Explaining Global Trends in Cattle Population Changes between 1961 and 2020 Directly Affecting Methane Emissions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Temporal Trends in Cattle Population in Period 1961–2020
3.2. Relationship between Cattle Population and Other Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wuebbles, D. Atmospheric Methane and Global Change. Earth-Sci. Rev. 2002, 57, 177–210. [Google Scholar] [CrossRef]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Ed.; Institute for Global Environmental Strategies: Hayama, Japan, 2006; ISBN 978-4-88788-032-0. [Google Scholar]
- Tsuruta, A.; Aalto, T.; Backman, L.; Hakkarainen, J.; van der Laan-Luijkx, I.T.; Krol, M.C.; Spahni, R.; Houweling, S.; Laine, M.; Dlugokencky, E.; et al. Global Methane Emission Estimates for 2000–2012 from CarbonTracker Europe-CH4 v1.0. Geosci. Model Dev. 2017, 10, 1261–1289. [Google Scholar] [CrossRef] [Green Version]
- de Gouw, J.A.; Veefkind, J.P.; Roosenbrand, E.; Dix, B.; Lin, J.C.; Landgraf, J.; Levelt, P.F. Daily Satellite Observations of Methane from Oil and Gas Production Regions in the United States. Sci. Rep. 2020, 10, 1379. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Patra, P.K.; Ishijima, K.; Umezawa, T.; Ito, A.; Etheridge, D.M.; Sugawara, S.; Kawamura, K.; Miller, J.B.; Dlugokencky, E.J.; et al. Variations in Global Methane Sources and Sinks during 1910–2010. Atmos. Chem. Phys. 2015, 15, 2595–2612. [Google Scholar] [CrossRef] [Green Version]
- Maasakkers, J.D.; Jacob, D.J.; Sulprizio, M.P.; Scarpelli, T.R.; Nesser, H.; Sheng, J.-X.; Zhang, Y.; Hersher, M.; Bloom, A.A.; Bowman, K.W.; et al. Global Distribution of Methane Emissions, Emission Trends, and OH Concentrations and Trends Inferred from an Inversion of GOSAT Satellite Data for 2010–2015. Atmos. Chem. Phys. 2019, 19, 7859–7881. [Google Scholar] [CrossRef] [Green Version]
- Lassey, K.R. Livestock Methane Emission: From the Individual Grazing Animal through National Inventories to the Global Methane Cycle. Agric. For. Meteorol. 2007, 142, 120–132. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C.; et al. 11 Agriculture, Forestry and Other Land Use (AFOLU); Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Gerber, P.; Opio, C. Greenhouse Gas Emmission from Ruminant Supply Chains: A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107945-4. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Gerber, P.J., Ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 978-92-5-107920-1. [Google Scholar]
- Hedenus, F.; Wirsenius, S.; Johansson, D.J.A. The Importance of Reduced Meat and Dairy Consumption for Meeting Stringent Climate Change Targets. Clim. Change 2014, 124, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Wollenberg, E.; Richards, M.; Smith, P.; Havlík, P.; Obersteiner, M.; Tubiello, F.N.; Herold, M.; Gerber, P.; Carter, S.; Reisinger, A.; et al. Reducing Emissions from Agriculture to Meet the 2 °C Target. Glob. Change Biol. 2016, 22, 3859–3864. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems: Summary for Policymakers; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; ISBN 978-92-9169-154-8. [Google Scholar]
- Wójcik-Gront, E. Analysis of Sources and Trends in Agricultural GHG Emissions from Annex I Countries. Atmosphere 2020, 11, 392. [Google Scholar] [CrossRef] [Green Version]
- Owen, J.J.; Silver, W.L. Greenhouse Gas Emissions from Dairy Manure Management: A Review of Field-Based Studies. Glob. Change Biol. 2015, 21, 550–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.; Peng, S.; Yin, Y.; Ciais, P.; Havlik, P.; Herrero, M. The Key Role of Production Efficiency Changes in Livestock Methane Emission Mitigation. AGU Adv. 2021, 2, e2021AV000391. [Google Scholar] [CrossRef]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Ruegg, P.S.; Sheldon, I.M.; Stevenson, J.S. Invited Review: Learning from the Future—A Vision for Dairy Farms and Cows in 2067. J. Dairy Sci. 2018, 101, 3722–3741. [Google Scholar] [CrossRef] [Green Version]
- Salter, A.M. Improving the Sustainability of Global Meat and Milk Production. Proc. Nutr. Soc. 2017, 76, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Berndt, A.; Tomkins, N.W. Measurement and Mitigation of Methane Emissions from Beef Cattle in Tropical Grazing Systems: A Perspective from Australia and Brazil. Animal 2013, 7, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Prathap, P.; Chauhan, S.S.; Leury, B.J.; Cottrell, J.J.; Dunshea, F.R. Towards Sustainable Livestock Production: Estimation of Methane Emissions and Dietary Interventions for Mitigation. Sustainability 2021, 13, 6081. [Google Scholar] [CrossRef]
- Dangal, S.R.S.; Tian, H.; Zhang, B.; Pan, S.; Lu, C.; Yang, J. Methane Emission from Global Livestock Sector during 1890–2014: Magnitude, Trends and Spatiotemporal Patterns. Glob. Change Biol. 2017, 23, 4147–4161. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#home (accessed on 8 May 2023).
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Revell, B.J. One Man’s Meat … 2050? Ruminations on Future Meat Demand in the Context of Global Warming. J. Agric. Econ. 2015, 66, 573–614. [Google Scholar] [CrossRef]
- Stoll-Kleemann, S.; O’Riordan, T. The Sustainability Challenges of Our Meat and Dairy Diets. Environ. Sci. Policy Sustain. Dev. 2015, 57, 34–48. [Google Scholar] [CrossRef]
- Ganivet, E. Growth in Human Population and Consumption Both Need to Be Addressed to Reach an Ecologically Sustainable Future. Environ. Dev. Sustain. 2020, 22, 4979–4998. [Google Scholar] [CrossRef]
- Liu, S.; Proudman, J.; Mitloehner, F.M. Rethinking Methane from Animal Agriculture. CABI Agric. Biosci. 2021, 2, 22. [Google Scholar] [CrossRef]
- Maciel, I.C.D.F.; Barbosa, F.A.; Tomich, T.R.; Ribeiro, L.G.P.; Alvarenga, R.C.; Lopes, L.S.; Malacco, V.M.R.; Rowntree, J.E.; Thompson, L.R.; Lana, Â.M.Q. Could the Breed Composition Improve Performance and Change the Enteric Methane emissions from Beef Cattle in a Tropical Intensive Production System? PLoS ONE 2019, 14, e0220247. [Google Scholar] [CrossRef] [PubMed]
- De Haas, Y.; Veerkamp, R.F.; De Jong, G.; Aldridge, M.N. Selective Breeding as a Mitigation Tool for Methane Emissions from Dairy Cattle. Animal 2021, 15, 100294. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of Heat Stress and Plane of Nutrition on Lactating Holstein Cows: I. Production, Metabolism, and Aspects of Circulating Somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [Green Version]
- Summer, A.; Lora, I.; Formaggioni, P.; Gottardo, F. Impact of Heat Stress on Milk and Meat Production. Anim. Front. 2019, 9, 39–46. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Bernabucci, U. Climatic Effects on Productive Traits in Livestock. Vet. Res. Commun. 2006, 30, 75–81. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Bačėninaitė, D.; Džermeikaitė, K.; Antanaitis, R. Global Warming and Dairy Cattle: How to Control and Reduce Methane Emission. Animals 2022, 12, 2687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tian, H.; Shi, H.; Pan, S.; Chang, J.; Dangal, S.R.S.; Qin, X.; Wang, S.; Tubiello, F.N.; Canadell, J.G.; et al. A 130-year Global Inventory of Methane Emissions from Livestock: Trends, Patterns, and Drivers. Glob. Change Biol. 2022, 28, 5142–5158. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, H.; Shi, H.; Pan, S.; Qin, X.; Pan, N.; Dangal, S.R.S. Methane Emissions from Livestock in East Asia during 1961−2019. Ecosyst. Health Sustain. 2021, 7, 1918024. [Google Scholar] [CrossRef]
- McManus, C.; Barcellos, J.O.J.; Formenton, B.K.; Hermuche, P.M.; Carvalho, O.A.D.; Guimarães, R.; Gianezini, M.; Dias, E.A.; Lampert, V.D.N.; Zago, D.; et al. Dynamics of Cattle Production in Brazil. PLoS ONE 2016, 11, e0147138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panel, M.M. Meat, Milk and More: Policy Innovations to Shepherd Inclusive and Sustainable Livestock Systems in Africa; International Food Policy Research Institute: Washington, DC, USA, 2020. [Google Scholar]
CH4 Emission Factor [kg head−1 per year] | Countries Using Presented Value | ||
---|---|---|---|
Enteric Fermentation | Manure Management | ||
dairy | 46 | 1 (2 TUR) | BFA, KEN, MLI, NER, NGA, TCD, TUR, TZA, UGA, ZAF—Countries of Africa and Middle East |
non-dairy | 31 | 1 | |
dairy | 58 | 5 | BGD, IND, PAK Countries of Asia |
non-dairy | 27 | 2 | |
dairy | 68 | 9 CHN, 27 IDN, 23 MMR | CHN, IDN, MMR Countries of Asia |
non-dairy | 47 | 1 | |
dairy | 72 | 1 (2 VEN) | ARG, BOL, BRA, COL, MEX, PRY, URY, VEN Latin America and Caribbean |
non-dairy | 56 | 1 | |
dairy | 90 | 23 NZL, 29 AUS | AUS, NZL Countries of Oceania |
non-dairy | 60 | 1 NZL, 2 AUS | |
dairy | 117 | 21 DEU, 22 FRA | DEU, FRA Countries of Europe |
non-dairy | 57 | 6 DEU, 7 FRA | |
dairy | 128 | 48 | CAN, USA Countries of North America |
non-dairy | 53 | 1 |
Country | Cattle (mln * heads) | Cattle Density (heads/1000 ha of Agricultural Land) | Cattle Heads per 1000 People | ||||||
---|---|---|---|---|---|---|---|---|---|
1961–1970 | 2011–2020 | Change ** | 1961–1970 | 2011–2020 | Change | 1961–1970 | 2011–2020 | Change | |
Argentina | 46.3 | 52.4 | 13% | 351 | 451 | 29% | 2497 | 1347 | −46% |
Australia | 19.0 | 26.9 | 41% | 39 | 73 | 88% | 2082 | 1331 | −36% |
Burkina Faso | 2.2 | 9.4 | 326% | 269 | 773 | 188% | 494 | 684 | 39% |
Bangladesh | 23.0 | 23.7 | 3% | 2392 | 2505 | 5% | 521 | 171 | −67% |
Bolivia | 2.1 | 9.1 | 345% | 68 | 243 | 255% | 614 | 982 | 60% |
Brazil | 65.2 | 214.4 | 229% | 376 | 911 | 142% | 1052 | 1155 | 10% |
Canada | 11.5 | 11.8 | 2% | 182 | 203 | 12% | 738 | 367 | −50% |
Chad | 4.4 | 25.8 | 488% | 92 | 516 | 462% | 1607 | 2632 | 64% |
China | 52.6 | 63.1 | 20% | 147 | 120 | −19% | 88 | 49 | −45% |
Colombia | 17.5 | 24.5 | 40% | 415 | 532 | 28% | 1310 | 585 | −55% |
Germany | 18.4 | 12.3 | −33% | 948 | 735 | −22% | 257 | 151 | −41% |
France | 20.7 | 18.9 | −9% | 614 | 657 | 7% | 477 | 313 | −34% |
Indonesia | 6.7 | 15.7 | 135% | 174 | 264 | 52% | 87 | 69 | −20% |
India | 175.9 | 190.7 | 8% | 993 | 1063 | 7% | 445 | 167 | −63% |
Kenya | 7.6 | 19.9 | 162% | 301 | 718 | 139% | 1162 | 560 | −52% |
Mexico | 19.6 | 33.7 | 72% | 200 | 343 | 71% | 630 | 323 | −49% |
Mali | 4.5 | 10.7 | 137% | 143 | 260 | 82% | 909 | 824 | −9% |
Myanmar | 6.1 | 14.0 | 128% | 575 | 1091 | 90% | 316 | 294 | −7% |
Niger | 4.0 | 12.6 | 216% | 126 | 274 | 118% | 1339 | 919 | −31% |
Nigeria | 7.4 | 19.9 | 169% | 128 | 290 | 127% | 183 | 143 | −22% |
New Zealand | 7.4 | 10.1 | 37% | 467 | 941 | 102% | 3484 | 2480 | −29% |
Pakistan | 14.4 | 42.2 | 194% | 394 | 1159 | 194% | 352 | 245 | −30% |
Paraguay | 4.4 | 13.7 | 212% | 404 | 820 | 103% | 2623 | 2517 | −4% |
Turkey | 13.1 | 14.7 | 12% | 350 | 385 | 10% | 554 | 216 | −61% |
Tanzania | 9.2 | 26.3 | 185% | 343 | 683 | 99% | 1067 | 674 | −37% |
Uganda | 3.6 | 13.8 | 279% | 377 | 960 | 155% | 558 | 501 | −10% |
Uruguay | 8.6 | 11.6 | 35% | 539 | 814 | 51% | 3649 | 3506 | −4% |
United States of America | 106.9 | 92.0 | −14% | 244 | 227 | −7% | 668 | 311 | −53% |
Venezuela | 7.3 | 16.2 | 122% | 373 | 755 | 102% | 1100 | 615 | −44% |
South Africa | 11.7 | 13.3 | 14% | 120 | 138 | 15% | 807 | 272 | −66% |
Country | Group | AL 1 | FM | GDP | LMP | MBC | MTC | MC | MYA | RPP | TP | CH4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chad | 0 | 0.98 * | −0.13 | 0.75 * | 0.00 | 0.85 * | 0.89 * | −0.72 * | −0.80 * | −0.75 * | 0.98 * | 1.00 * |
Burkina Faso | 1 | 0.98 * | 0.44 * | 0.98 * | 0.00 | 0.76 * | 0.85 * | 0.03 | −0.70 * | −0.95 * | 0.98 * | 1.00 * |
Mali | 1 | 0.85 * | −0.24 | 0.87 * | 0.82 * | 0.43 * | 0.28 * | 0.31 * | −0.84 * | −0.86 * | 0.95 * | 1.00 * |
Niger | 1 | 0.91 * | −0.02 | −0.29 * | 0.88 * | −0.33 * | −0.49 * | −0.41 * | 0.80 * | −0.53 * | 0.92 * | 1.00 * |
Pakistan | 1 | 0.02 | 0.92 * | 0.91 * | 0.00 | 0.97 * | 0.87 * | 0.06 | 0.92 * | −0.89 * | 0.96 * | 1.00 * |
Bolivia | 2 | 0.94 * | 0.50 * | 0.83 * | 0.81 * | 0.92 * | 0.95 * | 0.79 * | 0.94 * | −0.97 * | 0.98 * | 1.00 * |
Brazil | 2 | 0.78 * | 0.93 * | 0.96 * | 0.66 * | 0.97 * | 0.96 * | 0.95 * | 0.79 * | −0.99 * | 0.99 * | 1.00 * |
Indonesia | 2 | 0.92 * | 0.94 * | 0.96 * | −0.74 * | 0.82 * | 0.96 * | 0.25 | 0.91 * | −0.94 * | 0.94 * | 1.00 * |
Kenya | 2 | 0.87 * | 0.81 * | 0.88 * | 0.00 | −0.36 * | −0.18 | 0.37 * | 0.74 * | −0.88 * | 0.92 * | 0.98 * |
Mexico | 2 | 0.47 * | 0.92 * | 0.94 * | 0.04 | 0.80 * | 0.87 * | 0.61 * | 0.78 * | −0.94 * | 0.88 * | 1.00 * |
Myanmar | 2 | 0.73 * | 0.79 * | 0.74 * | −0.24 | 0.57 * | 0.78 * | 0.65 * | 0.90 * | −0.78 * | 0.90 * | 0.85 * |
Nigeria | 2 | 0.71 * | 0.64 * | 0.57 * | 0.23 | −0.62 * | 0.50 * | −0.36 * | 0.17 | −0.97 * | 0.95 * | 1.00 * |
Paraguay | 2 | 0.97 * | 0.77 * | 0.96 * | 0.82 * | −0.68 * | −0.45 * | 0.72 * | 0.80 * | −0.96 * | 0.98 * | 1.00 * |
Tanzania | 2 | 0.94 * | −0.46 * | 0.97 * | 0.82 * | −0.19 | −0.50 * | 0.15 | 0.96 * | −0.86 * | 0.97 * | 1.00 * |
Uganda | 2 | 0.87 * | 0.69 * | 0.96 * | 0.93 * | −0.38 * | 0.33 * | 0.79 * | 0.53 * | −0.44 * | 0.93 * | 1.00 * |
Venezuela | 2 | 0.87 * | 0.93 * | 0.57 * | 0.93 * | 0.15 | 0.75 * | −0.15 | 0.05 | −0.98 * | 0.95 * | 1.00 * |
Argentina | 3 | −0.34 * | 0.05 | 0.32 * | −0.39 * | −0.10 | 0.11 | 0.12 | 0.15 | −0.42 * | 0.31 * | 1.00 * |
Australia | 3 | −0.28 * | 0.50 * | 0.49 * | −0.28 | 0.14 | 0.59 * | −0.56 * | 0.43 * | −0.56 * | 0.46 * | 0.99 * |
Bangladesh | 3 | 0.27 * | −0.04 | −0.05 | 0.00 | 0.34 * | 0.01 | −0.09 | 0.45 * | 0.17 | −0.13 | 0.94 * |
Canada | 3 | 0.10 | −0.10 | −0.53 * | 0.03 | 0.04 | 0.51 * | −0.05 | 0.25 | −0.26 * | 0.25 | 0.40 * |
China | 3 | 0.71 * | 0.38 * | 0.10 | 0.71 * | 0.47 * | 0.47 * | 0.25 | 0.23 | −0.24 | 0.56 * | 0.99 * |
Colombia | 3 | 0.44 * | 0.39 * | 0.67 * | 0.61 * | −0.38 * | 0.53 * | 0.39 * | 0.36 * | −0.85 * | 0.72 * | 0.99 * |
France | 3 | 0.52 * | 0.77 * | −0.54 * | 0.71 * | 0.80 * | 0.04 | 0.53 * | −0.69 * | 0.31 * | −0.54 * | 0.95 * |
Germany | 3 | 0.79 * | 0.97 * | −0.91 * | 0.78 * | 0.94 * | 0.13 | −0.05 | −0.88 * | 0.69 * | −0.59 * | 0.99 * |
India | 3 | 0.81 * | 0.33 * | 0.32 * | −0.72 * | −0.16 | 0.51 * | 0.69 * | 0.43 * | −0.63 * | 0.54 * | 0.85 * |
New Zealand | 3 | −0.80 * | 0.81 * | 0.93 * | −0.70 * | −0.57 * | −0.04 | −0.51 * | 0.81 * | −0.77 * | 0.85 * | 0.96 * |
South Africa | 3 | 0.21 | −0.57 * | 0.30 * | 0.07 | −0.35 * | 0.42 * | −0.63 * | 0.54 * | −0.61 * | 0.64 * | 1.00 * |
Turkey | 3 | −0.65 * | −0.18 | 0.12 | −0.32 * | 0.30 * | 0.10 | 0.75 * | 0.08 | 0.12 | −0.07 | 0.98 * |
Uruguay | 3 | −0.75 * | 0.19 | 0.74 * | −0.64 * | −0.73 * | −0.68 * | 0.09 | 0.71 * | −0.80 * | 0.82 * | 1.00 * |
USA | 3 | 0.67 * | 0.24 | −0.75 * | −0.05 | 0.92 * | −0.58 * | 0.27 * | −0.75 * | 0.60 * | −0.72 * | 0.94 * |
CT | CT/AL | CT/TP | AL | FM | GDP | LMP | MBC | MTC | MC | MYA | RPP | TP | CH4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cattle population (CT) | 0.13 | −0.11 | 0.50 * | 0.14 | 0.00 | 0.33 | 0.21 | 0.11 | 0.16 | 0.05 | −0.09 | 0.57 * | 0.96 * | |
Cattle/agricultural land (CT/AL) | 0.13 | 0.03 | −0.37 | −0.07 | −0.26 | −0.41 * | −0.27 | −0.30 | −0.17 | −0.34 | 0.27 | −0.02 | 0.07 | |
Cattle/total population (CT/TP) | −0.11 | 0.03 | −0.16 | −0.21 | 0.07 | −0.06 | 0.46 * | 0.11 | 0.19 | −0.06 | −0.25 | −0.32 | −0.07 | |
Agricultural land (AL) | 0.50 * | −0.37 | −0.16 | 0.56 * | 0.38 * | 0.96 * | 0.28 | 0.48 * | 0.25 | 0.36 * | −0.19 | 0.65 * | 0.56 * | |
Farm machinery (FM) | 0.14 | −0.07 | −0.21 | 0.56 * | 0.21 | 0.52 * | −0.10 | 0.31 | 0.08 | 0.24 | −0.10 | 0.70 * | 0.16 | |
GDP per capita (GDP) | 0.00 | −0.26 | 0.07 | 0.38 * | 0.21 | 0.40 * | 0.56 * | 0.79 * | 0.80 * | 0.88 * | −0.66 * | −0.08 | 0.13 | |
Land under perm. meadows and pastures (LMP) | 0.33 | −0.41 | −0.06 | 0.96 * | 0.52 | 0.40 * | 0.34 | 0.54 * | 0.27 | 0.33 | −0.24 | 0.47 * | 0.43 * | |
Meat beef consumption per capita (MBC) | 0.21 | −0.27 | 0.46 | 0.28 | −0.10 | 0.56 * | 0.34 | 0.73 * | 0.74 * | 0.62 * | −0.75 * | −0.27 | 0.36 * | |
Meat total (incl. fish and seafood) consumption per capita (MTC) | 0.11 | −0.30 | 0.11 | 0.48 * | 0.31 | 0.79 * | 0.54 * | 0.73 * | 0.68 * | 0.79 * | −0.74 * | −0.02 | 0.29 | |
Milk consumption per capita (MC) | 0.16 | −0.17 | 0.19 | 0.25 | 0.08 | 0.80 * | 0.27 | 0.74 * | 0.68 * | 0.78 * | −0.81 * | −0.16 | 0.29 | |
Milk yield per animal (MYA) | 0.05 | −0.34 | −0.06 | 0.36 * | 0.24 | 0.88 * | 0.33 | 0.62 * | 0.79 * | 0.78 * | −0.70 * | 0.00 | 0.18 | |
Rural population percent (RPP) | −0.09 | 0.27 | −0.25 | −0.19 | −0.10 | −0.66 * | −0.24 | −0.75 * | −0.74 * | −0.81 * | −0.70 * | 0.17 | −0.23 | |
Total population (TP) | 0.57 * | −0.02 | −0.32 | 0.65 * | 0.70 | −0.08 | 0.47 * | −0.27 | −0.02 | −0.16 | 0.00 | 0.17 | 0.46 * | |
Methane emission (CH4) | 0.96 * | 0.07 | −0.07 | 0.56 * | 0.16 | 0.13 | 0.43 * | 0.36 * | 0.29 | 0.29 | 0.18 | −0.23 | 0.46 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozicka, K.; Žukovskis, J.; Wójcik-Gront, E. Explaining Global Trends in Cattle Population Changes between 1961 and 2020 Directly Affecting Methane Emissions. Sustainability 2023, 15, 10533. https://doi.org/10.3390/su151310533
Kozicka K, Žukovskis J, Wójcik-Gront E. Explaining Global Trends in Cattle Population Changes between 1961 and 2020 Directly Affecting Methane Emissions. Sustainability. 2023; 15(13):10533. https://doi.org/10.3390/su151310533
Chicago/Turabian StyleKozicka, Katarzyna, Jan Žukovskis, and Elżbieta Wójcik-Gront. 2023. "Explaining Global Trends in Cattle Population Changes between 1961 and 2020 Directly Affecting Methane Emissions" Sustainability 15, no. 13: 10533. https://doi.org/10.3390/su151310533
APA StyleKozicka, K., Žukovskis, J., & Wójcik-Gront, E. (2023). Explaining Global Trends in Cattle Population Changes between 1961 and 2020 Directly Affecting Methane Emissions. Sustainability, 15(13), 10533. https://doi.org/10.3390/su151310533