Open Government Data and the Urban–Rural Income Divide in China: An Exploration of Data Inequalities and Their Consequences
Abstract
:1. Introduction
2. Related Literature
3. Concept, Background, and Model of Data
3.1. Data Concept
3.2. Economic Nature of Data
3.3. Open Government Data (OGD)
3.4. An OGD and Income Inequality Model
4. Data and Methodology
4.1. OGD Context in China
4.2. Urban–Rural Income Divide Data
4.3. Methodology
5. OGD and Urban–Rural Income Divide
5.1. Preliminary Result
5.2. Main Result
5.3. Robustness Tests
5.3.1. Placebo Test
5.3.2. Bootstrap Test
5.3.3. Parallel Trends Test
5.4. Impact of OGD and Initial Conditions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OGD | open government data |
GAP | rural–urban income gap |
Appendix A
City | Id | Year of Opening | City | Id | Year of Opening |
---|---|---|---|---|---|
Beijing | 1 | 2012 | Hena | 159 | 2018 |
Tianjin | 2 | 2019 | Wuhan | 178 | 2015 |
Wuhai | 30 | 2018 | Jingmen | 184 | 2016 |
Haerbin | 62 | 2016 | Huanggang | 187 | 2019 |
Jiamusi | 69 | 2019 | Changsha | 191 | 2016 |
Shanghai | 74 | 2012 | Changde | 197 | 2019 |
Jiangsu | 75 | 2019 | Yongzhou | 201 | 2019 |
Najing | 76 | 2018 | Andong | 204 | 2016 |
Moxi | 77 | 2014 | Anzhou | 205 | 2016 |
Xuzhou | 78 | 2019 | Shaoguan | 206 | 2019 |
Changzhou | 79 | 2019 | Shenzhen | 207 | 2016 |
Suzhou | 80 | 2018 | Zhuhai | 208 | 2018 |
Natong | 81 | 2019 | Shantou | 209 | 2019 |
Lianyungang | 82 | 2019 | Foshan | 210 | 2014 |
Huaian | 83 | 2019 | Jiangmen | 211 | 2018 |
Yangzhou | 85 | 2018 | Zhanjiang | 212 | 2015 |
Taizhou | 87 | 2019 | Maoming | 213 | 2019 |
Suqian | 88 | 2019 | Zhaoqing | 214 | 2015 |
Zhejiang | 89 | 2014 | Huizhou | 215 | 2018 |
Ningbo | 91 | 2018 | Meizhou | 216 | 2016 |
Huzhou | 94 | 2019 | Shanwei | 217 | 2019 |
Bangbu | 104 | 2019 | Heyuan | 218 | 2019 |
Maanshan | 106 | 2018 | Yangjiang | 219 | 2016 |
Huangshan | 110 | 2019 | Qingyuan | 220 | 2019 |
Fuyang | 112 | 2019 | Dongguan | 221 | 2016 |
Liuan | 115 | 2018 | Zhongshan | 222 | 2018 |
Xuancheng | 118 | 2018 | Chaozhou | 223 | 2019 |
Fujian | 119 | 2019 | Jieyang | 224 | 2019 |
Fuzhou | 120 | 2019 | Yunfu | 225 | 2019 |
Shamen | 121 | 2019 | Naning | 227 | 2019 |
Jiangxi | 129 | 2018 | Haina | 241 | 2019 |
Fuzhou | 139 | 2019 | Sanya | 243 | 2019 |
Shandong | 141 | 2018 | Sichuan | 245 | 2019 |
Jina | 142 | 2018 | Chengdou | 246 | 2018 |
Qingdao | 143 | 2015 | Luzhou | 249 | 2019 |
Zibo | 144 | 2018 | Mianyang | 251 | 2019 |
Zaozhuang | 145 | 2018 | Anyuan | 252 | 2019 |
Dongying | 146 | 2018 | Suining | 253 | 2019 |
Yantai | 147 | 2018 | Neijiang | 254 | 2019 |
Weifang | 148 | 2018 | Yaan | 261 | 2019 |
Jining | 149 | 2018 | Guizhou | 264 | 2016 |
Taian | 150 | 2018 | Guiyang | 265 | 2017 |
Weihai | 151 | 2018 | Liupanshui | 266 | 2019 |
Rizhao | 152 | 2018 | Zunyi | 267 | 2019 |
Laiwu | 153 | 2018 | Shanxi | 280 | 2018 |
Linyi | 154 | 2018 | Ningxia | 306 | 2018 |
Dezhou | 155 | 2018 | Yinchuan | 307 | 2018 |
Liaocheng | 156 | 2018 | Danzuishan | 308 | 2018 |
Binzhou | 157 | 2018 | Zhongwei | 311 | 2019 |
Heze | 158 | 2018 | Tongren | 316 | 2018 |
Xinjiang | 312 | 2019 |
Standard Deviation | |||||||
---|---|---|---|---|---|---|---|
N | Mean | Min | Max | Across Cities | Within Cities | Within City Years | |
Theil index | 2121 | 0.083 | −0.357 | 0.283 | 0.023 | 0.045 | 0.017 |
Quantile 0.2 | Quantile 0.4 | Quantile 0.6 | Quantile 0.8 | |
---|---|---|---|---|
OGD | 0.008 *** | 0.0021 * | 0.001 | 0.002 ** |
(3.44) | (1.84) | (1.19) | (2.42) | |
N | 409 | 400 | 409 | 416 |
R2 | 0.8194 | 0.8356 | 0.7694 | 0.9661 |
References
- Data Revolution Group. A World That Counts–Mobilising the Data Revolution for Sustainable Development. Independent Expert Advisory Group on a Data Revolution for Sustainable Development. 2014. Available online: https://www.undatarevolution.org/wp-content/uploads/2014/12/A-World-That-Counts2.pdf (accessed on 23 April 2023).
- Boyd, D.; Crawford, K. Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Inf. Commun. Soc. 2012, 15, 662–679. [Google Scholar] [CrossRef]
- Ribes, D.; Jackson, S.J. Data bite man: The work of sustaining a long-term study. In “Raw data” Is an Oxymoron; MIT Press: Cambridge, MA, USA, 2013; pp. 147–166. [Google Scholar]
- Dalton, C.M.; Taylor, L.; Thatcher, J. Critical data studies: A dialog on data and space. Big Data Soc. 2016, 3. [Google Scholar] [CrossRef]
- Robinson, L.; Cotten, S.R.; Ono, H.; Quan-Haase, A.; Mesch, G.; Chen, W.; Schulz, J.; Hale, T.M.; Stern, M.J. Digital inequalities and why they matter. Inf. Commun. Soc. 2015, 18, 569–582. [Google Scholar] [CrossRef]
- Cinnamon, J. Data inequalities and why they matter for development. Inf. Technol. Dev. 2020, 26, 214–233. [Google Scholar] [CrossRef]
- Li, S.; Sicular, T. The distribution of household income in china: Inequality, poverty and policies. China Q. 2014, 217, 1–41. [Google Scholar] [CrossRef]
- Eastwood, R.; Lipton, M. Rural and urban income inequality and poverty: Does convergence between sectors offset divergence within them? Inequal. Growth Poverty Era Lib. Glob. 2004, 4, 112–141. [Google Scholar]
- Sicular, T.; Ximing, Y.; Gustafsson, B.; Li, S. The urban-rural income gap and income inequality in China. In Understanding Inequality and Poverty in China; Springer: Berlin/Heidelberg, Germany, 2008; pp. 30–71. [Google Scholar]
- Xie, Y.; Zhou, X. Income inequality in today’s china. Proc. Natl. Acad. Sci. USA 2014, 111, 6928–6933. [Google Scholar] [CrossRef] [Green Version]
- Wan, G. Understanding regional poverty and inequality trends in China: Methodological issues and empirical findings. Rev. Income Wealth 2007, 53, 25–34. [Google Scholar] [CrossRef]
- Chen, J.; Fang, F.; Hou, W.; Li, F.; Pu, M.; Song, M. Chinese Gini coefficient from 2005 to 2012, based on 20 grouped income datasets of urban and rural residents. J. Appl. Math. 2015, 2015, 939020. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.T. Urban-Biased Politics and Rising Income Inequality in China. Am. Econ. Rev. 1999, 89, 306–310. [Google Scholar] [CrossRef]
- Yang, D.T.; Zhou, H. Rural-urban disparity and sectoral labour allocation in China. J. Dev. Stud. 1999, 35, 105–133. [Google Scholar] [CrossRef]
- Murphy, W. Data Is the New Oil | by Will Murphy | towards Data Science. 2017. Available online: https://towardsdatascience.com/data-is-the-new-oil-f11440e80dd0?gi=1c5b75e356b3 (accessed on 7 February 2022).
- Li, S. Effects of labor out-migration and income growth and inequality in rural china. In China’s Economy: Rural Reform and Agricultural Development; World Scientific: Singapore, 2009; pp. 161–185. [Google Scholar]
- Greenwood, J.; Jovanovic, B. Financial development, growth, and the distribution of income. J. Political Econ. 1990, 98, 1076–1107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q. Development of financial intermediaries and urban–rural income inequality in China. China J. Financ. 2004, 11, 71–79. [Google Scholar]
- Yao, Y. An empirical analysis of financial development and urban-rural income gap in China. Study Financ. Econ. 2005, 2, 5–12. [Google Scholar]
- Guo, J. Human capital, the birth rate and the narrowing of the urban-rural income gap. Soc. Sci. China 2005, 3, 27–37. [Google Scholar]
- Wei, S.; Yi, W. Globalization and Inequality: Evidence from within China; Technical report; National Bureau of Economic Research: Cambridge, MA, USA, 2001. [Google Scholar]
- Hertel, T.; Fan, Z. Labor market distortions, rural-urban inequality and the opening of China’s economy. Econ. Model. 2006, 23, 76–109. [Google Scholar] [CrossRef] [Green Version]
- Jeanneney, S.G.; Hua, P. Appreciation of the renminbi and urban-rural income inequality in China. Revue D’économie Du Développement 2008, 22, 67–92. [Google Scholar]
- Wei, H.; Zhao, C. Effects of international trade on urban-rural gap income in China. Financ. Trade Econ. 2012, 1, 78–86. [Google Scholar]
- Acemoglu, D. Technical Change, Inequality, and the Labor Market. J. Econ. Lit. 2002, 40, 7–72. [Google Scholar] [CrossRef]
- Zou, W.; Liu, Y. The Dynamics of Skilled Labor, Economic Transformation and Income Inequality. J. World Econ. 2010, 33, 81–98. [Google Scholar]
- Acemoglu, D.; Shimer, R. Wage and Technology Dispersion. Rev. Econ. Stud. 2000, 67, 585–607. [Google Scholar] [CrossRef]
- Aghion, P.; Howitt, P.; Violante, G.L. General Purpose Technology and Wage Inequality. J. Econ. Growth 2002, 7, 315–345. [Google Scholar] [CrossRef] [Green Version]
- Oshima, H.T. Kuznets’ Curve and Asian Income Distribution Trends. Hitotsubashi J. Econ. 1992, 33, 95–111. [Google Scholar]
- Kim, S.Y. Technological kuznets curve? technology, income inequality, and government policy. Asia Res. Policy 2012, 3, 33–49. [Google Scholar]
- Qiu, L.J.; Zhong, S.B.; Sun, B.W.; Song, Y.; Chen, X.H. Is internet penetration narrowing the rural–urban income inequality? A cross-regional study of China. Qual. Quant. 2021, 55, 1795–1814. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, Y.; Dai, S. Technological Progress and Household Income Distribution Gap. Contemp. Econ. Res. 2005, 4, 55–58+73. [Google Scholar]
- Luo, X.; Hu, D. Research on the Contribution of Scientific and Technological Progress to Narrowing Rural-Urban Income Gap. Sci. Technol. Prog. Policy 2011, 28, 47–49. [Google Scholar]
- Li, B.; Chen, C.; Wan, D. Technology Progress Contribution and Resident Income Distribution Gap. J. Hunan Univ. (Soc. Sci.) 2012, 26, 56–61. [Google Scholar]
- Arrieta-Ibarra, I.; Goff, L.; Jiménez-Hernández, D.; Lanier, J.; Weyl, E.G. Should We Treat Data as Labor? Moving beyond “Free”. AEA Pap. Proc. 2018, 108, 38–42. [Google Scholar] [CrossRef]
- Posner, E.A.; Weyl, E.G. Radical Markets: Uprooting Capitalism and Democracy for a Just Society; Princeton University Press: Princeton, NJ, USA, 2018. [Google Scholar]
- Akcigit, U.; Celik, M.A.; Greenwood, J. Buy, keep, or sell: Economic growth and the market for ideas. Econom. J. Econom. Soc. 2016, 84, 943–984. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.N.; Chen-Zion, A.; Lillethun, E. Reselling information. arXiv 2020, arXiv:2004.01788. [Google Scholar]
- Ichihashi, S. Non-Competing Data Intermediaries; Technical report; Bank of Canada: Ottawa, ON, Canada, 2020. [Google Scholar]
- Akcigit, U.; Liu, Q. The role of information in innovation and competition. J. Eur. Econ. Assoc. 2016, 14, 828–870. [Google Scholar] [CrossRef] [Green Version]
- Varian, H. Artificial intelligence, economics, and industrial organization. In The Economics of Artificial Intelligence: An Agenda; Agrawal, A., Gans, J., Goldfarb, A., Eds.; University of Chicago Press: Chicago, IL, USA, 2019; pp. 399–419. [Google Scholar]
- Farboodi, M.; Veldkamp, L. Long-Run Growth of Financial Data Technology. Am. Econ. Rev. 2020, 110, 2485–2523. [Google Scholar] [CrossRef]
- Farboodi, M.; Veldkamp, L. A Growth Model of the Data Economy. Available online: https://www.nber.org/papers/w28427 (accessed on 23 April 2023).
- Hughes-Cromwick, E.; Coronado, J. The Value of US Government Data to US Business Decisions. J. Econ. Perspect. 2019, 33, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Fazekas, M.; Burns, T. Exploring the Complex Interaction between Governance and Knowledge in Education; Technical Report; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Utterback, J.M. Mastering the Dynamics of Innovation; Harvard Business School: Boston, MA, USA, 2006. [Google Scholar]
- Zins, C. Conceptual approaches for defining data, information, and knowledge. J. Am. Soc. Inf. Sci. Technol. 2007, 58, 479–493. [Google Scholar] [CrossRef]
- Silver, N. The Signal and the Noise: Why So Many Predictions Fail—But Some Don’t; A Penguin Book Economics/Politics/Sports; Penguin Books: New York, NY, USA, 2020. [Google Scholar]
- Rotella, P. Is Data The New Oil? 2012. Available online: https://www.forbes.com/sites/perryrotella/2012/04/02/is-data-the-new-oil/?sh=561f1b267db3 (accessed on 7 February 2022).
- Spijker, A. The New Oil: Using Innovative Business Models to Turn Data into Profit; Technics Publications: Basking Ridge, NJ, USA, 2014. [Google Scholar]
- OECD. Introduction to Data and Analytics (Module 1): Taxonomy, Data Governance Issues, and Implications for Further Work; OECD: Paris, France, 2013. [Google Scholar]
- Frischmann, B. Infrastructure: The Social Value of Shared Resources; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ubaldi, B. Open Government Data: Towards Empirical Analysis of Open Government Data Initiatives; Technical Report; OECD Working Papers on Public Governance: Paris, France, 2013. [Google Scholar] [CrossRef]
- Fudan University. China Local Government Open Data Report; Technical Report; Fudan University: Shaihai, China, 2017. [Google Scholar]
- Janssen, M.; Charalabidis, Y.; Zuiderwijk, A. Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manag. 2012, 29, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kwak, N. Open data, civic hacking, and government: Evidence from South Korea. Public Adm. Rev. 2017, 77, 697–707. [Google Scholar] [CrossRef]
- Lafortune, G. The Effect of Education on Economic Growth: A Case Study of Canada, 1926–2006. Can. J. Educ. 2013, 36, 120–148. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, X. Does Education Promote Economic Growth? Evidence from China. China Econ. J. 2015, 8, 295–315. [Google Scholar] [CrossRef]
- Jones, C.I.; Tonetti, C. Nonrivalry and the Economics of Data. Am. Econ. Rev. 2020, 110, 2819–2858. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and Income Inequality. Am. Econ. Rev. 1955, 45, 1–28. [Google Scholar]
- Li, D. Personal Privacy, Trade Secrets and openness of Credit Data–Interview with Yu Jingming, researcher of development Research Center of The State Council and CEO of China Hua ’an Commercial Credit Risk Management Company. Chin. Qual.-Thousands-Miles Travel 2001, 11, 42–44. [Google Scholar]
- Fudan University. China Local Government Open Data Report; Technical Report; Fudan University: Shaihai, China, 2020. [Google Scholar]
- Chen, L.; Duan, Y. Analyzing Implementation of the Chinese Government Open Data Policy Using Government Bulletin Text as Example. J. China Soc. Sci. Tech. Inf. 2020, 39, 698–709. [Google Scholar]
- Fudan University High-Capacity Datasets Open in Cities such as Dongguan. 2021. Available online: http://4cool.ifopendata.cn/case (accessed on 27 June 2022).
- Conceição, P.; Galbraith, J.K. Constructing Long and Dense Time-Series of Inequality Using the Theil Index. East. Econ. J. 2000, 26, 61–74. [Google Scholar]
- Hong, M.; Zhang, W. Industrial structure upgrading, urbanization and urban-rural income disparity: Evidence from China. Appl. Econ. Lett. 2021, 28, 1321–1326. [Google Scholar] [CrossRef]
- Mao, C.C.; Ma, Z.X. The Analysis of the Regional Economic Growth and the Regional Financial Industry Development Difference in China Based on the Theil index. Int. J. Econ. Financ. Stud. 2021, 13, 128–154. [Google Scholar]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-Differences with multiple time periods. J. Econom. 2020, 219, 74–96. [Google Scholar] [CrossRef]
(1) | (2) | ||
---|---|---|---|
VIF | Theil | Theil | |
OGD | 1.1193 | 0.0084 *** | 0.0058 ** |
(2.68) | (2.16) | ||
publicout-gdp | 1.6865 | −0.0538 ** | |
(−2.12) | |||
rindustry2nd | 1.0291 | 0.0000 | |
(0.40) | |||
rindustry3rd | 1.6854 | −0.0004 *** | |
(−3.72) | |||
urban | 2.3866 | −0.1824 *** | |
(−2.85) | |||
loan-gdp | 1.8877 | 0.0023 | |
(1.61) | |||
collegestu-100 | 1.9854 | 0.0008 | |
(0.70) | |||
foreigncapit-gdp | 1.0054 | 0.1707 * | |
(1.84) | |||
cons | 0.0839 *** | 0.2039 *** | |
(639.47) | (5.60) | ||
N | 2236 | 2102 | |
R | 0.921 | 0.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, L.; Pei, J. Open Government Data and the Urban–Rural Income Divide in China: An Exploration of Data Inequalities and Their Consequences. Sustainability 2023, 15, 9867. https://doi.org/10.3390/su15139867
Tan L, Pei J. Open Government Data and the Urban–Rural Income Divide in China: An Exploration of Data Inequalities and Their Consequences. Sustainability. 2023; 15(13):9867. https://doi.org/10.3390/su15139867
Chicago/Turabian StyleTan, Lu, and Jingsong Pei. 2023. "Open Government Data and the Urban–Rural Income Divide in China: An Exploration of Data Inequalities and Their Consequences" Sustainability 15, no. 13: 9867. https://doi.org/10.3390/su15139867
APA StyleTan, L., & Pei, J. (2023). Open Government Data and the Urban–Rural Income Divide in China: An Exploration of Data Inequalities and Their Consequences. Sustainability, 15(13), 9867. https://doi.org/10.3390/su15139867