Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Data Processing
2.4. Methods
2.4.1. Calculating Land-Use Carbon Emissions
2.4.2. Evaluation of Land-Use Carbon Emission Pattern
2.4.3. Accuracy Verification and Scenario Presupposition of the PLUS Model
3. Results
3.1. Trend Analysis of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration from 2000 to 2015
3.2. Trend Analysis of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration from 2017 to 2022
3.3. Differences in the Urban Structure of Carbon Emissions from Land Use in the Wuhan Urban Agglomeration in 2020
3.4. Prediction of Land-Use Carbon Emissions under a Multi-Scenario Simulation of the Wuhan Urban Agglomeration
4. Discussion
4.1. Discussion of the Findings
4.2. Innovations and Possible Improvement Directions
5. Conclusions
- From 2000 to 2015, before and during the establishment of the Wuhan “1+8” City Circle, the carbon emissions of land use emphasized economic development, but ignored ecological protection to a certain extent.
- From 2017 to 2022, before and after the establishment of the Wuhan Metropolitan Area, the carbon emission of land use not only ensured stable economic development, but also strengthened ecological protection and development.
- In terms of urban structure differences, there were significant differences in the positioning of cities’ main functions in the Wuhan Urban Agglomeration, and there was a lack of cities that could both ensure economic development and achieve low-carbon protection.
- The Markov–PLUS model produced good simulation results for land-use carbon emissions in the Wuhan Urban Agglomeration. The results of this research indicate that limiting the expansion of built-up land and protecting forest land are the optimal and quickest ways to achieve a carbon peak and carbon neutrality. Wuhan, Huanggang, and Xiaogan were key cities for future carbon source reductions, and further attention should be paid to ecological protection for the future development of Tianmen.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Interaction 2022, 50, 33. [Google Scholar]
- Talley, T. Call for Expert Reviewers to the U.S. Government Review of the Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Climate Change 2013: The Physical Science Basis. Fed. Regist. 2012, 77, 59238–59239. [Google Scholar]
- Wang, Z.L.; Liu, C.X.; Jiang, Q.X.; Li, S.Q.; Chai, X. Effects of Climate Warming on the Key Process and Index of Black Soil Carbon and Nitrogen Cycle During Freezing Period. Environ. Sci. 2021, 42, 1967–1978. [Google Scholar]
- Cai, R.S.; Wang, H.; Zheng, H.Z.; Guo, H.X. Action Against Climate Tipping Points: Carbon Neutrality. China Popul. Resour. Environ. 2021, 31, 16–23. [Google Scholar]
- Zhang, X.Q. Methodological Issues Related to Measuring and Monitoring Carbon Stock Changes Induced by Land Use Change and Forestry Activities. Acta Ecol. Sin. 2004, 24, 2068–2073. [Google Scholar]
- Maxwell, B.; Olivia, P. Now or Never: How Media Coverage of the IPCC Special Report on 1.5 °C Shaped Climate-Action Deadlines. One Earth 2019, 1, 285–288. [Google Scholar]
- Li, L.; Xia, Q.Y.; Dong, J.; Zhang, B. County-Level Carbon Ecological Compensation of Wuhan Urban Agglomeration Under Carbon Neutrality Target: Based on the Difference in Land Use Carbon Budget. Acta Ecol. Sin. 2023, 7, 1–13. [Google Scholar]
- Ge, Q.S.; Dai, J.H.; He, F.N.; Pan, Y.; Wang, M.M. Land Use, Land Cover Change and Carbon Cycle in China over the past 300 Years. Sci. China Earth Sci. 2008, 38, 197–210. [Google Scholar]
- Yu, F.; Liu, J.; Xia, L.H.; Long, X.C.; Xu, Z.W. Landscape Ecological Risk Assessment in Weibei Dryland Region of Shaanxi Province Based on LUCC. China Environ. Sci. 2022, 42, 1963–1974. [Google Scholar]
- Han, J.; Zhou, X.; Xiang, W.N. Progress in Research on Land Use Effects on Carbon Emissions and Low Carbon Management. Acta Ecol. Sin. 2016, 36, 1152–1161. [Google Scholar]
- Sun, J.F.; Zhang, Y.; Qin, W.S.; Chai, G.Q. Estimation and Simulation of Forest Carbon Stock in Northeast China Forestry Based on Future Climate Change and LUCC. Remote Sens. 2022, 14, 3653. [Google Scholar] [CrossRef]
- Yang, X.H.; Jin, X.B.; Liu, J.; Gu, Z.M.; Zhou, Y.K. Design and Implementation of System Estimating Carbon Emission Induced by Land Use /CoverChange. Bull. Surv. Map. 2019, 4, 54–59. [Google Scholar]
- Wang, H.; Jin, Y.J.; Hong, M.M.; Tian, F.; Wang, J.X.; Nie, X. Integrating IPAT and CLUMondo Models to Assess the Impact of Carbon Peak on Land Use. Land 2022, 11, 573. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Li, P.H.; Xu, L.P. Effects of Urbanization on Carbon Emission from Land Use in Xinjiang and their Coupling Relationship. Acta Ecol. Sin. 2022, 42, 5226–5242. [Google Scholar]
- Feng, J.; Wang, T. Analysis of Influencing Factors and Evolution of Land Use Carbon Emission in China. Soft Sci. 2016, 30, 87–90. [Google Scholar]
- Ma, M.J.; Li, Q.; Zhou, W.R. Study of Carbon Ecological Compensation in Yellow River Basin Based on Carbon Neutrality. Yellow River 2021, 43, 5–11. [Google Scholar]
- Zhao, R.Q.; Huang, X.J.; Zhong, T.Y.; Chuai, X.W. Carbon Effect Evaluation and Low-Carbon Optimization of Regional Land Use. Trans. Chin. Soc. Agric. Eng. 2013, 17, 220–229. [Google Scholar]
- Zeng, Y.N.; Wang, H.M. Optimization of Land Use Structure for Low-Carbon Targets in Haidong City, Qinghai Plateau. Resour. Sci. 2015, 10, 2010–2017. [Google Scholar]
- Hu, Y.T.; Li, T.H. Forecasting Spatial Pattern of Land Use Change in Rapidly Urbanized Regions Based on SD-CA Model. Acta Sci. Nat. Univ. Pekin. 2022, 58, 372–382. [Google Scholar]
- Bian, Z.H.; Ma, X.X.; Gong, L.C.; Zhao, J.; Zeng, C.F.; Wang, L.C. Land Use Prediction Based on CLUE-S Model Under Different Non-spatial Simulation Methods: A Case Study of the Qinhuai River Watershed. Sci. Geogr. Sin. 2017, 37, 252–258. [Google Scholar]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS)for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Yi, D.; Ou, M.H.; Guo, J.; Han, Y.; Yi, J.L.; Ding, G.Q.; Wu, W.J. Progress and Prospect of Research on Land Use Carbon Emissions and Low-Carbon Optimization. Resour. Sci. 2022, 44, 1545–1559. [Google Scholar] [CrossRef]
- Xu, J.; Pan, H.Y.; Huang, P. Carbon Emission and Ecological Compensation of Main Functional Areas in Sichuan Province Based on LUCC. Chin. J. Eco-Agric. 2019, 27, 142–152. [Google Scholar]
- Cao, Z.L.; Zhang, X.R.; Yuan, X.F.; Chen, J.H. Spatio’temporal Variation and Innuencing Factors of CO2 Emission at County ScaIe in Shanxi Province Based on Land Use Change. Bull. Soil Water Conserv. 2022, 58, 376–385. [Google Scholar]
- Christiane, C.L.; Marcos, H.C.; Britaldo, S.S.; Letícia, B.V.H. Historical Land Use Change and Associated Carbon Emissions in Brazil from 1940 to 1995. Glob. Biogeochem. Cycles 2012, 26, 1–13. [Google Scholar]
- Alejandro, C.; Roberto, P.; Diego, F.L. Urban Form, Land Use, and Cover Change and Their Impact on Carbon Emissions in the Monterrey Metropolitan Area, Mexico. Urban Clim. 2021, 39, 100947. [Google Scholar]
- Beroho, M.; Briak, H.; Cherif, E.K. Future Scenarios of Land Use/Land Cover (LULC) Based on a CA-Markov Simulation Model: Case of a Mediterranean Watershed in Morocco. Remote Sens. 2023, 15, 1162. [Google Scholar] [CrossRef]
- Chen, L.T.; Cai, H.S.; Zhang, T.; Zhang, X.L.; Zeng, H. Land Use Multi-scenario Simulation Analysis of Rao River Basin Based on Markov-FLUS Model. Acta Ecol. Sin. 2022, 42, 3947–3958. [Google Scholar]
- Zhang, K.Q.; Chen, J.J.; Hou, J.K.; Zhou, G.Q.; You, H.T.; Han, X.W. Study on Sustainable Development of Carbon Storage in Guilin Coupled with InVEST and GeoSOS-FLUS Model. China Environ. Sci. 2022, 42, 2799–2809. [Google Scholar]
- Liang, X.; Guan, Q.F.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-generating Land Use Simulation(PLUS)Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Sun, F.H.; Fang, F.M.; Hong, W.L.; Luo, H.; Yu, J.; Fang, L.; Miao, Y.Q. Evolution Analysis and Prediction of Carbon Storage in Anhui Province Based on PLUS and InVEST Model. J. Soil Water Conserv. 2023, 37, 151–158. [Google Scholar]
- Wang, Z.Y.; Huang, C.L.; Li, L.; Lin, Q. Ecological Zoning Planning and Dynamic Evaluation Coupled with Invest-HIFI-PLUS Model: A Case Study in Bortala Mongolian Autonomous Prefecture. Acta Ecol. Sin. 2022, 42, 5789–5798. [Google Scholar]
- Qin, Z.W. Development Planning and Implementation of Wuhan Urban Agglomeration. China Investig. 2022, CA, 70–72. [Google Scholar]
- Chen, H.L.; Peng, K.L.; Huang, K. Correlation and Regional Differences of Land Use Structure and Socio-economic Structure in Wuhan Metropolitan Area. China Land Sci. 2014, 28, 66–73. [Google Scholar]
- Lu, F.; Chen, J. Location Superiority and Accessibility Analysis on Wuhan Metropolitan Region. Prog. Geogr. 2008, 27, 68–74. [Google Scholar]
- Li, X.J.; Zheng, D.G.; Sun, J.; Ma, X.; Sun, X.M.; Zhang, Y.F. Exploring Regional Coordination in the Comprehensive Planning of Megalopolis: Lessons from Wuhan Metropolitan Area. City Plan. Rev. 2018, 202, 12–18. [Google Scholar]
- National Bureau of Statistics. Statistical Bulletin on National Economic and Social Development of Hubei Province in 2020. Hubei Daily, 18 March 2021; p. 4. [Google Scholar]
- Zhang, J.; Zhu, W.B.; Wu, S.Y.; Li, S.C. Simulation of Temporal and Special Land Use Changes in Jing-Jin-Ji Urban Agglomeration Using CLUE-S Model. Acta Sci. Nat. Univ. Pekin. 2018, 54, 115–124. [Google Scholar]
- He, H.S.; Zhao, Y.H.; Wu, J.S. Simulation of Urban Landscape Pattern Under the Influence of Low Carbon: A Case Study of Shenzhen. Acta Ecol. Sin. 2021, 41, 8352–8363. [Google Scholar]
- Zhang, K.; Huang, C.H.; Wang, Z.Y.; Wu, J.Y.; Zeng, Z.Q.; Mu, J.J.; Yang, W.Y. Optimization of “Production-Living-Ecological” Spaces Based on DTTD-MCR-PLUS Model: Taking Changsha City as An Example. Acta Ecol. Sin. 2022, 42, 9957–9970. [Google Scholar]
- Wang, Z.Y.; Hu, G.C.; Zhang, Y.; Liu, H.L. Characteristics of Carbon Emission Pattern in Hubei Territorial Space and Its Improvement Measures. Planners 2022, 38, 24–31. [Google Scholar]
- Fang, J.Y.; Guo, Z.D.; Piao, S.L.; Chen, A.P. Estimation of Land Vegetation Carbon Sink in China from 1981 to 2000. Sci. China Earth Sci. 2007, 37, 804–812, 842. [Google Scholar]
- Yu, K.K.; Wang, Y.H.; Sun, T.; Tian, J.M. Changes and Prediction of Carbon Emission from Different Land Use Types in Taihu Lake Basin. Soils 2022, 54, 406–414. [Google Scholar]
- Li, Y.Y.; Wei, W.; Zhou, J.J.; Hao, R.J.; Chen, D.B. Changes in Land Use Carbon Emissions and Coordinated Zoning in China. Environ. Sci. 2022, accepted. [Google Scholar]
- Li, W.X. Research on Carbon Emission in Zheng-Bian Integration Area Based on LUCC. Master’s Thesis, Xinjiang Normal University, Urumqi, China, 2019. [Google Scholar]
- Lai, L. Carbon Emission Effect of Land Use in China. Ph.D. Thesis, Nanjing University, Nanjing China, 2010. [Google Scholar]
- Duan, X.N.; Wang, X.K.; Lu, F.; Ouyang, Z.Y. Carbon Sequestration and its Potential by Wetland Ecosystems in China. Acta Ecol. Sin. 2008, 28, 463–469. [Google Scholar]
- Xu, G.Q.; Liu, Z.Y.; Jiang, Z.H. Decomposition Model and Empirical Study of Carbon Emissions for China, 1995–2004. China Popul. Resour. Environ. 2006, 16, 158–161. [Google Scholar]
- Su, Y.X.; Chen, X.Z.; Ye, Y.Y.; Wu, Q.T.; Zhang, H.O.; Huang, N.S.; Kuang, Y.Q. The Characteristics and Mechanisms of Carbon Emissions from Energy Consumption in China Using DMSP/OLS Night Light Imageries. Acta Geogr. Sin. 2013, 68, 1513–1526. [Google Scholar]
- Fang, J.Y.; Yu, G.R.; Liu, L.L.; Hu, S.J.; Chapin, F.S. Climate Change, Human Impacts, and Carbon Sequestration in China. Proc. Natl. Acad. Sci. USA 2018, 115, 4015–4020. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Jiang, M.D.; Wang, Q. Re-measurement of Regional Complete Carbon Emission Intensity: Based on the Correlations of Carbon Emission and Economics. Acta Sci. Nat. Univ. Pekin. 2022, 58, 308–316. [Google Scholar]
- Yuan, Y.; Sun, X.T. Spatial-temporal Evolution and Driving Factors of Inter-provincial Carbon Emission Intensity in China. Environ. Sci. Technol. 2022, 45, 168–176. [Google Scholar]
- Wang, S.J.; Huang, Y.Y. Spatial Spillover Effect and Driving Forces of Carbon Emission Intensity at City Level in China. Acta Geogr Sin. 2019, 74, 1131–1148. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.J.; Tian, D.; Hou, Z.Y.; Wang, M.G.; Zhang, N.L. Review on the Evaluation of Global Forest Carbon Sink Function. J. Beijing For. Univ. 2022, 44, 1–10. [Google Scholar]
- Lv, S.H.; Zhang, X.P. Analysis of Spatiotemporal Evolution Characteristics of Agricultural Net Carbon Sink in Shandong Province. J. Soil Water Conserv. 2019, 33, 227–234. [Google Scholar]
- Jiao, S.L.; Luo, F.J.; Liang, H. Carbon Sink Effect of Chemical Erosion in Yangchang Watershed of Wujiang Source Area. J. Soil Water Conserv. 2012, 5, 44–47, 54. [Google Scholar]
- Wang, G.; Zhang, H.B.; Xue, F.; Zhen, Y. Relations between Land Use Carbon Budget and Economic Development at County Level in Chengdu City. J. Nat. Resour. 2017, 32, 1170–1182. [Google Scholar]
- Liu, H.J.; Tian, Z.; Shi, Y. Spatial Difference of Carbon Dioxide Emissions and its Bi-dimensional Internal Structural Decomposition and Analysis from 2000 to 2019 in China. Geogr. Res. 2023, 42, 857–877. [Google Scholar]
- Yang, J.Y.; Zhang, M.; Duo, L.H.; Xiao, S.; Zhao, Y.Q. Spatial Pattern of Land Use Carbon Emissions and Carbon Balance Zoning in Jiangxi Province. Res. Environ. Sci. 2022, 35, 2312–2321. [Google Scholar]
- Xu, Y.; Guo, N.; Ru, K.L.; Fan, S.L. Characteristics and Optimization Strategies of Land Spatial Zoning in Fujian Province from the Perspective of Carbon Neutrality. J. Appl. Ecol. 2022, 33, 500–508. [Google Scholar]
- Wei, Y.R.; Chen, S.L. Spatial Correlation and Carbon Balance Zoning of Land Use Carbon Emissions in Fujian Province. Acta Ecol. Sin. 2021, 41, 5814–5824. [Google Scholar]
- Sun, X.X.; Xue, J.H.; Dong, L.N. Spatiotemporal Change and Prediction of Carbon Storage in Nanjing Ecosystem Based on PLUS Model and InVEST Model. J. Ecol. Rural Environ. 2023, 39, 41–51. [Google Scholar]
- Ji, Y.F.; Jia, L.J.; Yang, L.A.; Li, Y.L.; Dong, Q.H. Spatio-temporal Evolution and Prediction Analysis of Habitat Quality in Yulin City Coupled with InVEST-PLUS Model. J. Soil Water Conserv. 2023, 37, 123–132. [Google Scholar]
- Li, X.; Liu, Z.S.; Li, S.J.; Li, Y.X. Multi-Scenario Simulation Analysis of Land Use Impacts on Habitat Quality in Tianjin Based on the PLUS Model Coupled with the InVEST Model. Sustainability 2022, 14, 6923. [Google Scholar] [CrossRef]
- Liang, B.Z. Study on Spatio-Temporal Correlation of Land Use Change and Economic Growth of Wuhan Metropolitan Area. Ph.D. Thesis, China University of Geosciences, Wuhan, China, 2017. [Google Scholar]
- Liu, Z.; Cui, D.; Deng, C.; Wang, Y.L.; Zhong, H.W.; Le, X.; Zhang, N.; Chen, B.; Ren, X.B.; Wei, W.; et al. Impact on China’s CO2 Emissions from COVID-19 Pandemic. Scientia 2021, 66, 1912–1922. [Google Scholar]
- Fu, Z.Y.; Li, Y.W. Scenario Analysis on Carbon Emissions of Hubei Province in 14th Five-Year Plan Under Epidemic Situation. Environ. Sci. Technol. 2022, 45, 221–227. [Google Scholar]
- Chen, N. Research on the Regional Differences and Reduction Scheme of Land Use Carbon Emissions in Wuhan Urban Agglomeration. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2018. [Google Scholar]
- Zhang, J.F.; Zhang, A.L.; Dong, J. Carbon Emission Effect of Land Use and Influencing Factors Decomposition of Carbon Emission in Wuhan urban Agglomeration. Resour. Environ. Yangtze Basin 2014, 5, 595–602. [Google Scholar]
- Wang, H.J.; Zeng, F.L. Simulation of Urban Construction Land Expansion Based on CA-MARKOV. Jiangsu Sci. Technol. Inform. 2021, 38, 46–48, 52. [Google Scholar]
- Zhang, Z.Z.; Liang, S.Y.; Xiong, Y.Q. Ecosystem Service Tradeoffs in Wuhan Metropolitan Area under Multi-Scenario Land Use Change. J. Agric. Resour. Environ. 2023, 40, 345–357. [Google Scholar]
- Huang, G.P.; Suo, F. Simulation Study on Land Use Scenarios in Wuchang District, Wuhan City Based on CLUE-S Model. Technol. Innov. Appl. 2019, 23, 71–72. [Google Scholar]
- Wang, J.N.; Wang, W.C.; Hai, M.M. Simulation Analysis of Land Use Change in Shandong Province Based on PLUS Model. Terr. Nat. Resour. Study 2022, 6, 1–8. [Google Scholar]
- Wang, Z.Y.; Meng, L.; Li, Q.; Xu, F.; Lin, J. Multi-Scenario Simulation of Land Use and Ecosystem Services in Beijing under the Background of Low-Carbon Development. Acta Ecol. Sin. 2023, 4, 3571–3581. [Google Scholar]
- Wang, R.Y.; Zhao, J.S.; Chen, G.P.; Lin, Y.L.; Yang, A.R.; Cheng, J.Q. Coupling PLUS–InVEST Model for Ecosystem Service Research in Yunnan Province, China. Sustainability 2022, 15, 271. [Google Scholar] [CrossRef]
- Lu, N. The Research on Carbon Emission Effects of Land Use Change. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, China, 2011. [Google Scholar]
- Meng, X.M. Regional Differences and Temporal and Spatial Pattern Evolution of Energy Efficiency in Three Urban Agglomerations—Analysis Based on the Perspective of Sustainable Development. Master’s Thesis, Dongbei University of Finance and Economics, Dalian, China, 2021. [Google Scholar]
- Lu, R.C.; Huang, X.J.; Zuo, T.H.; Xiao, S.S.; Zhao, X.F.; Zhang, X.Y. Land Use Scenarios Simulation Based on CLUE-S and Markov Composite Model—A Case Study of Taihu Lake Rim in Jiangsu Province. Sci. Geogr. Sin. 2009, 4, 577–581. [Google Scholar]
Category | Factor | Explanation |
---|---|---|
Terrain | DEM | Ground elevation information |
Slope | Steepness of the ground | |
Meteorology | Annual average temperature | Regional temperature information |
Total annual precipitation | Regional precipitation information | |
Soil | Sand content | Soil texture information |
Silt content | ||
Clay content | ||
Location | Shortest distance from road | The shortest Euclidean distance from the geometric center of the pixel to the nearest road |
Shortest distance from the railway | The shortest Euclidean distance from the geometric center of the cell to the nearest railway | |
Shortest distance from the railway | The shortest Euclidean distance from the geometric center of the pixel to the nearest water system | |
Economy | GDP | Socioeconomic information |
Grain Resources | NPP | Grain resource information |
Data | Unit | Time Resolution | Spatial Resolution | Source |
---|---|---|---|---|
Land-cover data | - | Year | 1 km | https://www.resdc.cn/, accessed on 10 October 2022 |
Sentinel-2 | - | 15 days | 10 m | https://code.earthengine.google.com/, accessed on 21 October 2022 |
DEM | m | - | 30 m | https://www.gscloud.cn/, accessed on 21 December 2022 |
Annual average temperature | °C | Year | 1 km | https://www.resdc.cn/, accessed on 28 December 2022 |
Total annual precipitation | mm | Year | 1 km | https://www.resdc.cn/, accessed on 10 January 2023 |
Soil texture | - | - | 1 km | https://www.resdc.cn/, accessed on 23 January 2023 |
Road network and water system | - | Year | - | https://www.webmap.cn/, accessed on 25 January 2023 |
NPP/VIIRS | - | Year | 500 m | https://www.ngdc.noaa.gov, accessed on 27 January 2023 |
NPP | g/m2 | Year | 1 km | https://www.resdc.cn/, accessed on 30 January 2023 |
Economic energy data | - | Year | - | http://tjj.hubei.gov.cn/, accessed on 5 February 2023 |
City | Carbon Source (10,000 Tons) | Carbon Sink (10,000 Tons) | Carbon Emission (10,000 Tons) | Carbon Source Intensity (Tons/CNY 100 Million) | Carbon Sink Intensity (Tons/Square Kilometer) | ECC | ESC |
---|---|---|---|---|---|---|---|
Wuhan | 2034.17 | 19.08 | 2015.10 | 1302.61 | 22.26 | 2.79 | 0.55 |
Huangshi | 837.94 | 14.67 | 823.27 | 5105.29 | 32.00 | 0.71 | 1.03 |
Ezhou | 373.19 | 3.49 | 369.70 | 3712.50 | 21.87 | 0.98 | 0.55 |
Xiaogan | 1462.05 | 20.50 | 1441.55 | 6665.21 | 23.03 | 0.54 | 0.83 |
Xiantao | 374.20 | 2.65 | 371.56 | 4519.86 | 10.43 | 0.80 | 0.42 |
Xianning | 1001.58 | 40.02 | 961.56 | 6569.14 | 41.04 | 0.55 | 2.36 |
Tianmen | 482.32 | 1.42 | 480.90 | 7810.94 | 5.41 | 0.46 | 0.17 |
Qianjiang | 340.79 | 1.37 | 339.42 | 4453.44 | 6.82 | 0.81 | 0.24 |
Huanggang | 2661.29 | 59.03 | 2602.26 | 12,266.57 | 33.81 | 0.30 | 1.31 |
Wuhan Urban Agglomeration | 9567.53 | 162.22 | 9405.31 | 3629.43 | 27.96 | 1.00 | 1.00 |
Zone | Division Conditions | City |
---|---|---|
Low-carbon development zone | ECC > 1, ESC > 1 | / |
High-carbon optimization zone | ECC > 1, ESC < 1 | Wuhan |
Ecological protection zone | ECC < 1, ESC > 1 | Xianning, Huangshi, Huanggang |
Comprehensive optimization zone | ECC < 1, ESC < 1 | Ezhou, Xiaogan, Xiantao, Tianmen, Qianjiang |
Area (Square Kilometers) | Natural Development | Low-Carbon Development | Economic Development | Cropland Protection |
---|---|---|---|---|
Unused land | 2699.83 | 2537.37 | 2613.76 | 2535.16 |
Grassland | 1070.20 | 1155.30 | 1183.45 | 1178.97 |
Cropland | 8952.75 | 8493.95 | 9654.14 | 15,260.73 |
Built-up land | 8113.61 | 7248.81 | 9731.44 | 8203.85 |
Forestland | 28,708.43 | 30,208.27 | 26,347.82 | 22,847.20 |
Water | 8480.95 | 8382.07 | 8495.15 | 7999.86 |
Total area | 58,025.76 | 58,025.76 | 58,025.76 | 58,025.76 |
Carbon Emission (10,000 Tons) | Natural Development | Low-Carbon Development | Economic Development | Cropland Protection |
---|---|---|---|---|
Unused land | −0.13 | −0.13 | −0.13 | −0.13 |
Grassland | −0.22 | −0.24 | −0.25 | −0.25 |
Cropland | 44.50 | 42.21 | 47.98 | 75.85 |
Built-up land | 8322.13 | 7435.10 | 9981.53 | 8414.69 |
Forestland | −166.80 | −175.51 | −153.08 | −132.74 |
Water | −21.46 | −21.21 | −21.49 | −20.24 |
Total area | 8178.01 | 7280.23 | 9854.56 | 8337.18 |
City | Natural Development | Low-Carbon Development | ||||
Carbon Source (10,000 Tons) | Carbon Sink (10,000 Tons) | Carbon Emission (10,000 Tons) | Carbon Source (10,000 Tons) | Carbon Sink (10,000 Tons) | Carbon Emission (10,000 Tons) | |
Wuhan | 1587.72 | 23.40 | 1564.32 | 1444.25 | 24.70 | 1419.54 |
Huangshi | 617.00 | 15.25 | 601.75 | 580.34 | 15.51 | 564.83 |
Ezhou | 277.81 | 4.27 | 273.54 | 245.50 | 4.50 | 240.99 |
Xiaogan | 1338.93 | 27.97 | 1310.96 | 1094.89 | 30.49 | 1064.40 |
Xiantao | 516.72 | 3.30 | 513.42 | 460.71 | 3.83 | 456.88 |
Xianning | 893.73 | 38.89 | 854.84 | 889.20 | 38.97 | 850.23 |
Tianmen | 1131.60 | 2.82 | 1128.79 | 1018.50 | 3.72 | 1014.78 |
Qianjiang | 538.55 | 1.94 | 536.62 | 505.50 | 2.29 | 503.21 |
Huanggang | 1464.55 | 70.78 | 1393.77 | 1242.84 | 73.00 | 1169.84 |
Wuhan Urban Agglomeration | 8366.62 | 188.61 | 8178.01 | 7477.32 | 197.09 | 7284.70 |
City | Economic Development | Cropland Protection | ||||
Carbon Source (10,000 Tons) | Carbon Sink (10,000 Tons) | Carbon Emission (10,000 Tons) | Carbon Source (10,000 Tons) | Carbon Sink (10,000 Tons) | Carbon Emission (10,000 Tons) | |
Wuhan | 1901.85 | 20.91 | 1880.94 | 1922.29 | 16.88 | 1905.41 |
Huangshi | 721.66 | 14.55 | 707.10 | 780.21 | 13.52 | 766.69 |
Ezhou | 349.47 | 3.77 | 345.69 | 354.74 | 3.05 | 351.69 |
Xiaogan | 1811.72 | 23.53 | 1788.19 | 1223.25 | 17.54 | 1205.71 |
Xiantao | 584.19 | 2.68 | 581.51 | 345.67 | 2.13 | 343.53 |
Xianning | 900.55 | 38.80 | 861.75 | 879.68 | 38.64 | 841.04 |
Tianmen | 1247.82 | 1.76 | 1246.06 | 398.25 | 1.02 | 397.23 |
Qianjiang | 575.63 | 1.56 | 574.07 | 276.54 | 1.17 | 275.37 |
Huanggang | 1940.83 | 67.32 | 1873.50 | 2309.68 | 59.35 | 2250.34 |
Wuhan Urban Agglomeration | 10,029.52 | 174.95 | 9858.83 | 8490.54 | 153.36 | 8337.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, C.; Dong, H.; Zhang, L.; He, S. Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability 2023, 15, 11021. https://doi.org/10.3390/su151411021
Zhang J, Zhang C, Dong H, Zhang L, He S. Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability. 2023; 15(14):11021. https://doi.org/10.3390/su151411021
Chicago/Turabian StyleZhang, Junxiang, Chengfang Zhang, Heng Dong, Liwen Zhang, and Sicong He. 2023. "Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China" Sustainability 15, no. 14: 11021. https://doi.org/10.3390/su151411021
APA StyleZhang, J., Zhang, C., Dong, H., Zhang, L., & He, S. (2023). Spatial–Temporal Change Analysis and Multi-Scenario Simulation Prediction of Land-Use Carbon Emissions in the Wuhan Urban Agglomeration, China. Sustainability, 15(14), 11021. https://doi.org/10.3390/su151411021