Intelligent Assessment Method of Structural Reliability Driven by Carrying Capacity Sustainable Target: Taking Bearing Capacity as Criterion
Abstract
:1. Introduction
2. Methodology
2.1. Intelligent Evaluation Framework Driven by DTs
2.2. Establishment of the DT Model
2.2.1. Construction of FEM
- (1)
- Assign material properties and real constants to the corresponding components.
- (2)
- Arrange key joints in the software, establish corresponding component units, and form a structural model.
- (3)
- Apply corresponding constraints to the connection joints of the structure.
- (4)
- Apply the loads that the structure bears at the designated joints.
- (5)
- Obtain the structural mechanical response under the action of the loads.
2.2.2. Modification of Virtual Model
2.3. Analysis of Structural Mechanical Performance and Reliability
3. Experimental Verification
3.1. Structural Twin Modeling
3.2. Mechanical Response of Obtained Structure Based on DTs
3.2.1. Mechanical Performance of Different Load Conditions
- (1)
- Quarter-span constant loads
- (2)
- Half-span constant loads
- (3)
- Three-quarter-span constant loads
- (4)
- Full-span constant loads
3.2.2. Structural Failure Mode
3.2.3. Reliability of Components after Failure
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Formula symbol | physical meaning |
digital twin | |
high fidelity | |
evaluation framework driven by DTs | |
physical structure entity | |
virtual structure model | |
twin data processing layer | |
functional application layer | |
connections between each component | |
finite element model | |
displacement error | |
ith optimization variable | |
lower limits of the ith optimization variable | |
upper limits of the ith optimization variable | |
optimal design parameter corresponding to the minimum error | |
Latin hypercube sampling | |
ultimate limit state | |
serviceability limit state | |
LS | loading condition |
limit value of the component stress | |
maximum stress of the components in the structure | |
limit value of the structural displacement | |
maximum displacement of the structure | |
upper radial cable | |
lower radial cable |
References
- Markosian, N.; Tawadrous, R.; Mastali, M.; Thomas, R.J.; Maguire, M. Performance Evaluation of a Prestressed Belitic Calcium Sulfoaluminate Cement (BCSA) Concrete Bridge Girder. Sustainability 2021, 13, 7875. [Google Scholar] [CrossRef]
- Chen, Z.; Ge, H.; Chan, S. Modelling, Test and Practice of Steel Structures. Metals 2022, 12, 1212. [Google Scholar] [CrossRef]
- Omika, Y.; Fukuzawa, E.; Koshika, N.; Morikawa, H.; Fukuda, R. Structural responses of world trade center under aircraft attacks. J. Struct. Eng. 2005, 131, 6–15. [Google Scholar] [CrossRef]
- Fischer, E.; Biondo, A.E.; Greco, A.; Martinico, F.; Pluchino, A.; Rapisarda, A. Objective and Perceived Risk in Seismic Vulnerability Assessment at an Urban Scale. Sustainability 2022, 14, 9380. [Google Scholar] [CrossRef]
- Liu, H.; Li, B.; Chen, Z.; Ouyang, Y. Damage analysis of aluminum alloy gusset joints under cyclic loading based on continuum damage mechanics. Eng. Struct. 2021, 244, 112729. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, H.; Wu, X. Experimental study on collapse behaviour of truss string structures under cable rupture. J. Constr. Steel Res. 2021, 185, 106864. [Google Scholar] [CrossRef]
- Vaezzadeh, A.; Dolatshahi, K.M. Progressive collapse resistance of cable net structures. J. Constr. Steel Res. 2022, 195, 107347. [Google Scholar] [CrossRef]
- Ozer, E.; Feng, M.Q. Structural Reliability Estimation with Participatory Sensing and Mobile Cyber-Physical Structural Health Monitoring Systems. Appl. Sci. 2019, 9, 2840. [Google Scholar] [CrossRef] [Green Version]
- Bojórquez, J.; Ponce, S.; Ruiz, S.E.; Bojórquez, E.; Reyes-Salazar, A.; Barraza, M.; Chávez, R.; Valenzuela, F.; Leyva, H.; Baca, V. Structural reliability of reinforced concrete buildings under earthquakes and corrosion effects. Eng. Struct. 2021, 237, 112161. [Google Scholar] [CrossRef]
- Callcut, M.; Cerceau Agliozzo, J.-P.; Varga, L.; McMillan, L. Digital Twins in Civil Infrastructure Systems. Sustainability 2021, 13, 11549. [Google Scholar] [CrossRef]
- Selvam, J.; Vajravelu, A.; Nagapan, S.; Arumugham, B.K. Analyzing the Flexural Performance of Cold-Formed Steel Sigma Section Using ABAQUS Software. Sustainability 2023, 15, 4085. [Google Scholar] [CrossRef]
- Bonney, M.S.; de Angelis, M.; Dal Borgo, M.; Wagg, D.J. Contextualisation of information in digital twin processes. Mech. Syst. Signal Process. 2023, 184, 109657. [Google Scholar] [CrossRef]
- Mahmoodian, M.; Shahrivar, F.; Setunge, S.; Mazaheri, S. Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure. Sustainability 2022, 14, 8664. [Google Scholar] [CrossRef]
- Wang, L.; Liu, H.; Chen, Z.; Zhang, F.; Guo, L. Combined digital twin and hierarchical deep learning approach for intelligent damage identification in cable dome structure. Eng. Struct. 2023, 274, 115172. [Google Scholar] [CrossRef]
- Ritto, T.G.; Rochinha, F.A. Digital twin, physics-based model, and machine learning applied to damage detection in structures. Mech. Syst. Signal Process. 2021, 155, 107614. [Google Scholar] [CrossRef]
- Zhu, X.; Bao, T.; Yeoh, J.K.W.; Jia, N.; Li, H. Enhancing dam safety evaluation using dam digital twins. Struct. Infrastruct. Eng. 2021, 19, 904–920. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, G.; Jiao, Z.; Zhao, L. Intelligent Safety Assessment of Prestressed Steel Structures Based on Digital Twins. Symmetry 2021, 13, 1927. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Liu, X.-G.; Fan, J.-S.; Spencer, B.; Wei, X.-C.; Kong, S.-Y.; Guo, X.-H. Refined safety assessment of steel grid structures with crooked tubular members. Autom. Constr. 2019, 99, 249–264. [Google Scholar] [CrossRef]
- Carneiro, G.D.N.; António, C.C. Dimensional reduction applied to the reliability-based robust design optimization of composite structures. Compos. Struct. 2020, 255, 112937. [Google Scholar] [CrossRef]
- El Bazi, N.; Mabrouki, M.; Laayati, O.; Ouhabi, N.; El Hadraoui, H.; Hammouch, F.-E.; Chebak, A. Generic Multi-Layered Digital-Twin-Framework-Enabled Asset Lifecycle Management for the Sustainable Mining Industry. Sustainability 2023, 15, 3470. [Google Scholar] [CrossRef]
- Kaewunruen, S.; Ngamkhanong, C.; Xu, S. Large amplitude vibrations of imperfect spider web structures. Sci. Rep. 2020, 10, 19161. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Hyun, H. Multiple Modular Building Construction Project Scheduling Using Genetic Algorithms. J. Constr. Eng. Manag. 2019, 145, 04018116. [Google Scholar] [CrossRef]
- Del Savio, A.A.; de Andrade, S.A.L.; da Silva Vellasco, P.C.G.; Martha, L.F. Genetic algorithm optimization of semi-rigid steel structures. In Proceedings of the Eighth International Conference on the Application of Artificial Intelligence to Civil, Structural and Environmental Engineering, Rome, Italy, 30 August–2 September 2005; pp. 24.1–24.16. [Google Scholar]
- GB 50009–2012; Load Code for the Design of Building Structures. National Standard of the People’s Republic of China: Beijing, China, 2012.
- GB 50017-2017; Code for Design of Steel Structure. National Standard of the People’s Republic of China: Beijing, China, 2018.
- Triller, J.; Immel, R.; Harzheim, L. Topology optimization using difference-based equivalent static loads. Struct. Multidiscip. Optim. 2022, 65, 226. [Google Scholar] [CrossRef]
- Wadee, M.A.; Hadjipantelis, N.; Bazzano, J.B.; Gardner, L.; Lozano-Galant, J.A. Stability of steel struts with externally anchored prestressed cables. J. Constr. Steel Res. 2020, 164, 105790. [Google Scholar] [CrossRef]
- Yan, R.; Chen, Z.; Wang, X.; Liu, H.; Xiao, X. A new equivalent friction element for analysis of cable supported structures. Steel Compos. Struct. 2015, 18, 947–970. [Google Scholar] [CrossRef]
- JGJ 257-2012; Technical Specification for Cable Structure. Ministry of Housing and Urban-Rural Development: Beijing, China, 2012.
- GB/T232-2010; Metallic Materials—Bend Test. Standards Press of China: Beijing, China, 2010.
- GB/T228.1-2010; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standards Press of China: Beijing, China, 2010.
- ASCE/SEI 19-10; Structural Applications of Steel Cables for Buildings. American Society of Civil Engineers (ASCE): Reston, VA, USA, 2010.
- EN 1993–1–11; Eurocode 3: Design of Steel Structures—Part 1–11: Design of Structures with Tension Components. CEN: Paris, France, 1993.
- Liu, Z.; Li, H.; Liu, Y.; Wang, J.; Tafsirojjaman, T.; Shi, G. A novel numerical approach and experimental study to evaluate the effect of component failure on spoke-wheel cable structure. J. Build. Eng. 2022, 61, 105268. [Google Scholar] [CrossRef]
- Musarat, M.A.; Alaloul, W.S.; Cher, L.S.; Qureshi, A.H.; Alawag, A.M.; Baarimah, A.O. Applications of Building Information Modelling in the Operation and Maintenance Phase of Construction Projects: A Framework for the Malaysian Construction Industry. Sustainability 2023, 15, 5044. [Google Scholar] [CrossRef]
- Tonelli, D.; Beltempo, A.; Cappello, C.; Bursi, O.S.; Zonta, D. Reliability analysis of complex structures based on Bayesian inference. Struct. Health Monit. 2023. [Google Scholar] [CrossRef]
Parameter | Adjustable Range | Value | Meaning |
---|---|---|---|
[0, 1] | 0.01 | learning rate | |
[0, ∞] | 500 | genetic algebra | |
[0, ∞] | 50 | population size |
Component No. | Measured Value (N) | Simulation Value (N) | Error Value |
---|---|---|---|
URC 1 | 12,821 | 13,424 | 4.7% |
LRC 1 | 14,588 | 14,034 | −3.8% |
Conditions of Load Combination | |
---|---|
LS 1 | 1/4-span constant loads |
LS 2 | 1/2-span constant loads |
LS 3 | 3/4-span constant loads |
LS 4 | Full span constant loads |
Components Failure | SLS | ULS | ||
---|---|---|---|---|
Failure Probability | Reliability Index | Failure Probability | Reliability Index | |
Single URC failure | 3.71887 × 10−1 | 0.3269 | 7.59028 × 10−3 | 2.4280 |
Single LRC failure | 4.26797 × 10−1 | 0.1845 | 8.49569 × 10−3 | 2.3869 |
Single middle strut failure | 3.13185 × 10−1 | 0.4868 | 6.14143 × 10−3 | 2.5039 |
Single outer strut failure | 2.81372 × 10−1 | 0.5788 | 5.79581 × 10−3 | 2.5243 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, G.; Liu, Z.; Xian, D.; Zhang, R. Intelligent Assessment Method of Structural Reliability Driven by Carrying Capacity Sustainable Target: Taking Bearing Capacity as Criterion. Sustainability 2023, 15, 10655. https://doi.org/10.3390/su151310655
Shi G, Liu Z, Xian D, Zhang R. Intelligent Assessment Method of Structural Reliability Driven by Carrying Capacity Sustainable Target: Taking Bearing Capacity as Criterion. Sustainability. 2023; 15(13):10655. https://doi.org/10.3390/su151310655
Chicago/Turabian StyleShi, Guoliang, Zhansheng Liu, Dengzhou Xian, and Rongtian Zhang. 2023. "Intelligent Assessment Method of Structural Reliability Driven by Carrying Capacity Sustainable Target: Taking Bearing Capacity as Criterion" Sustainability 15, no. 13: 10655. https://doi.org/10.3390/su151310655
APA StyleShi, G., Liu, Z., Xian, D., & Zhang, R. (2023). Intelligent Assessment Method of Structural Reliability Driven by Carrying Capacity Sustainable Target: Taking Bearing Capacity as Criterion. Sustainability, 15(13), 10655. https://doi.org/10.3390/su151310655