Granite Landscapes and Landforms in the Castro de Ulaca Site (Ávila, Spain): A Narrow Relationship between Natural and Cultural Heritage
Abstract
:1. Introduction
2. Study Site
3. Methodology
4. Results and Discussion: The Granite Landform System and the Relationship with Cultural Heritage
4.1. The Landforms in the Castro de Ulaca
4.2. Distribution of Granite Landform in the Castro de Ulaca
- Culmination: It is characterized by the presence of flat areas with moderate slopes organized in a semicircle produced by the dismantling of the alterites in an initial phase of erosion. It has a general slope of 8° towards the NE. This wide culminating tectonic block, as in all cases in the Sierra, is the legacy of a pre-Oligocene erosion surface unlevelled by block tectonics [39,50,51,52] and partially eroded. In the upper zone, there are sandy depressions linked to the fracture crossings, forming small landings. These are where the springs are located, where the numerous remains of huts are located, as settlement was concentrated in this sector [20,34,63]. This environment is very deteriorated by human uses and nowadays colonized by vegetation, as they are places of wetness availability and are mainly staggered in the central and eastern depression. Sub-horizontal rock platforms and small-sized pedestal rocks are found in the culminating areas. The sub-horizontal rock platforms form wide rocky slopes, with a moderate inclination that follows the curvature of the joints without generating a positive relief. In ancient times, they were used as quarries due to the ease of extracting blocks of homogeneous dimensions. The tors, generated by differential fracture-controlled subsurface weathering and evacuation of debris, generate free-standing landforms on the slopes and elevated areas. They are common throughout the upper portion, although they are small in size.
- Stepped block slopes: On the northern slopes of the tectonic block, the dominant landforms are nubbins and boulder fields, but large pedestal rocks and tors are also present. The nubbins are the most representative granite landforms, as they are the beginning of the other landforms after dismantling by the erosion surface. They can be defined as the chaotic association of granite outcrop and boulders of different shapes and sizes, as a result of the alteration or weathering of granitic bodies. The boulder fields are gentle slopes dotted with blocks and boulders of varying sizes scattered across the slope. These landforms alternate with pedestal rocks, in some cases of large dimensions, rock platforms and half-domes in the lower parts, sandy depressions—locally called navas—and alterite corridors, the latter aligned in the direction of the fractures. It is, therefore, the area with the greatest diversity of granitic landforms, with straight and curved, vertical and horizontal fractures, slope erosive processes and periglacial ones. This diversity is derived from the greater structural complexity of the stepped blocks and the energy of the relief on the slopes. The main and best-defended access is concentrated in this sector, with the most complex walls, given that it was the most passable place, but there are also areas of settlement and cattle ranches in the navas [34,63].
- Fault line valley. On the southern slope, where the Picuezo River has incised a deep valley, the slopes are rectilinear and of approximately 24°. They form smooth, curvilinear walls that give rise to large subvertical rock platforms. Their morphology originates from curved fracturing, fluvial incision and stress relaxation, which generates half-domes and convex, steeply slope rock surfaces. These are the dominant granite landforms towards the Picuezo valley, together with boulder field, granite domes and domed landforms. Defensive use dominated in this sector, with walls between the nubbins, the latter being used for defence. The accesses to the river, where the mills were located, were also built.
- Microforms are found in all the environments of the study area. Among the smaller granitic landforms, gnammas and tafonis stand out. They are very frequent in Ulaca and have given rise to different uses, both sacred and every-day. The gnammas depressions with little depth are very frequent on horizontal surfaces of the higher areas where they reach depths of more than 50 cm, in all cases linked to joints. In the sanctuary or sacrificial altar, they have been used by humans and retouched to drain blood during ritual ceremonies. Tafonis, hollows in the vertical portions formed by the disaggregation of the rock due to humidity, are also very frequent. They are part of the larger forms and appear in the nubbins, boulder field, tor and pedestal rocks, forming a set of blocks and morphologies associated with arenizations.
4.3. The Granite Landforms and the Human Work
4.4. Education, Conservation and Management: The Mapping Distribution of Granite Landform in the Castro de Ulaca
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Panizza, M.; Piacente, S. Geomorphologia Culturale; Pitagora: Bologna, Italy, 2003. [Google Scholar]
- Panizza, M. Géomorphologie et tourisme dans un paysage culturel integré. In Géomorphologie et Tourisme; Reynard, E., Holzmann, C., Guex, D., Summermater, N., Eds.; IGUL, Université de Lausanne: Lausanne, Switzerland, 2003; pp. 11–18. [Google Scholar]
- Reynard, E. Geomorphosites and landscapes. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 21–34. [Google Scholar]
- Reynard, E.; Brilha, J. Geoheritage: A multidisciplinary and applied research topic. In Geoheritage: Assessment, Protection and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 3–9. [Google Scholar]
- Serrano, E.; González, J.J. Assessment of geomorphosites in natural protected areas: The Picos de Europa National Park (Spain). Géomorphologie Relief Process. Environ. 2005, 3, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Serrano, E.; González-Amuchastegui, M.J.; Ruiz-Pedrosa, R. Patrimonio natural y geomorfología. In Los Lugares de Interés Geomorfológico del Parque Natural del Cañón del Río Lobos; Universidad de Valladolid: Valladolid, Spain, 2020; 278p, ISBN 978-84-1320-106-1. [Google Scholar]
- Migoń, P. Granite Landscapes, Geodiversity and Geoheritage—Global Context. Heritage 2021, 4, 198–219. [Google Scholar] [CrossRef]
- Serrano, E.; González-Amuchastegui, M.J. Cultural heritage, landforms and integrated territorial heritage: The close relationship between tufas, cultural remains and landscape in the upper Ebro Basin (Cantabrian Mountains, Spain). Geoheritage 2020, 12, 86. [Google Scholar] [CrossRef]
- Cendrero, A. Geología ambiental, bases doctrinales y metodológicas. In Ponencias de la I Reunión de Geología Ambiental y Ordenación del Territorio; Grupo Español de Geología Ambiental y Ordenación del Territorio: Santander, Spain, 1980; pp. 1–62. [Google Scholar]
- Coratza, P.; Regolini-Bissig, G. Methods for mapping geomorphosites. In Geomorphosites; Reynard, E., Coratza, P., Regolini-Bissig, G., Eds.; Pfeil Verlag: München, Germany, 2009; pp. 89–103. [Google Scholar]
- Coratza, P.; Bollati, I.M.; Panizza, V.; Brandolini, P.; Castaldini, D.; Cucchi, F.; Deiana, G.; Del Monte, M.; Faccini, F.; Finocchiaro, F.; et al. Advances in Geoheritage Mapping: Application to Iconic Geomorphological Examples from the Italian Landscape. Sustainability 2021, 13, 11538. [Google Scholar] [CrossRef]
- Otto, J.C.; Smith, M. Geomorphological Mapping. In Geomorphological Techniques; Clarke, L., Ed.; British Society for Geomorphology: London, UK, 2013; Section 2.6. [Google Scholar]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Mapping Geosites for Geoheritage Management: A Methodological Proposal for the Regional Park of Picos de Europa (León, Spain). Environ. Manag. 2012, 50, 789–806. [Google Scholar] [CrossRef] [PubMed]
- Regolini-Bissig, G.; Reynard, E. Mapping Geoheritage. In Integrated Approach for the Inventory and Management of Geomorphological Heritage at the Regional Scale; Reynard, E., Perret, A., Bussard, J., Grangier, L., Martin, S., Eds.; Geoheritage: Lausanne, Switzerland, 2016; Volume 8, pp. 43–60. [Google Scholar]
- Regolini-Bissig, G. Cartographier les Géomorphosites: Objectifs, Publics et Propositions Méthodologiques; University of Lausanne: Lausanne, Switzerland, 2012. [Google Scholar]
- Carton, A.; Coratza, P.; Marchetti, M. Guidelines for geomorphological sites mapping: Examples from Italy. Géomorphologie Relief Process. Environ. 2005, 3, 209–218. [Google Scholar] [CrossRef]
- Bailey, H.; Smaldone, D.; Elmes, G.; Robert, B. Geointerpretation: The interpretive potential of maps. J. Interpret. Res. 2007, 12, 46–59. [Google Scholar] [CrossRef]
- Bouzekraoui, H.; Barakat, A.; Mouaddine, A.; El Youssi, M.; Touhami, F.; Hafid, A. Mapping geoheritage for geotourism management, a case study of Aït Bou Oulli Valley in Central High-Atlas (Morocco). Environ. Earth Sci. 2018, 77, 413. [Google Scholar] [CrossRef]
- Ruiz Zapatero, G. Castro de Ulaca. Solosancho, Ávila; Institución Gran Duque de Alba: Ávila, Spain, 2005. [Google Scholar]
- Ruiz Zapatero, G.; Álvarez Sanchís, J.R. Ulaca, la Pompeya Vetona. Rev. Arqueol. 1999, 216, 36–47. [Google Scholar]
- Rodríguez-Hernández, J. Los procesos técnicos de la cantería durante la Segunda Edad del Hierro en el occidente de la Meseta. Zephyrus 2012, 70, 113–130. [Google Scholar]
- Ruiz Zapatero, G.; Álvarez-Sanchís, J.R.; Rodríguez-Hernández, J. Urbanism in Iron Age Iberia: Two Worlds in Contact. J. Urban Archaeol. 2020, 1, 123–150. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, J.; Álvarez-Sanchís, J.R.; Maté-González, J.A.; Díaz-Sánchez, C.; Fernández-Barrientos, S.; Ruiz-Zapatero, G. Ancient sites and modern people: Raising awareness of Iron Age heritage in Central Spain. Heritage 2023, 6, 1128–1147. [Google Scholar] [CrossRef]
- Seijmonsbergen, A.C. The Modern Geomorphological Map. In Treatise on Geomorphology; Volume 14.4 Methods in Geomorphology; Switzer, A.D., Kennedy, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 35–52. [Google Scholar]
- Sequeira, M.A.; Paquet, H.; Begonha, A. Weathering of granites in a temperate climate (NW Portugal): Granitic saprolites and arenization. Catena 2002, 49, 41–56. [Google Scholar] [CrossRef]
- Serrano, E.; González, J.J. Environmental education and landscape leisure. Geotourist map and geomorphosites in the Picos de Europa. Environ. Sci. Geoj. Tour. Geosites 2011, 8, 295–308. [Google Scholar]
- Bouzekraoui, H.; Barakat, A.; El Youssi, M.; Touhami, F.; Mouaddine, A.; Zwolinski, Z. Mapping Geosites as Gateways to the Geotourism Management in Central High-Atlas (Morocco). Quaest. Geogr. 2018, 37, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Erhartic, B. Conserving geoheritage in Slovenia through geomorphosite mapping. In Mapping Geoheritage; Regolini-Bissig, G., Reynard, E., Eds.; Geovisions: Lausanne, Switzerland, 2010; Volume 35, pp. 47–63. [Google Scholar]
- Coratza, P.; Hobléa, F. The Specificities of Geomorphological Heritage. In Geoheritage. Assessment, Protection, and Management; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 87–106. [Google Scholar]
- Martín-Parra, L.M.; Martínez-Salanova, J.; Moreno, F. Mapa Geológico De España. Escala 1:50.000. Vadillo de la Sierra; IGME: Madrid, Spain, 2008. [Google Scholar]
- Álvarez-Sanchís, J.R. Los Vettones; Real Academia de la Historia: Madrid, Spain, 1999. [Google Scholar]
- Estaca-Gómez, V.; Rodríguez, J.; Gómez-Hernández, R.; Yravedra, J.; Ruiz-Zapatero, G.; Álvarez-Sanchís, J.R. Zooarchaeology of the Iron Age in Western Iberia: New Insights from the Celtic Oppidum of Ulaca. Archaeol. Anthropol. Sci. 2022, 14, 168. [Google Scholar] [CrossRef]
- Almagro Gorbea, M.; Álvarez Sanchís, J.R. La sauna de Ulaca: Saunas y baños iniciáticos en el mundo céltico. Cuad. Arqueol. Univ. Navar. 1993, 1, 177–253. [Google Scholar] [CrossRef]
- Álvarez Sanchís, J.R.; Ruiz Zapatero, G. Ulaca, la gran ciudad fortificada de los vettones. La Aventura De La Hist. 2004, 72, 104–107. [Google Scholar]
- Mariné, M. El castro de Ulaca (Solosancho, Ávila). Cien Años de gestión del patrimonio arqueológico. In Homenaje al Profesor Carlos Posac Mon; Instituto de Estudios Ceutíes: Ceuta, Spain, 1998; pp. 381–395. [Google Scholar]
- Maté-González, M.A.; Rodríguez-Hernández, J.; Sáez Blázquez, C.; Troitiño Torralba, L.; Sánchez-Aparicio, L.J.; Fernández Hernández, J.; Herrero Tejedor, T.R.; Fabián García, J.F.; Piras, M.; Díaz-Sánchez, C. Challenges and possibilities of archaeological sites virtual tours: The Ulaca Oppidum (Central Spain) as a case study. Remote Sens. 2022, 14, 524. [Google Scholar] [CrossRef]
- Maté-González, M.Á.; Sáez Blázquez, C.; Carrasco García, P.; Rodríguez-Hernández, J.; Fernández Hernández, J.; Vallés Iriso, J.; Torres, Y.; Troitiño Torralba, L.; Courtenay, L.A.; González-Aguilera, D. Towards a combined use of geophysics and remote sensing techniques for the characterization of a singular building: “El Torreón” (the Tower) at Ulaca Oppidum (Solosancho, Ávila, Spain). Sensors 2021, 21, 2934. [Google Scholar] [CrossRef]
- Smith, M.; Griffiths, J.; Paron, P. (Eds.) Geomorphological Mapping: Methods and Applications. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2011; Volume 15. [Google Scholar]
- Garzón, M.G.; Ubanell, A.G.; Rosales, F. Morfoestructura y sedimentación terciarias en el valle de Amblés (Sistema Central español). Cuad. Geol. Ibérica 1981, 7, 655–665. [Google Scholar]
- Moreno, F. Geomorfología. Memoria del Mapa Geomorfológico 1/50.000. Vadillo de la Sierra. Nº 530; Instituto Geológico y Minero: Madrid, Spain, 2008; pp. 29–37. [Google Scholar]
- Herrrero, M. Toledo Sonseca. Mapa geomorfológico E. 1/50.000; Intituto Geográfico Nacional: Madrid, Spain, 1988; pp. 629–657. [Google Scholar]
- Herrero, M. Método de Trabajo Para la Formación y el Diseño de Mapas Geomorfológicos. An. Geogr. Univ. Complut. 1988, 8, 25–40. [Google Scholar]
- IGUL. Légende Pour le Leveé de Cartes Géomorphologiques au 1:10.000; Institute de Geographie, Université de Lausanne: Lausanne, Switzerland, 1996. [Google Scholar]
- Peña Monné, J.L. (Ed.) Cartografía Geomorfológica. Básica y Aplicada; Geoforma Ediciones: Zaragoza, Spain, 1997. [Google Scholar]
- Tricart, J. Legende Pour le Carte Géomorphologique de la France au 1/50.000; Memoirs et Documents; CNRS: Paris, France, 1971. [Google Scholar]
- Twidale, C.R. Granite outcrops: Their utilisation and conservation. J. R. Soc. West. Aust. 2000, 83, 115–122. [Google Scholar]
- Bullón Mata, T.; Martinez de Pison, E.; Arenillas Parra, T.; Arenillas Parra, M.; Sanz Herráiz, C.; Troitiño Vinuesa, M.A.; Burgues Hoyos, J.A.; Juarez del Canto, D. Análisis del Medio Físico de Ávila: Delimitación de Unidades y Estructura Territorial; Junta de Castilla y León: Valladolid, Spain, 1988.
- De Vicente, G.; Vegas, R.; Muñoz-Martín, G.; Silva, P.G.; Andriessen, P.; Cloetingh, S.A.P.L.; González Casado, J.M.; Van Wees, J.D.; Álvarez, J.; Carbó, A.; et al. Cenozoic thick-skinned deformation and topography evolution of the Spanish Central System. Glob. Planet. Chang. 2007, 58, 335–381. [Google Scholar] [CrossRef] [Green Version]
- De Vicente, G.; Cunha, P.P.; Muñoz-Martín, A.; Cloetingh, S.A.P.L.; Olaiz, A.; Vegas, R. The Spanish-Portuguese Central System: An example of intense intraplatedeformation and strain partitioning. Tectonics 2018, 37, 4444–4469. [Google Scholar] [CrossRef] [Green Version]
- Birot, P.; Sole Sabaris, L. Investigaciones Sobre Morfología de la Cordillera Central Española; CSIC-Inst. J. S. Elcano: Madrid, Spain, 1954; pp. 1–87. [Google Scholar]
- Garzón, M.G.; de Pedraza, J.; Ubanell, A.G. Los modelos evolutivos del relieve del Sistema Central Ibérico (Sectores de Gredos y Guadar rama). Rev. Real Acad. Cienc. Exactas Físicas Y Nat. 1982, 76, 475–496. [Google Scholar]
- Moreno, F. Superficies de erosión y tectónica neógena en el extremo occidental del Sistema Central español. Geogaceta 1991, 9, 47–49. [Google Scholar]
- Molina, E.; Blanco, J.A.; Pellitero, E.; Cantano, M. Weathering processes and morphological evolution of the Spanish Hercynian massif. In International Geomorphology; Gardiner, V., Ed.; Wiley: Chichester, UK, 1987; pp. 957–977. [Google Scholar]
- Migoń, P.; Thomas, M.F. Grus weathering mantles. Problems of interpretation. Catena 2002, 49, 5–24. [Google Scholar] [CrossRef]
- De Prado, C. Descripción Física y Geológica de la Provincia de Madrid; Junta General de Estadística: Madrid, Spain, 1864; 219p. [Google Scholar]
- Migoń, P.; Vieira, G. Granite geomorphology and its geological controls, Serra da Estrela, Portugal. Geomorphology 2014, 226, 1–14. [Google Scholar] [CrossRef]
- Molina, E. Geomorfologia y Geoquímica del Paisaje: Dos Ejemplos en el Interior de la Meseta Ibérica; Ediciones Universidad de Salamanca: Salamanca, Spain, 1991; 72p. [Google Scholar]
- Pedraza, J. La morfogénesis del Sistema Central y su relación con la morfología granítica. Cuad. Lab. Xeolóxico Laxe 1989, 13, 31–46. [Google Scholar]
- Pedraza, J.; Sanz, M.Á.; Martín, A. Formas graníticas de La Pedriza; Comunidad de Madrid: Madrid, Spain, 1989; 205p. [Google Scholar]
- Migoń, P. Granite Landscapes of the World; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Twidale, C.R. Granite Landforms; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Twidale, C.R.; Vidal-Romani, J.R. Landforms and Geology of Granite Terrains; CRC Press: Londres, UK, 2005. [Google Scholar]
- Álvarez Sanchís, J.R. Ulaca: Una ciudad vetona. Desperta Ferro. Arqueol. E Hist. 2017, 15, 44–49. [Google Scholar]
Product | Source | Characteristics |
---|---|---|
Topographic Map 1/25,000 | Instituto Geográfico Nacional (IGN) http://centrodedescargas.cnig.es/ (accessed on 10 October 2022) | Contours line, interval original 10 m, in the map 50 m. |
Aerial photography | Agrarian Research Institute of Castilla y León (ITACYL) | 25 cm resolution aerial photographs |
Orthophotomaps | PNOA Plan Nacional de Ortofotografia Aérea. (https://mirame.chduero.es/chduero/viewer, accessed on 15 January 2023) Instituto Geográfico Nacional (IGN). | Variable resolution (25–45 cm/pixel) Terrain characteristics and landforms recognition (outcrops, deposits, landforms, etc.) |
MDT | Confederación Hidrográfica del Duero (https://mirame.chduero.es/chduero/viewer, accessed on 15 January 2023) | 5 m/pixel Terrain characteristics and landforms |
Stereoscopic viewer | Instituto Geográfico Nacional (IGN) http://www.ign.es/3d-stereo/, accessed on 21 Novenber 2022) Photograms of the PNOA. | Variable resolution (22–45 cm/pixel) Characteristics of the ground surface morphology |
3D models satellite images | Browser of Google Earth (https://earth.google.com/web/, accessed on 10 October 2022) IGN imagery (large scale) and Landsat imagery | Validation of the ground and terrain characteristics and a broader frame-work of geomorphological features |
3D models, UAV images. | Ulaca Virtual Tour USAL, Diputación de Ávila, IGDA. https://tidop.usal.es/Ulaca/ (accessed on 15 February 2023) | High resolution images. Micro-landforms and detailed features recognition |
Typology | Landforms and Processes | Geomorphological Setting | Morphological Criteria |
---|---|---|---|
Structural | Pop up limit | Limits of the half-horst and raised blocks | Structural lineaments limiting the raised blocks |
Tectonic lineament | Wide range of settings | Lineal structures related to faults and joints | |
Fractured-aligned valley | South side of Ulaca half-horst | Rectilinear valleys | |
Erosional surface | Degraded erosional surface | On the top of the half-horst | Culminant limit of flatted surface |
Granite | Nubbin | Wide range of settings on slopes and borders of the half-horst | Granite outcrop with redounded and vertical features |
Tor | On the top of the half-horst | Isolated granite outcrops partitioned by fractures | |
Rock platforms | Wide range of settings on the top of half-graben and the southern raised blocks | Granite outcrops with sheet structure and flat and curve morphologies directed by curve joints | |
Convex and steeply slope rock surface | Wide range of settings on the slopes of the half-horst | Granite outcrops with sheet structure, hard slope and curve morphologies directed by curve joints | |
Granite dome | Borders of the raised blocks | Domatic landforms directed by curve joints | |
Granite half-dome | Borders of the raised blocks | ||
Granite crest shaped | Water divides out of the half-horst | Towered and vertical granite out-crops limit by fractures | |
Boulder fields | On slopes and the bottom of the peripheral valleys | Rock fragments of big size on slopes and flats | |
Sandy depression | Wide range of settings on the top and the raised blocks | Small basin infill by fine sediments | |
Lineal sandy corridor | Wide range of settings on western and eastern slopes | Lineal basin on slopes infill by fine sediments. | |
Arenizations | On eastern slope | Surfaces and slopes covered by sands | |
Pedestal rocks | Wide range of settings on the half-horst borders and raised blocks | Isolated or free-standing blocks on a rock platform | |
Fluvial | River/stream | Bottom of the valleys | Water current |
Central depression limit | On the top of the half-horst | Curved limit of the central small basin | |
Palaeochannel | On the top of the half-horst | Narrow and small channel without water flow | |
V-shaped Fluvial valley | The northern limit of the half-horst | Valley with homogeneous slopes | |
Fluvial terraces | Bottom of the valley | Flat surfaces formed by fluvial and torrential sediments and hanging on the water flow |
Unit | Physiography | Granite Landforms | Human Uses | |
---|---|---|---|---|
Main | Secondaries | |||
Top | Flat and moderate slopes. | Small weathering depressions. Sheet structure rock platforms | Pedestal rocks Tor | Settlements, quarries, ritual and power building (altar and sauna) |
Northern Stepped blocks slopes | Steps and plains with hard slopes | Nubbins Boulder fields and Pedestal rocks | Tor Rock platform, half-domes, sandy depressions | Complex walls, settlements and cattle meadows |
Southern, eastern and western fault line valleys | Rectilinear slopes, hard slope ~24° | Subvertical rock platforms and convex and steeply slope rock surface | Half-domes, domes, boulder fields and Nubbins | Defensive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Pedrosa, R.M.; Serrano, E. Granite Landscapes and Landforms in the Castro de Ulaca Site (Ávila, Spain): A Narrow Relationship between Natural and Cultural Heritage. Sustainability 2023, 15, 10470. https://doi.org/10.3390/su151310470
Ruiz-Pedrosa RM, Serrano E. Granite Landscapes and Landforms in the Castro de Ulaca Site (Ávila, Spain): A Narrow Relationship between Natural and Cultural Heritage. Sustainability. 2023; 15(13):10470. https://doi.org/10.3390/su151310470
Chicago/Turabian StyleRuiz-Pedrosa, Rosa María, and Enrique Serrano. 2023. "Granite Landscapes and Landforms in the Castro de Ulaca Site (Ávila, Spain): A Narrow Relationship between Natural and Cultural Heritage" Sustainability 15, no. 13: 10470. https://doi.org/10.3390/su151310470
APA StyleRuiz-Pedrosa, R. M., & Serrano, E. (2023). Granite Landscapes and Landforms in the Castro de Ulaca Site (Ávila, Spain): A Narrow Relationship between Natural and Cultural Heritage. Sustainability, 15(13), 10470. https://doi.org/10.3390/su151310470