new bacterial species associated with lignin bioconversion of industrial waste. R. Soc. Open Sci. 2019, 6, 180748. [Google Scholar] [CrossRef] [Green Version]
- Chilakamarry, C.R.; Sakinah, A.M.; Zularisam, A.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 2021, 343, 126065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, X.; Wang, Y.; Jiang, N. A critical review of biomineralization in environmental geotechnics: Applications, trends, and perspectives. Biogeotechnics 2023, 1, 100003. [Google Scholar] [CrossRef]
- Sun, X.; Atiyeh, H.K.; Huhnke, R.L.; Tanner, R.S. Syngas fermentation process development for production of biofuels and chemicals: A review. Bioresour. Technol. Rep. 2019, 7, 100279. [Google Scholar] [CrossRef]
- Handler, R.M.; Shonnard, D.R.; Griffing, E.M.; Lai, A.; Palou-Rivera, I. Life Cycle Assessments of Ethanol Production via Gas Fermentation: Anticipated Greenhouse Gas Emissions for Cellulosic and Waste Gas Feedstocks. Ind. Eng. Chem. Res. 2015, 55, 3253–3261. [Google Scholar] [CrossRef]
- Barati, B.; Zafar, F.F.; Qian, L.; Wang, S.; Abomohra, A.E.-F. Bioenergy characteristics of microalgae under elevated carbon dioxide. Fuel 2022, 321, 123958. [Google Scholar] [CrossRef]
- Zhao, T.-T.; Feng, G.-H.; Chen, W.; Song, Y.-F.; Dong, X.; Li, G.-H.; Zhang, H.-J.; Wei, W. Artificial bioconversion of carbon dioxide. Chin. J. Catal. 2019, 40, 1421–1437. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Rosado, P. Energy; Our World in Data: Oxford, UK, 2022. [Google Scholar]
- Andrae, A.S. Hypotheses for primary energy use, electricity use and CO2 emissions of global computing and its shares of the total between 2020 and 2030. WSEAS Trans. Power Syst. 2020, 15, 4. [Google Scholar]
- Si, R.; Aziz, N.; Raza, A. Short and long-run causal effects of agriculture, forestry, and other land use on greenhouse gas emissions: Evidence from China using VECM approach. Environ. Sci. Pollut. Res. 2021, 28, 64419–64430. [Google Scholar] [CrossRef]
- Chevallier, J. COVID-19 Outbreak and CO2 Emissions: Macro-Financial Linkages. J. Risk Financ. Manag. 2020, 14, 12. [Google Scholar] [CrossRef]
- Wu, S.; Zhou, W.; Xiong, X.; Burr, G.; Cheng, P.; Wang, P.; Niu, Z.; Hou, Y. The impact of COVID-19 lockdown on atmospheric CO2 in Xi’an, China. Environ. Res. 2021, 197, 111208. [Google Scholar] [CrossRef]
- Elmobarak, W.F.; Almomani, F.; Tawalbeh, M.; Al-Othman, A.; Martis, R.; Rasool, K. Current status of CO2 capture with ionic liquids: Development and progress. Fuel 2023, 344, 128102. [Google Scholar] [CrossRef]
- Madejski, P.; Chmiel, K.; Subramanian, N.; Kuś, T. Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies. Energies 2022, 15, 887. [Google Scholar] [CrossRef]
- Zabermawi, N.M.; Alsulaimany, F.A.; El-Saadony, M.T.; El-Tarabily, K.A. New eco-friendly trends to produce biofuel and bioenergy from microorganisms: An updated review. Saudi J. Biol. Sci. 2022; in press. [Google Scholar] [CrossRef]
- Zhang, S.; Zhuang, Y.; Liu, L.; Zhang, L.; Du, J. Optimization-based approach for CO2 utilization in carbon capture, utilization and storage supply chain. Comput. Chem. Eng. 2020, 139, 106885. [Google Scholar] [CrossRef]
- Bui, M.; Adjiman, C.S.; Bardow, A.; Anthony, E.J.; Boston, A.; Brown, S.; Fennell, P.S.; Fuss, S.; Galindo, A.; Hackett, L.A.; et al. Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 2018, 11, 1062–1176. [Google Scholar] [CrossRef] [Green Version]
- Khraisheh, M.; Mukherjee, S.; Kumar, A.; Al Momani, F.; Walker, G.; Zaworotko, M.J. An overview on trace CO2 removal by advanced physisorbent materials. J. Environ. Manag. 2019, 255, 109874. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Liu, H.; Hou, Z.; Mehmood, F.; Liao, J.; Feng, W. A Review of CO2 Storage in View of Safety and Cost-Effectiveness. Energies 2020, 13, 600. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Atiyeh, H.K.; Tanner, R.S.; Wilkins, M.R.; Huhnke, R.L. Fermentative production of ethanol from syngas using novel moderately alkaliphilic strains of Alkalibaculum bacchi. Bioresour. Technol. 2012, 104, 336–341. [Google Scholar] [CrossRef]
- Choi, Y.Y.; Patel, A.K.; Hong, M.E.; Chang, W.S.; Sim, S.J. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresour. Technol. Rep. 2019, 7, 100270. [Google Scholar] [CrossRef]
- Singh, H.M.; Kothari, R.; Gupta, R.; Tyagi, V. Bio-fixation of flue gas from thermal power plants with algal biomass: Overview and research perspectives. J. Environ. Manag. 2019, 245, 519–539. [Google Scholar] [CrossRef] [PubMed]
- Larkin, P.; Bird, S.; Gattinger, M. Carbon Capture, Utilization and Storage—Polarization, Public Confidence and Decision-Making; University of Ottawa: Ottawa, ON, Canada, 2021. [Google Scholar]
- Saeidi, S.; Najari, S.; Hessel, V.; Wilson, K.; Keil, F.J.; Concepción, P.; Suib, S.L.; Rodrigues, A.E. Recent advances in CO2 hydrogenation to value-added products—Current challenges and future directions. Prog. Energy Combust. Sci. 2021, 85, 100905. [Google Scholar] [CrossRef]
- Alok, A.; Shrestha, R.; Ban, S.; Devkota, S.; Uprety, B.; Joshi, R. Technological advances in the transformative utilization of CO2 to value-added products. J. Environ. Chem. Eng. 2021, 10, 106922. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 2015, 9, 82–102. [Google Scholar] [CrossRef]
- Rosner, F.; Chen, Q.; Rao, A.; Samuelsen, S. Thermo-economic analyses of isothermal water gas shift reactor integrations into IGCC power plant. Appl. Energy 2020, 277, 115500. [Google Scholar] [CrossRef]
- Abdelaal, M.; El-Riedy, M.; El-Nahas, A.M.; El-Wahsh, F.R. Characteristics and flame appearance of oxy-fuel combustion using flue gas recirculation. Fuel 2021, 297, 120775. [Google Scholar] [CrossRef]
- Dibenedetto, A.; Angelini, A.; Stufano, P. Use of carbon dioxide as feedstock for chemicals and fuels: Homogeneous and heterogeneous catalysis. J. Chem. Technol. Biotechnol. 2013, 89, 334–353. [Google Scholar] [CrossRef]
- Wu, X.; Wang, M.; Liao, P.; Shen, J.; Li, Y. Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation. Appl. Energy 2019, 257, 113941. [Google Scholar] [CrossRef]
- Mukherjee, A.; Okolie, J.A.; Abdelrasoul, A.; Niu, C.; Dalai, A.K. Review of post-combustion carbon dioxide capture technologies using activated carbon. J. Environ. Sci. 2019, 83, 46–63. [Google Scholar] [CrossRef]
- Hu, G.; Nicholas, N.J.; Smith, K.H.; Mumford, K.A.; Kentish, S.E.; Stevens, G.W. Carbon dioxide absorption into promoted potassium carbonate solutions: A review. Int. J. Greenh. Gas Control 2016, 53, 28–40. [Google Scholar] [CrossRef]
- Khalifa, O.; Alkhatib, I.I.; Bahamon, D.; Alhajaj, A.; Abu-Zahra, M.R.; Vega, L.F. Modifying absorption process configurations to improve their performance for Post-Combustion CO2 capture—What have we learned and what is still Missing? Chem. Eng. J. 2022, 430, 133096. [Google Scholar] [CrossRef]
- Pauzi, M.M.M.; Azmi, N.; Lau, K.K. Emerging Solvent Regeneration Technologies for CO2 Capture through Offshore Natural Gas Purification Processes. Sustainability 2022, 14, 4350. [Google Scholar] [CrossRef]
- Pinto, A.M.; Rodríguez, H.; Arce, A.; Soto, A. Combined physical and chemical absorption of carbon dioxide in a mixture of ionic liquids. J. Chem. Thermodyn. 2014, 77, 197–205. [Google Scholar] [CrossRef]
- Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO2 Capture by Absorption and Adsorption. Aerosol Air Qual. Res. 2012, 12, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Yu, Y.; Qin, Z.; Zhang, Z. The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines. Energy Procedia 2014, 63, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
- Olajire, A.A. CO2 capture and separation technologies for end-of-pipe applications—A review. Energy 2010, 35, 2610–2628. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Habib, M.; Bamidele, O.; Basha, M.; Qasem, N.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations—A review. Appl. Energy 2016, 161, 225–255. [Google Scholar] [CrossRef]
- Dhoke, C.; Zaabout, A.; Cloete, S.; Amini, S. Review on Reactor Configurations for Adsorption-Based CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 3779–3798. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Park, S.-J. A review on solid adsorbents for carbon dioxide capture. J. Ind. Eng. Chem. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- Gaikwad, S.; Kim, Y.; Han, S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. J. Environ. Chem. Eng. 2021, 9, 105523. [Google Scholar] [CrossRef]
- Fatima, S.S.; Borhan, A.; Ayoub, M.; Ghani, N.A. Development and progress of functionalized silica-based adsorbents for CO2 capture. J. Mol. Liq. 2021, 338, 116913. [Google Scholar] [CrossRef]
- Kusumastuti, R.; Sriyono; Pancoko, M.; Butar-Butar, S.; Putra, G.E.; Tjahjono, H. Study on The Mechanism of CO2 Adsorption Process on zeolite 5A as a Molecular Sieve in RDE System: An Infrared Investigation. J. Phys. Conf. Ser. 2019, 1198, 032009. [Google Scholar] [CrossRef]
- Wang, M.; Yao, L.; Wang, J.; Zhang, Z.; Qiao, W.; Long, D.; Ling, L. Adsorption and regeneration study of polyethylenimine-impregnated millimeter-sized mesoporous carbon spheres for post-combustion CO2 capture. Appl. Energy 2016, 168, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, R.; Gonzalez-Diaz, A.; Smallbone, A.; Lamidi, R.; Roskilly, A. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl. Therm. Eng. 2020, 169, 125362. [Google Scholar] [CrossRef]
- Hinkov, I.; Lamari, F.; Langlois, P.; Dicko, M.; Chilev, C.; Pentchev, I. Carbon dioxide capture by adsorption. J. Chem. Technol. Metall. (JCTM) 2016, 51, 609–626. [Google Scholar]
- Velmurugan, R.; Incharoensakdi, A. Heterologous Expression of Ethanol Synthesis Pathway in Glycogen Deficient Synechococcus elongatus PCC 7942 Resulted in Enhanced Production of Ethanol and Exopolysaccharides. Front. Plant Sci. 2020, 11, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, B.D.; Reppas, N.B.; Robertson, D.E. Ethanol Production in Microorganisms. Google Patents EP2344652A1, 11 November 2015. [Google Scholar]
- Ramachandriya, K.D.; Kundiyana, D.K.; Wilkins, M.R.; Terrill, J.B.; Atiyeh, H.K.; Huhnke, R.L. Carbon dioxide conversion to fuels and chemicals using a hybrid green process. Appl. Energy 2013, 112, 289–299. [Google Scholar] [CrossRef]
- Arantes, A.L.; Moreira, J.; Diender, M.; Parshina, S.N.; Stams, A.J.M.; Alves, M.; Alves, J.; Sousa, D.Z. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic Acetobacterium wieringae Strain JM. Front. Microbiol. 2020, 11, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotter, J.L.; Chinn, M.S.; Grunden, A.M. Ethanol and acetate production by Clostridium ljungdahlii and Clostridium autoethanogenum using resting cells. Bioprocess Biosyst. Eng. 2008, 32, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Saxena, J.; Tanner, R.S. Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnol. 2010, 38, 513–521. [Google Scholar] [CrossRef]
- Yasin, M.; Park, S.; Jeong, Y.; Lee, E.Y.; Lee, J.; Chang, I.S. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation. Bioresour. Technol. 2014, 169, 637–643. [Google Scholar] [CrossRef]
- Ungerman, A.J.; Heindel, T.J. Carbon Monoxide Mass Transfer for Syngas Fermentation in a Stirred Tank Reactor with Dual Impeller Configurations. Biotechnol. Prog. 2008, 23, 613–620. [Google Scholar] [CrossRef]
- Díaz, I.; Pérez, C.; Alfaro, N.; Fdz-Polanco, F. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes. Bioresour. Technol. 2015, 185, 246–253. [Google Scholar] [CrossRef]
- Daniell, J.; Köpke, M.; Simpson, S.D. Commercial Biomass Syngas Fermentation. Energies 2012, 5, 5372–5417. [Google Scholar] [CrossRef] [Green Version]
- Gaddy, J.L.; Arora, D.K.; Ko, C.-W.; Phillips, J.R.; Basu, R.; Wikstrom, C.V.; Clausen, E.C. Methods for Increasing the Production of Ethanol from Microbial Fermentation; Bioengineering Resources, Inc.: Fayetteville, AR, USA, 2007. [Google Scholar]
- Sinharoy, A.; Pakshirajan, K.; Lens, P.N. Syngas Fermentation for Bioenergy Production: Advances in Bioreactor Systems. In Renewable Energy Technologies for Energy Efficient Sustainable Development; Springer: Cham, Switzerland, 2022; pp. 325–358. [Google Scholar]
- Fenske, C.F.; Yasin; Strübing, D.; Koch, K. Preliminary gas flow experiments identify improved gas flow conditions in a pilot-scale trickle bed reactor for H2 and CO2 biological methanation. Bioresour. Technol. 2023, 371, 128648. [Google Scholar] [CrossRef]
- Thomas, B.; Ohde, D.; Matthes, S.; Bubenheim, P.; Terasaka, K.; Schlüter, M.; Liese, A. Enhanced enzyme stability and gas utilization by microbubble aeration applying microporous aerators. Catal. Sci. Technol. 2022, 13, 1098–1110. [Google Scholar] [CrossRef]
- Kundiyana, D.K.A. Process Engineering and Scale-Up of Autotrophic Clostridium Strain P11 Syngas Fermentation. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2010. [Google Scholar]
- Gayathri, R.; Mahboob, S.; Govindarajan, M.; Al-Ghanim, K.A.; Ahmed, Z.; Al-Mulhm, N.; Vodovnik, M.; Vijayalakshmi, S. A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks. J. King Saud Univ. Sci. 2021, 33, 101282. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ho, S.-H. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. Chemosphere 2021, 291, 132863. [Google Scholar] [CrossRef] [PubMed]
- Velvizhi, G.; Sarkar, O.; Rovira-Alsina, L.; Puig, S.; Mohan, S.V. Conversion of carbon dioxide to value added products through anaerobic fermentation and electro fermentation: A comparative approach. Int. J. Hydrog. Energy 2022, 47, 15442–15455. [Google Scholar] [CrossRef]
- Chhandama, M.V.L.; Satyan, K.B.; Changmai, B.; Vanlalveni, C.; Rokhum, S.L. Microalgae as a feedstock for the production of biodiesel: A review. Bioresour. Technol. Rep. 2021, 15, 100771. [Google Scholar] [CrossRef]
- Lai, C.-Y.; Zhou, L.; Yuan, Z.; Guo, J. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions. Water Res. 2021, 197, 117120. [Google Scholar] [CrossRef]
- Prasad, R.K.; Chatterjee, S.; Mazumder, P.B.; Gupta, S.K.; Sharma, S.; Vairale, M.G.; Datta, S.; Dwivedi, S.K.; Gupta, D.K. Bioethanol production from waste lignocelluloses: A review on microbial degradation potential. Chemosphere 2019, 231, 588–606. [Google Scholar] [CrossRef]
- Almomani, F.; Judd, S.; Bhosale, R.R.; Shurair, M.; Al-Jaml, K.; Khraisheh, M. Intergraded wastewater treatment and carbon bio-fixation from flue gases using Spirulina platensis and mixed algal culture. Process. Saf. Environ. Prot. 2019, 124, 240–250. [Google Scholar] [CrossRef]
- Oliveira, G.M.; Caetano, N.; Mata, T.M.; Martins, A.A. Biofixation of CO2 emissions from natural gas combined cycle power plant. Energy Rep. 2020, 6, 140–146. [Google Scholar] [CrossRef]
- Wood, H.G.; Werkman, C.H. The utilization of CO2 by the propionic acid bacteria. Biochem. J. 1938, 32, 1262–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantera, S.; Tamarit, D.; Strong, P.J.; Sánchez-Andrea, I.; Ettema, T.J.G.; Sousa, D.Z. Prospective CO2 and CO bioconversion into ectoines using novel microbial platforms. Rev. Environ. Sci. Bio/Technol. 2022, 21, 571–581. [Google Scholar] [CrossRef]
- Younesi, H.; Najafpour, G.; Mohamed, A.R. Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem. Eng. J. 2005, 27, 110–119. [Google Scholar] [CrossRef]
- Anand, A.; Raghuvanshi, S.; Gupta, S. Trends in Carbon Dioxide (CO2) Fixation by Microbial Cultivations. Curr. Sustain. Energy Rep. 2020, 7, 40–47. [Google Scholar] [CrossRef]
- Zeng, A.-P. New bioproduction systems for chemicals and fuels: Needs and new development. Biotechnol. Adv. 2019, 37, 508–518. [Google Scholar] [CrossRef]
- Claassens, N.J.; Sánchez-Andrea, I.; Sousa, D.Z.; Bar-Even, A. Towards sustainable feedstocks: A guide to electron donors for microbial carbon fixation. Curr. Opin. Biotechnol. 2018, 50, 195–205. [Google Scholar] [CrossRef]
- Cantera, S.; Muñoz, R.; Lebrero, R.; López, J.C.; Rodríguez, Y.; García-Encina, P.A. Technologies for the bioconversion of methane into more valuable products. Curr. Opin. Biotechnol. 2018, 50, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Raghuvanshi, S.; Gupta, S.; Raj, K. Application of novel thermo-tolerant haloalkalophilic bacterium Halomonas stevensii for bio mitigation of gaseous phase CO2: Energy assessment and product evaluation studies. Process. Biochem. 2017, 55, 133–145. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, W.-M.; Chang, J.-S. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 2010, 101, 8725–8730. [Google Scholar] [CrossRef] [PubMed]
- Diekert, G.; Wohlfarth, G. Metabolism of homoacetogens. Antonie Van Leeuwenhoek 1994, 66, 209–221. [Google Scholar] [CrossRef]
- Xu, S.; Qiao, Z.; Luo, L.; Sun, Y.; Wong, J.W.-C.; Geng, X.; Ni, J. On-site CO2 bio-sequestration in anaerobic digestion: Current status and prospects. Bioresour. Technol. 2021, 332, 125037. [Google Scholar] [CrossRef] [PubMed]
- Gleizer, S.; Ben-Nissan, R.; Bar-On, Y.M.; Antonovsky, N.; Noor, E.; Zohar, Y.; Jona, G.; Krieger, E.; Shamshoum, M.; Bar-Even, A.; et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 2019, 179, 1255–1263.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czech, L.; Hermann, L.; Stöveken, N.; Richter, A.A.; Höppner, A.; Smits, S.H.J.; Heider, J.; Bremer, E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes 2018, 9, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, V.; Moltó, J.L.; Lebrero, R.; Muñoz, R. Ectoine Production from Biogas in Waste Treatment Facilities: A Techno-Economic and Sensitivity Analysis. ACS Sustain. Chem. Eng. 2021, 9, 17371–17380. [Google Scholar] [CrossRef]
- Savakis, P.; Tan, X.; Du, W.; dos Santos, F.B.; Lu, X.; Hellingwerf, K.J. Photosynthetic production of glycerol by a recombinant cyanobacterium. J. Biotechnol. 2015, 195, 46–51. [Google Scholar] [CrossRef]
- Liu, R.; Li, S.; Tu, Y.; Hao, X.; Qiu, F. Recovery of value-added products by mining microalgae. J. Environ. Manag. 2022, 307, 114512. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Li, S.; Chen, L.; Zhang, W. Exploring and validating key factors limiting cyanobacteria-based CO2 bioconversion: Case study to maximize myo-inositol biosynthesis. Chem. Eng. J. 2023, 452, 126553. [Google Scholar] [CrossRef]
- Yu, Y.; You, L.; Liu, D.; Hollinshead, W.; Tang, Y.J.; Zhang, F. Development of Synechocystis sp. PCC 6803 as a Phototrophic Cell Factory. Mar. Drugs 2013, 11, 2894–2916. [Google Scholar] [CrossRef] [Green Version]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of Current Potentials and Applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Hirokawa, Y.; Maki, Y.; Hanai, T. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions. Metab. Eng. 2017, 39, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Chalotra, T.; Pathak, A.K.; Raina, N. Role of Microbes in Wastewater Treatment and Energy Generation Potentials: A Sustainable Approach. In Microbial Biotechnology: Role in Ecological Sustainability and Research; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022; pp. 265–311. [Google Scholar]
- Shahid, A.; Malik, S.; Liu, C.-G.; Musharraf, S.G.; Siddiqui, A.J.; Khan, F.; Tarbiah, N.I.; Gull, M.; Rashid, U.; Mehmood, M.A. Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. J. Water Process. Eng. 2020, 39, 101702. [Google Scholar] [CrossRef]
- Ho, S.-H.; Chen, C.-Y.; Chang, J.-S. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 113, 244–252. [Google Scholar] [CrossRef]
- Kandimalla, P.; Desi, S.; Vurimindi, H. Mixotrophic cultivation of microalgae using industrial flue gases for biodiesel production. Environ. Sci. Pollut. Res. 2015, 23, 9345–9354. [Google Scholar] [CrossRef]
- Ota, M.; Takenaka, M.; Sato, Y.; Smith, R.L., Jr.; Inomata, H. Effects of light intensity and temperature on photoautotrophic growth of a green microalga, Chlorococcum littorale. Biotechnol. Rep. 2015, 7, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Miyairi, S. CO2 assimilation in a thermophilic cyanobacterium. Energy Convers. Manag. 1995, 36, 763–766. [Google Scholar] [CrossRef]
- Marín, D.; Posadas, E.; Cano, P.; Pérez, V.; Lebrero, R.; Muñoz, R. Influence of the seasonal variation of environmental conditions on biogas upgrading in an outdoors pilot scale high rate algal pond. Bioresour. Technol. 2018, 255, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Omar, B.; Abou-Shanab, R.; El-Gammal, M.; Fotidis, I.A.; Kougias, P.G.; Zhang, Y.; Angelidaki, I. Simultaneous biogas upgrading and biochemicals production using anaerobic bacterial mixed cultures. Water Res. 2018, 142, 86–95. [Google Scholar] [CrossRef]
- Cheng, H.-H.; Syu, J.-C.; Tien, S.-Y.; Whang, L.-M. Biological acetate production from carbon dioxide by Acetobacterium woodii and Clostridium ljungdahlii: The effect of cell immobilization. Bioresour. Technol. 2018, 262, 229–234. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K. Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci. Total Environ. 2017, 584–585, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Viswanaathan, S.; Sudhakar, M. Microalgae: Potential agents for CO2 mitigation and bioremediation of wastewaters. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–148. [Google Scholar] [CrossRef]
- Ou, L.; Banerjee, S.; Xu, H.; Coleman, A.M.; Cai, H.; Lee, U.; Wigmosta, M.S.; Hawkins, T.R. Utilizing high-purity carbon dioxide sources for algae cultivation and biofuel production in the United States: Opportunities and challenges. J. Clean. Prod. 2021, 321, 128779. [Google Scholar] [CrossRef]
- Kondaveeti, S.; Abu-Reesh, I.M.; Mohanakrishna, G.; Bulut, M.; Pant, D. Advanced Routes of Biological and Bio-electrocatalytic Carbon Dioxide (CO2) Mitigation Toward Carbon Neutrality. Front. Energy Res. 2020, 8, 94. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Chen, P.; Ji, C.; Kang, Q.; Lu, B.; Li, K.; Liu, J.; Ruan, R. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1163–1175. [Google Scholar] [CrossRef]
- Bose, A.; Lin, R.; Rajendran, K.; O’Shea, R.; Xia, A.; Murphy, J.D. How to optimise photosynthetic biogas upgrading: A perspective on system design and microalgae selection. Biotechnol. Adv. 2019, 37, 107444. [Google Scholar] [CrossRef]
- Satoh, A.; Kurano, N.; Miyachi, S. Inhibition of photosynthesis by intracellular carbonic anhydrase in microalgae under excess concentrations of CO2. Photosynth. Res. 2001, 68, 215–224. [Google Scholar] [CrossRef]
- Hanagata, N.; Takeuchi, T.; Fukuju, Y.; Barnes, D.J.; Karube, I. Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 1992, 31, 3345–3348. [Google Scholar] [CrossRef]
- Savile, C.K.; Lalonde, J.J. Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr. Opin. Biotechnol. 2011, 22, 818–823. [Google Scholar] [CrossRef]
- Rani, S.; Gunjyal, N.; Ojha, C.S.P.; Singh, R.P. Review of Challenges for Algae-Based Wastewater Treatment: Strain Selection, Wastewater Characteristics, Abiotic, and Biotic Factors. J. Hazard. Toxic Radioact. Waste 2021, 25, 03120004. [Google Scholar] [CrossRef]
- Al Ketife, A.M.; Al Momani, F.; Judd, S. A bioassimilation and bioaccumulation model for the removal of heavy metals from wastewater using algae: New strategy. Process. Saf. Environ. Prot. 2020, 144, 52–64. [Google Scholar] [CrossRef]
- Shurair, M.; Almomani, F.; Bhosale, R.; Khraisheh, M.; Qiblawey, H. Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based–flocculants: Effect on harvesting efficiency, water recovery and algal cell morphology. Bioresour. Technol. 2019, 281, 250–259. [Google Scholar] [CrossRef] [PubMed]
- AlMomani, F.; Örmeci, B. Assessment of algae-based wastewater treatment in hot climate region: Treatment performance and kinetics. Process. Saf. Environ. Prot. 2020, 141, 140–149. [Google Scholar] [CrossRef]
- Znad, H.; Al Ketife, A.M.; Judd, S.; AlMomani, F.; Vuthaluru, H.B. Bioremediation and nutrient removal from wastewater by Chlorella vulgaris. Ecol. Eng. 2018, 110, 1–7. [Google Scholar] [CrossRef]
- Almomani, F.A. Assessment and modeling of microalgae growth considering the effects OF CO2, nutrients, dissolved organic carbon and solar irradiation. J. Environ. Manag. 2019, 247, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Al Ketife, A.M.; Al Momani, F.; El-Naas, M.; Judd, S. A technoeconomic assessment of microalgal culture technology implementation for combined wastewater treatment and CO2 mitigation in the Arabian Gulf. Process. Saf. Environ. Prot. 2019, 127, 90–102. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, Q.; Wang, J.; Zhao, J.; Zhang, Z.; Lei, Z.; Yuan, T.; Shimizu, K.; Liu, Y.; Lee, D.-J. Insight into the rapid biogranulation for suspended single-cell microalgae harvesting in wastewater treatment systems: Focus on the role of extracellular polymeric substances. Chem. Eng. J. 2022, 430, 132631. [Google Scholar] [CrossRef]
- Almomani, F. Algal cells harvesting using cost-effective magnetic nano-particles. Sci. Total Environ. 2020, 720, 137621. [Google Scholar] [CrossRef]
- Almomani, F.; Omar, A.; Al Ketife, A.M.D. Chapter 7–Application of microalgae in wastewater treatment: Simultaneous nutrient removal and carbon dioxide bio-fixation for biofuel feedstock production. In Petroleum Industry Wastewater; El-Naas, M.H., Banerjee, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 87–101. [Google Scholar] [CrossRef]
- Rony, Z.I.; Mofijur, M.; Hasan, M.; Ahmed, S.; Almomani, F.; Rasul, M.; Jahirul, M.; Show, P.L.; Kalam, M.; Mahlia, T. Unanswered issues on decarbonizing the aviation industry through the development of sustainable aviation fuel from microalgae. Fuel 2023, 334, 126553. [Google Scholar] [CrossRef]
- Kannah, R.Y.; Kavitha, S.; Banu, J.R.; Sivashanmugam, P.; Gunasekaran, M.; Kumar, G. A Mini Review of Biochemical Conversion of Algal Biorefinery. Energy Fuels 2021, 35, 16995–17007. [Google Scholar] [CrossRef]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef]
- Arun, S.; Sinharoy, A.; Pakshirajan, K.; Lens, P.N. Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew. Sustain. Energy Rev. 2020, 132, 110041. [Google Scholar] [CrossRef]
- Mathimani, T.; Pugazhendhi, A. Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal. Agric. Biotechnol. 2019, 17, 326–330. [Google Scholar] [CrossRef]
- Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2020, 11, 22. [Google Scholar] [CrossRef]
- Pugliese, A.; Biondi, L.; Bartocci, P.; Fantozzi, F. Selenastrum Capricornutum a New Strain of Algae for Biodiesel Production. Fermentation 2020, 6, 46. [Google Scholar] [CrossRef]
- Akash, S.; Sivaprakash, B.; Rajamohan, N.; Vo, D.-V.N. Biotechnology to convert carbon dioxide into biogas, bioethanol, bioplastic and succinic acid using algae, bacteria and yeast: A review. Environ. Chem. Lett. 2023, 21, 1477–1497. [Google Scholar] [CrossRef]
- Ayub, H.M.U.; Ahmed, A.; Lam, S.S.; Lee, J.; Show, P.L.; Park, Y.-K. Sustainable valorization of algae biomass via thermochemical processing route: An overview. Bioresour. Technol. 2021, 344, 126399. [Google Scholar] [CrossRef]
- Andersson, V.; Heyne, S.; Harvey, S.; Berntsson, T. Integration of algae-based biofuel production with an oil refinery: Energy and carbon footprint assessment. Int. J. Energy Res. 2020, 44, 10860–10877. [Google Scholar] [CrossRef]
- Jeyakumar, N.; Hoang, A.T.; Nižetić, S.; Balasubramanian, D.; Kamaraj, S.; Pandian, P.L.; Sirohi, R.; Nguyen, P.Q.P.; Nguyen, X.P. Experimental investigation on simultaneous production of bioethanol and biodiesel from macro-algae. Fuel 2022, 329, 125362. [Google Scholar] [CrossRef]
- Ramachandra, T.; Hebbale, D. Bioethanol from macroalgae: Prospects and challenges. Renew. Sustain. Energy Rev. 2019, 117, 109479. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Economou, C.N.; Stefanidou, N.; Moustaka-Gouni, M.; Genitsaris, S.; Aggelis, G.; Tekerlekopoulou, A.G.; Vayenas, D.V. A semi-continuous algal-bacterial wastewater treatment process coupled with bioethanol production. J. Environ. Manag. 2023, 326, 116717. [Google Scholar] [CrossRef]
- Ho, K.K.H.Y.; Redan, B.W. Impact of thermal processing on the nutrients, phytochemicals, and metal contaminants in edible algae. Crit. Rev. Food Sci. Nutr. 2020, 62, 508–526. [Google Scholar] [CrossRef] [PubMed]
- McCauley, J.I.; Labeeuw, L.; Jaramillo-Madrid, A.C.; Nguyen, L.N.; Nghiem, L.D.; Chaves, A.V.; Ralph, P.J. Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives. Curr. Pollut. Rep. 2020, 6, 188–205. [Google Scholar] [CrossRef]
- Sulfahri; Mushlihah, S.; Husain, D.R.; Langford, A.; Tassakka, A.C.M.A. Fungal pretreatment as a sustainable and low cost option for bioethanol production from marine algae. J. Clean. Prod. 2020, 265, 121763. [Google Scholar] [CrossRef]
- Soto-Sierra, L.; Wilken, L.R.; Mallawarachchi, S.; Nikolov, Z.L. Process development of enzymatically-generated algal protein hydrolysates for specialty food applications. Algal Res. 2021, 55, 102248. [Google Scholar] [CrossRef]
- Francezon, N.; Tremblay, A.; Mouget, J.-L.; Pasetto, P.; Beaulieu, L. Algae as a Source of Natural Flavors in Innovative Foods. J. Agric. Food Chem. 2021, 69, 11753–11772. [Google Scholar] [CrossRef] [PubMed]
- Tagliapietra, B.L.; Clerici, M.T.P.S. Brown algae and their multiple applications as functional ingredient in food production. Food Res. Int. 2023, 167, 112655. [Google Scholar] [CrossRef]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as Food in Europe: An Overview of Species Diversity and Their Application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.K.; Albarico, F.P.J.B.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.B.; Anwar, C.; Wani, H.M.U.D.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef]
- Kim, U.; Cho, D.-H.; Heo, J.; Yun, J.-H.; Choi, D.-Y.; Cho, K.; Kim, H.-S. Two-stage cultivation strategy for the improvement of pigment productivity from high-density heterotrophic algal cultures. Bioresour. Technol. 2020, 302, 122840. [Google Scholar] [CrossRef]
- Devadas, V.V.; Khoo, K.S.; Chia, W.Y.; Chew, K.W.; Munawaroh, H.S.H.; Lam, M.-K.; Lim, J.-W.; Ho, Y.-C.; Lee, K.T.; Show, P.L. Algae biopolymer towards sustainable circular economy. Bioresour. Technol. 2021, 325, 124702. [Google Scholar] [CrossRef]
- Lutzu, G.A.; Ciurli, A.; Chiellini, C.; Di Caprio, F.; Concas, A.; Dunford, N.T. Latest developments in wastewater treatment and biopolymer production by microalgae. J. Environ. Chem. Eng. 2020, 9, 104926. [Google Scholar] [CrossRef]
- Mal, N.; Satpati, G.; Raghunathan, S.; Davoodbasha, M. Current strategies on algae-based biopolymer production and scale-up. Chemosphere 2021, 289, 133178. [Google Scholar] [CrossRef]
- AlMomani, F.; Shawaqfah, M.; Alsarayreh, M.; Khraisheh, M.; Hameed, B.H.; Naqvi, S.R.; Berkani, M.; Varjani, S. Developing pretreatment methods to promote the production of biopolymer and bioethanol from residual algal biomass (RAB). Algal Res. 2022, 68, 102895. [Google Scholar] [CrossRef]
- de Castro, T.R.; de Macedo, D.C.; Chiroli, D.M.D.G.; da Silva, R.C.; Tebcherani, S.M. The Potential of Cleaner Fermentation Processes for Bioplastic Production: A Narrative Review of Polyhydroxyalkanoates (PHA) and Polylactic Acid (PLA). J. Polym. Environ. 2021, 30, 810–832. [Google Scholar] [CrossRef]
- Cooke, T.; Pomeroy, R.S. Chapter 11–The bioplastics market: History, commercialization trends, and the new eco-consumer. In Rethinking Polyester Polyurethanes; Pomeroy, R.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 261–280. [Google Scholar] [CrossRef]
- Thanigaivel, S.; Priya, A.; Kumar, P.S.; Shiong, K.K.; Hoang, T.K.; Rajendran, S.; Soto-Moscoso, M. Exploration of effective biorefinery approach to obtain the commercial value-added products from algae. Sustain. Energy Technol. Assess. 2022, 53, 102450. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; El-Shershaby, N.A. Algae as Bio-fertilizers: Between current situation and future prospective. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef]
- Reppun, F.; Syvertsen, J.; Martin, J.; Deenik, J.; Hoy, C. Soil management practices of farmers in the Kāneʻohe Bay watershed and potential for implementing algae-based soil amendments. Agroecol. Sustain. Food Syst. 2020, 45, 689–717. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Mousa, S.A.; Siddiq, A.; Nasr, H.M.; Nady, N.; Atalla, A.A. Optimal the mechanical properties of bioplastic blend based algae-(lactic acid-starch) using gamma irradiation and their possibility to use as compostable and soil conditioner. Mater. Today Commun. 2023, 34, 105472. [Google Scholar] [CrossRef]
- Tuhy, Ł.; Saeid, A.; Chojnacka, K. Algae Fertilizers. In Encyclopedia of Marine Biotechnology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 105–119. [Google Scholar] [CrossRef]
- Sun, J.; Norouzi, O.; Mašek, O. A state-of-the-art review on algae pyrolysis for bioenergy and biochar production. Bioresour. Technol. 2021, 346, 126258. [Google Scholar] [CrossRef]
- Chew, K.W.; Khoo, K.S.; Foo, H.T.; Chia, S.R.; Walvekar, R.; Lim, S.S. Algae utilization and its role in the development of green cities. Chemosphere 2020, 268, 129322. [Google Scholar] [CrossRef]
- Catone, C.; Ripa, M.; Geremia, E.; Ulgiati, S. Bio-products from algae-based biorefinery on wastewater: A review. J. Environ. Manag. 2021, 293, 112792. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Murmu, G.; Mukherjee, K.; Saha, S.; Maity, D. A comprehensive overview of nanotechnology in sustainable agriculture. J. Biotechnol. 2022, 355, 21–41. [Google Scholar] [CrossRef] [PubMed]
- Zabranska, J.; Pokorna, D. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Biotechnol. Adv. 2018, 36, 707–720. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, N.; Fdz-Polanco, M.; Fdz-Polanco, F.; Díaz, I. Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H2 and CO2. Bioresour. Technol. 2018, 258, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Bassani, I.; Kougias, P.G.; Treu, L.; Porté, H.; Campanaro, S.; Angelidaki, I. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading. Bioresour. Technol. 2017, 234, 310–319. [Google Scholar] [CrossRef]
- Angelidaki, I.; Treu, L.; Tsapekos, P.; Luo, G.; Campanaro, S.; Wenzel, H.; Kougias, P.G. Biogas upgrading and utilization: Current status and perspectives. Biotechnol. Adv. 2018, 36, 452–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Wei, W.; Song, L.; Woźniak-Karczewska, M.; Chrzanowski, Ł.; Ni, B.-J. Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas. Renew. Sustain. Energy Rev. 2021, 150, 111448. [Google Scholar] [CrossRef]
- Dada, O.; Mbohwa, C. Biogas Upgrade to Biomethane from Landfill Wastes: A Review. Procedia Manuf. 2017, 7, 333–338. [Google Scholar] [CrossRef]
- Li, Z.; Wachemo, A.C.; Yuan, H.; Korai, R.M.; Li, X. High levels of ammonia nitrogen for biological biogas upgrading. Int. J. Hydrog. Energy 2020, 45, 28488–28498. [Google Scholar] [CrossRef]
- Ji, X.; Su, Z.; Wang, P.; Ma, G.; Zhang, S. Integration of artificial photosynthesis system for enhanced electronic energy-transfer efficacy: A case study for solar-energy driven bioconversion of carbon dioxide to methanol. Small 2016, 12, 4753–4762. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.; Kumar, P.S.; Rangasamy, G.; Varjani, S. CO2 bio-mitigation using genetically modified algae and biofuel production towards a carbon net-zero society. Bioresour. Technol. 2022, 363, 127982. [Google Scholar] [CrossRef]
- Jin, T.; Wang, Y.; Yao, S.; Hu, C.; Ma, T.; Xia, W. Bioconversion of carbon dioxide to succinate by Citrobacter. Chem. Eng. J. 2023, 452, 139668. [Google Scholar] [CrossRef]
- Guo, F.; Qiao, Y.; Xin, F.; Zhang, W.; Jiang, M. Bioconversion of C1 feedstocks for chemical production using Pichia pastoris. Trends Biotechnol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, X.; Ji, X. Developing and regenerating cofactors for sustainable enzymatic CO2 conversion. Processes 2022, 10, 230. [Google Scholar] [CrossRef]
- Gupta, R.; Mishra, A.; Thirupathaiah, Y.; Chandel, A.K. Biochemical conversion of CO2 in fuels and chemicals: Status, innovation, and industrial aspects. Biomass Convers. Biorefinery 2022, 1–24. [Google Scholar] [CrossRef]
- Ren, M.; Schada von Borzyskowski, L. Two modules for biosynthesis from CO2. Nat. Synth. 2023, 1–3. [Google Scholar] [CrossRef]
- Scown, C.D.; Keasling, J.D. Sustainable manufacturing with synthetic biology. Nat. Biotechnol. 2022, 40, 304–307. [Google Scholar] [CrossRef]
- Zhang, Y.-H.P.; Myung, S.; You, C.; Zhu, Z.; Rollin, J.A. Toward low-cost biomanufacturing through in vitro synthetic biology: Bottom-up design. J. Mater. Chem. 2011, 21, 18877–18886. [Google Scholar] [CrossRef]
- Lee, E.Y.; Li, F.-L.; Wang, Y.; Wangikar, P.P.; Guarnieri, M.T.; Luan, G. Bioconversion and Biorefinery of C1 Compounds. Front. Media 2021, 12, 778962. [Google Scholar]
- Li, H.; Opgenorth, P.H.; Wernick, D.G.; Rogers, S.; Wu, T.-Y.; Higashide, W.; Malati, P.; Huo, Y.-X.; Cho, K.M.; Liao, J.C. Integrated electromicrobial conversion of CO2 to higher alcohols. Science 2012, 335, 1596. [Google Scholar] [CrossRef]
- Elahian, F.; Reiisi, S.; Shahidi, A.; Mirzaei, S.A. High-throughput bioaccumulation, biotransformation, and production of silver and selenium nanoparticles using genetically engineered Pichia pastoris. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Angelidaki, I.; Zhang, Y. In situ biogas upgrading by CO2-to-CH4 bioconversion. Trends Biotechnol. 2021, 39, 336–347. [Google Scholar] [CrossRef]
- Willke, T.; Vorlop, K.-D. Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 2004, 66, 131–142. [Google Scholar] [CrossRef]
- Neves, L.A.; Afonso, C.; Coelhoso, I.M.; Crespo, J.G. Integrated CO2 capture and enzymatic bioconversion in supported ionic liquid membranes. Sep. Purif. Technol. 2012, 97, 34–41. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Qi, Y.; Chen, G.; Song, Y.; Kansha, Y.; Kitamura, Y. Absorption-microalgae hybrid CO2 capture and biotransformation strategy—A review. Int. J. Greenh. Gas Control. 2019, 88, 109–117. [Google Scholar] [CrossRef]
- Claassens, N.J.; Cotton, C.A.; Kopljar, D.; Bar-Even, A. Making quantitative sense of electromicrobial production. Nat. Catal. 2019, 2, 437–447. [Google Scholar] [CrossRef]
- Bajracharya, S.; Srikanth, S.; Mohanakrishna, G.; Zacharia, R.; Strik, D.P.; Pant, D. Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects. J. Power Sources 2017, 356, 256–273. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, L.; Irfan, M.; Liang, T.-T.; Cheng, L.; Liu, Y.-F.; Liu, J.-F.; Yang, S.-Z.; Sand, W.; Gu, J.-D. Bioelectrochemical methane production from CO2 by Methanosarcina barkeri via direct and H2-mediated indirect electron transfer. Energy 2020, 210, 118445. [Google Scholar] [CrossRef]
- Kim, J.; Park, C.B. Shedding light on biocatalysis: Photoelectrochemical platforms for solar-driven biotransformation. Curr. Opin. Chem. Biol. 2019, 49, 122–129. [Google Scholar] [CrossRef]
- Wang, D.; Lee, S.H.; Han, S.; Kim, J.; Trang, N.V.T.; Kim, K.; Choi, E.-G.; Boonmongkolras, P.; Lee, Y.W.; Shin, B. Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chem. 2020, 22, 5151–5160. [Google Scholar] [CrossRef]
- Cantera, S.; Sousa, D.Z.; Sanchez-Andrea, I. Enhanced ectoines production by carbon dioxide capture: A step further towards circular economy. J. CO2 Util. 2022, 61, 102009. [Google Scholar] [CrossRef]
- Nisar, A.; Khan, S.; Hameed, M.; Nisar, A.; Ahmad, H.; Mehmood, S.A. Bio-conversion of CO2 into biofuels and other value-added chemicals via metabolic engineering. Microbiol. Res. 2021, 251, 126813. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.; Brandenburg, F.; Lau, A.; Last, M.G.; Spoelstra, W.K.; Reese, L.; Wunnava, S.; Dogterom, M.; Dekker, C. Spatiotemporal control of coacervate formation within liposomes. Nat. Commun. 2019, 10, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berhanu, S.; Ueda, T.; Kuruma, Y. Artificial photosynthetic cell producing energy for protein synthesis. Nat. Commun. 2019, 10, 1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, T.E.; Beneyton, T.; Schwander, T.; Diehl, C.; Girault, M.; McLean, R.; Chotel, T.; Claus, P.; Cortina, N.S.; Baret, J.-C. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 2020, 368, 649–654. [Google Scholar] [CrossRef]
- Cardoso, L.O.; Procópio, D.P.; Borrego, B.B.; Gracioso, L.H.; Stevani, C.V.; Freire, R.S.; do Nascimento, C.A.; Perpetuo, E.A. Overview of CO2 Bioconversion into Third-Generation (3G) Bioethanol—A Patent-Based Scenario. BioEnergy Res. 2022, 1–17. [Google Scholar] [CrossRef]
Substrate | Hydrogenotrophic Methanogens | Homoacetogens |
---|---|---|
H2/CO2 | Methanobacterium bryantii | Treponema |
Methanobacterium thermoalcaliphium | Clostridium ljungdahlii | |
Methanothermobacter thermoautotrophicm | Lysinibacillus fusiformis | |
Methanothermovacter wolfeii | Bacillus cereus | |
Methanolacinia paynteri | Lutispora | |
H2/CO2; HCOOH | Methanobacterium formicicum | |
Methanobrevibacter smithii | ||
H2/CO2; CH3OH; CH3NH2; CH3COOH | Methanosarcina barkeri | |
Methanosarcina thermophile | ||
Acetotrophic methanogens | ||
CH3OH; CH3COOH | Methanosarcina acetivorans | |
Methanosaeta concilii (soehngenii) | ||
Methanosaeta thermophila |
Challenge | Description | Mitigation Procedure |
---|---|---|
Low CO2 conversion Efficiency | processes have low conversion efficiency, limiting the overall carbon use potential. | Enhance the efficiency of enzymes and organisms through genetic engineering and metabolic pathway optimization. |
Substrate Availability | technologies may be impacted by the limited supply of suitable carbon substrates. | Increase the capacity of microorganisms to utilize carbon from CO2 captured directly in the air. |
Product Specificity | because of competing pathways and undesirable byproducts. | Create and improve biocatalysts or metabolic engineering techniques to improve product selectivity and reduce the production of byproducts. |
Scale-Up Challenges | systems from laboratory to industrial scales. | For effective scale-up, develop strong and efficient bioreactor systems, improve process parameters, and invest in pilot-scale demonstrations. |
Cost and Economics | technologies may be less economically competitive than standard fossil fuel-based processes. | Investigate cost-cutting options such as increasing productivity, lowering downstream processing costs, and gaining access to carbon pricing or incentives for CO2 use. |
Technological Readiness | methods are still in the early stages of development and lack the technological maturity required for widespread deployment. | Support research and development efforts, invest in technology demonstration projects, and foster collaborations between academia, industry, and government agencies to advance technology readiness. |
Regulatory and Policy Framework | impedes its commercialization and deployment. | Propose supportive policies such as carbon pricing mechanisms, renewable energy regulations, and incentives for CO2 utilization technologies. |
Environmental Impacts | processes, such as land use change or water usage. | Carry out thorough life cycle analyses to reduce environmental impacts, give sustainable sourcing of feedstocks top priority, and put water and land management policies into practice. |
Trend | Implication and Impact | Maturity Status | |
---|---|---|---|
Synthetic Biology | Advances in synthetic biology would enable the engineering of microorganisms and enzymes for efficient | Emerging | [180,181,182] |
Genetic Engineering | Genetic engineering techniques could optimize metabolic pathways in organisms for enhanced | Developing | [17,183,184] |
Novel Microorganisms | The discovery and utilization of new microorganisms capable of into valuable products such as biofuels, chemicals, and materials. | Promising | [185,186] |
Bioreactor Technologies | The design and operation of different types bioreactors have provided optimal growth conditions for efficient and to maximize the bioconversion efficiency. | Maturing | [167,170] |
CO2 Capture Techniques | Different processes were already established for the integration of CO2 capture techniques with to directly obtain CO2 from industrial emissions and reduce GHG emissions. | Established | [185,187,188] |
Electromicrobial Systems | Exploration of electro-microbial systems that utilize electrical energy to drive , enabling efficient and scalable conversion processes. | Emerging | [189] |
Algae Cultivation | Algae systems showed excellent efficiency in to uptake of CO2, which can efficiently convert into biomass, biofuels, and high-value compounds. | Maturing | [79,122,128] |
Bioelectrochemical Systems | Integration of bioelectrochemical systems that combine microbial catalysis with electrochemical reactions to enhance rates | Developing | [190,191] |
Biocatalysis | Advancement of biocatalytic processes, including enzyme engineering and immobilization, to enhance the efficiency and specificity of reactions. | Promising | [192,193] |
Carbon Utilization Platforms | Development of platforms that integrate various technologies, allowing for synergistic and efficient utilization of CO2 resources. | Emerging | [175,194] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almomani, F.; Abdelbar, A.; Ghanimeh, S. A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art. Sustainability 2023, 15, 10438. https://doi.org/10.3390/su151310438
Almomani F, Abdelbar A, Ghanimeh S. A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art. Sustainability. 2023; 15(13):10438. https://doi.org/10.3390/su151310438
Chicago/Turabian StyleAlmomani, Fares, Amera Abdelbar, and Sophia Ghanimeh. 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art" Sustainability 15, no. 13: 10438. https://doi.org/10.3390/su151310438
APA StyleAlmomani, F., Abdelbar, A., & Ghanimeh, S. (2023). A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art. Sustainability, 15(13), 10438. https://doi.org/10.3390/su151310438