Spatial and Temporal Analysis of Climatic Precursors before Major Earthquakes in Iran (2011–2021)
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Preparation
3.2. Data Analysis
3.2.1. Cross-Correlation Function (CCF)
3.2.2. Receiver Operating Characteristics (ROC)
4. Results and Discussion
4.1. Estimation of CCF
4.2. Analysis of Time Series
4.3. Estimation of the AUC Index
4.4. Examination of Accuracy
4.5. Underlying Mechanism concerning the Linkages between the Earthquake Events and Pre-Earthquake Anomalies
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Qin, K.; Guo, G.M.; Wu, L.X. Surface latent heat flux anomalies preceding inland earthquakes in China. Earthq. Sci. 2009, 22, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Qin, K.; Wu, L.X.; De Santis, A.; Meng, J.; Ma, W.Y.; Cianchini, G. Quasi-synchronous multi-parameter anomalies associated with the 2010–2011 New Zealand earthquake sequence. Nat. Hazards Earth Syst. Sci. 2012, 12, 1059–1072. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Survey of a relationship between precipitation and major earthquakes along the Peru-Chilean trench (2000–2015). Eur. Phys. J. Spec. Top. 2021, 230, 335–351. [Google Scholar] [CrossRef]
- Mignan, A.; Ouillon, G.; Sornette, D.; Freund, F.T. Global earthquake forecasting system (GEFS): The challenges ahead. Eur. Phys. J. Spec. Top. 2021, 230, 473–490. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, T.J.Y.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Marchitelli, V.; Harabaglia, P.; Troise, C.; De Natale, G. On the correlation between solar activity and large earthquakes worldwide. Sci. Rep. 2020, 10, 11495. [Google Scholar] [CrossRef]
- Freund, F.T. Earthquake Forewarning—A Multidisciplinary Challenge from the Ground up to Space. Acta Geophys. 2013, 61, 775–807. [Google Scholar] [CrossRef]
- Freund, F.T.; Kulahci, I.G.; Cyr, G.; Ling, J.; Winnick, M.; Tregloan-Reed, J.; Freund, M.M. Air ionization at rock surfaces and pre-earthquake signals. J. Atmos. Sol. Terr. Phys. 2009, 71, 1824–1834. [Google Scholar] [CrossRef]
- Freund, F.T.; Freund, M.M. Paradox of Peroxy Defects and Positive Holes in Rocks Part I: Effect of Temperature. J. Asian Earth Sci. 2015, 114, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.V.; Davidenko, D.V. Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere magnetosphere system. Geomagn. Aeron. 2015, 55, 521–538. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. The Possibility of Earthquake Forecasting: Learning from Nature; IOP Publishing: Bristol, UK, 2018; p. 167. [Google Scholar] [CrossRef]
- Ching-Chou, F.; Walia, V.; Yang, T.F.; Lou-Chuang, L.; Liu, T.K.; Cheng-Hong, C.; Kumar, A.; Shih-Jung, L.; Lai, T.H.; Kuo-Liang, W. Preseismic anomalies in soil-gas radon associated with 2016 M 6.6 Meinong earthquake, Southern Taiwan. Terr. Atmos. Ocean. Sci. 2017, 28, 7. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.C.; Lee, L.C.; Yang, T.F.; Lin, C.H.; Chen, C.H.; Walia, V.; Liu, T.K.; Ouzounov, D.; Giuliani, G.; Lai, T.H.; et al. Gamma ray and radon anomalies in northern Taiwan as a possible preearthquake indicator around the plate boundary. Geofluids 2019, 2019, 4734513. [Google Scholar] [CrossRef] [Green Version]
- Freund, F.T.; Ouillon, G.; Scoville, J.; Sornette, D. Earthquake precursors in light of the peroxy defect theory: Critical review of systematic observations. Eur. Phys. J. Spec. Top. 2021, 230, 7–46. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.V.; Boyarchuk, K.A.; Pokhmelnykh, L.A. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Ouzounov, D.; Liu, D.; Chunli, K.; Cervone, G.; Kafatos, M.; Taylor, P. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 2007, 431, 211–220. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. Lithosphere-atmosphere-ionosphere coupling (LAIC) model: An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Ohta, K.; Izutsu, J.; Nakamura, T.; Kasahara, Y. The ionospheric precursor to the 2011 March 11 earthquake based upon observations obtained from the Japan-Pacific subionospheric VLF/LF network. Terr. Atmos. Ocean. Sci. 2013, 24, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Hakayawa, M. Earthquake Prediction with Radio Techniques; John Wiley & Sons: Singapore, 2015. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T. Remote Sensing of Atmospheric and Ionospheric Signals Prior to the Mw 8.3 Illapel Earthquake, Chile 2015. Pure Appl. Geophys. 2017, 174, 11–45. [Google Scholar] [CrossRef]
- Hayakawam, M.; Asano, T.; Rozhnoi, A.; Solovieva, M. VLF/LF sounding of ionospheric perturbations and possible association with earthquakes. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; American Geophysical Union: Washington, DC, USA, 2018; pp. 277–304. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.; Davidenko, D.V. Lithosphere-atmosphere-ionosphere-magnetosphere coupling—A concept for pre-earthquake signals generation. In Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies; American Geophysical Union: Washington, DC, USA, 2018; pp. 79–98. Available online: https://digitalcommons.chapman.edu/scs_books/44 (accessed on 25 January 2020).
- Ouzounov, D.; Pulinets, S.; Liu, J.Y.; Hattori, K.; Han, P. Multiparameter assessment of pre-earthquake atmospheric signals. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, D., Hattori, K., Taylor, P., Eds.; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 339–359. [Google Scholar] [CrossRef]
- Shah, M.; Jin, S. Pre-seismic ionospheric anomalies of the 2013 Mw = 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar] [CrossRef]
- Tariq, M.A.; Shah, M.; Pajares, M.H.; Iqbal, T. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Adv. Space Res. 2019, 63, 2088–2099. [Google Scholar] [CrossRef]
- Yang, S.S.; Asano, T.; Hayakawa, M. Abnormal gravity wave activity in the stratosphere prior to the 2016 Kumamoto earthquakes. J. Geophys. Res. Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous seismo-LAI variations potentially associated with the 2017 Mw=7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pav’on-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Alfonsi, L.; Amoruso, L.; Campuzano, S.A.; Carbone, M.; et al. Precursory worldwide signatures of earthquake occurrences on swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Aibar, A.C.; Tariq, M.A.; Ahmed, J.; Ahmed, A. Possible ionosphere and atmosphere precursory analysis related to Mw >6.0 earthquakes in Japan. Remote Sens. Environ. 2020, 239, 111620. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible lithosphere-atmosphere-ionosphere coupling effects prior to the 2018 Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, X.; Zhang, J.; Cui, J.; Tan, Q.; Zhao, S.; Li, M. Aerosol anomalies associated with occurrence of recent strong earthquakes (>M 8.0). Terr. Atmos. Ocean. Sci. 2020, 31, 677–689. [Google Scholar] [CrossRef]
- Şentürk, E.; Inyurt, S.; Sertçelik, İ. Ionospheric anomalies associated with Mw7.3 Iran-Iraq border earthquake and a moderate magnetic storm. Ann. Geophys. Discus. 2020, 38, 1031–1043. [Google Scholar] [CrossRef]
- Adil, M.A.; Şentürk, E.; Pulinets, S.A.; Mazaudier, C.A. A lithosphere–atmosphere–ionosphere coupling phenomenon observed before M 7.7 Jamaica earthquake. Pure Appl. Geophys. 2021, 178, 3869–3886. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, L.; Yu, Y. Associations between strong earthquakes and local rainfall in China. Front. Earth Sci. 2021, 9, 760497. [Google Scholar] [CrossRef]
- Freund, F.T.; Daneshvar, M.R.M.; Ebrahimi, M. Atmospheric storm anomalies prior to major earthquakes in the Japan region. Sustainability. 2022, 14, 10241. [Google Scholar] [CrossRef]
- De Santis, A.; Perrone, L.; Calcara, M.; Campuzano, S.A.; Cianchini, G.; D’Arcangelo, S.; Mauro, D.D.; Marchetti, D.; Nardi, A.; Orlando, M.; et al. A comprehensive multiparametric and multilayer approach to study the preparation phase of large earthquakes from ground to space: The case study of the June 15 2019, M7.2 Kermadec Islands (New Zealand) earthquake. Remote Sens. Environ. 2022, 283, 113325. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.; Kundu, S.; Sasmal, S.; Politis, D.Z.; Potirakis, S.M.; Hayakawa, M.; Chakraborty, S.; Chakrabarti, S.K. Unusual surface latent heat fluxvariations and their critical dynamics revealed before strong earthquakes. Entropy 2022, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.M.; Ghaffar, B.; Shahzad, R.; Khan, M.R.; Shah, M.; Amin, A.H.; Eldin, S.M.; Naqvi, N.A.; Ali, R. Atmospheric anomalies associated with the 2021 Mw 7.2 Haiti earthquake using machine learning from multiple satellites. Sustainability 2022, 14, 14782. [Google Scholar] [CrossRef]
- Picozza, P.; Conti, L.; Sotgiu, A. Looking for earthquake precursors from space: A critical review. Front. Earth Sci. 2021, 9, 676775. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Khosravi, M.; Tavousi, T. Seismic triggering of atmospheric variables prior to the major earthquakes in the Middle East within a 12-year time-period of 2002–2013. Nat. Hazards 2014, 74, 1539–1553. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Tavousi, T.; Khosravi, M. Synoptic detection of the short-term atmospheric precursors prior to a major earthquake in the Middle East, North Saravan M 7.8 earthquake, SE Iran. Air. Qual. Atmos. Health 2014, 7, 29–39. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Tavousi, T.; Khosravi, M. Atmospheric blocking anomalies as the synoptic precursors prior to the induced earthquakes; A new climatic conceptual model. Int. J. Environ. Sci. Technol. 2015, 12, 1705–1718. [Google Scholar] [CrossRef] [Green Version]
- Daneshvar, M.R.M.; Freund, F.T. Examination of a relationship between atmospheric blocking and seismic events in the Middle East using a new seismo-climatic index. Swiss J. Geosci. 2019, 112, 435–451. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Freund, F.T.; Ebrahimi, M. Time-lag correlations between atmospheric anomalies and earthquake events in Iran and the surrounding Middle East region (1980–2018). Arab. J. Geosci. 2021, 14, 1210. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Bagherzadeh, A.; Tavousi, T. Assessment of bioclimatic comfort conditions based on Physiologically Equivalent Temperature (PET) using the RayMan Model in Iran. Cent. Eur. Geol. 2013, 5, 53–60. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Ebrahimi, M.; Nejadsoleymani, H. Investigation of mining-induced earthquakes in Iran within a time window of 2006–2013. J. Seismol. 2018, 22, 1437–1450. [Google Scholar] [CrossRef]
- USGS. Earthquake Archive Data. Online Catalog of United States Geological Survey. Available online: https://earthquake.usgs.gov/earthquakes/search (accessed on 20 December 2022).
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 hourly data on single levels from 1959 to present. In European Copernicus Climate Change Service and Climate Data Store; European Meteorological Society: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Daneshvar, M.R.M.; Ebrahimi, M.; Nejadsoleymani, H.; Mahmoudzadeh, A. Investigation of a seismic teleconnection model between Iran and Iceland regions during 1980–2018. Model. Earth Syst. Environ. 2020, 6, 2215–2224. [Google Scholar] [CrossRef]
- Probst, W.N.; Stelzenmüller, V.; Ove Fock, H. Using cross-correlations to assess the relationship between time-lagged pressure and state indicators: An exemplary analysis of North Sea fish population indicators. ICES J. Mar. Sci. 2012, 69, 670–681. [Google Scholar] [CrossRef] [Green Version]
- Straile, D.; Eckmann, R.; Juengling, T.; Thomas, G.; Loeffler, H. Influence of climate variability on whitefish (Coregonus lavaretus) year-class strength in a deep, warm monomictic lake. Oecologia 2007, 151, 521–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenstreet, S.P.R.; Rogers, S.I.; Rice, J.C.; Piet, G.J.; Guirey, E.J.; Fraser, H.M.; Fryer, R.J. Development of the EcoQO for the North Sea fish community. ICES J. Mar. Sci. 2011, 68, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gröger, J.P.; Fogarty, M.J. Broad-scale climate influences on cod (Gadus morhua) recruitment on Georges Bank. ICES J. Mar. Sci. 2011, 68, 592–602. [Google Scholar] [CrossRef] [Green Version]
- Shephard, S.; Reid, D.G.; Greenstreet, S.P.R. Interpreting the large fish indicator for the Celtic Sea. ICES J. Mar. Sci. 2011, 68, 1963–1972. [Google Scholar] [CrossRef] [Green Version]
- Lasko, T.A.; Bhagwat, J.G.; Zou, K.H.; Ohno-Machado, L. The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 2005, 38, 404–415. [Google Scholar] [CrossRef] [Green Version]
- Liuzzo, L.; Sammartano, V.; Freni, G. Comparison between different distributed methods for flood susceptibility mapping. Water Resour. Manag. 2019, 33, 3155–3173. [Google Scholar] [CrossRef]
- Pirnia, A.; Darabi, H.; Choubin, B.; Omidvar, E.; Onyutha, C.; Haghighi, A.T. Contribution of climatic variability and human activities to stream flow changes in the Haraz River basin, northern Iran. J. Hydro-Environ. Res. 2019, 25, 12–24. [Google Scholar] [CrossRef]
- Khatami, F.; Vilamová, Š.; Cagno, E.; De Bernardi, P.; Neri, A.; Cantino, V. Efficiency of consumer behaviour and digital ecosystem in the generation of the plastic waste toward the circular economy. J. Environ. Manag. 2023, 325, 116555. [Google Scholar] [CrossRef]
- Piroddi, L.; Ranieri, G.; Freund, F.T.; Trogu, A. Geology, tectonics and topography underlined by L’Aquila earthquake TIR precursors. Geophys. J. Int. 2014, 197, 1532–1536. [Google Scholar] [CrossRef]
- Iaffaldano, G.; Husson, L.; Bunge, H.P. Monsoon speeds up Indian plate motion. Earth Planet. Sci. Lett. 2011, 304, 503–510. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.S.; Solovieva, M.; Hobara, Y. Multi-parameter observations of seismogenic phenomena related to the Tokyo earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- Scoville, J.; Sornette, J.; Freund, F.T. Paradox of peroxy defects and positive holes in rocks Part II: Outflow of electric currents from stressed rocks. J. Asian Earth Sci. 2015, 114, 338–351. [Google Scholar] [CrossRef] [Green Version]
- King, B.V.; Freund, F.T. Surface charges and subsurface space charge distribution in magnesium oxide containing dissolved traces of water. Phys. Rev. B 1984, 29, 5814–5824. [Google Scholar] [CrossRef]
- Bleier, T.; Dunson, C.; Maniscalco, M.; Bryant, N.; Bambery, R.; Freund, F.T. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October 2007 Alum Rock M5.4 earthquake. Nat. Hazards Earth Syst. Sci. 2009, 9, 585–603. [Google Scholar] [CrossRef]
- Freund, F.T.; Takeuchi, A.; Lau, B.W.S.; Al-Manaseer, A.; Fu, C.C.; Bryant, N.A.; Ouzounov, D. Stimulated thermal IR emission from rocks: Assessing a stress indicator. eEarth 2007, 2, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Lizunov, G.; Hayakawa, M. Atmospheric Gravity Waves and their Role in the Lithosphere-troposphere-ionosphere Interaction. IEEJ Trans. Fundam. Mater. 2004, 124, 1109–1120. [Google Scholar] [CrossRef] [Green Version]
- Garcia, R.; Crespon, F.; Ducic, V.; Lognonné, P. Three-dimensional ionospheric tomography of post-seismic perturbations produced by the Denali earthquake from GPS data. Geophys. J. Int. 2005, 163, 1049–1064. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Solovieva, M.; Molchanov, O.A.; Biagi, P.F.; Hayakawa, M. Observation evidences of atmospheric Gravity Waves induced by seismic activity from analysis of subionospheric LF signal spectra. Nat. Hazards Earth Syst. Sci. 2007, 7, 625–628. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kasahara, Y.; Nakamura, T.; Hobara, Y.; Rozhnoi, A.; Solovieva, M.; Molchanov, O.A.; Korepanov, V. Atmospheric gravity waves as a possible candidate for seismo-ionospheric perturbations. J. Atmos. Electr. 2011, 31, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, M.; Izutsu, J.; Schekotov, A.; Yang, S.S.; Solovieva, M.; Budilova, E. Lithosphere–atmosphere–ionosphere coupling effects based on multiparameter precursor observations for February–March 2021 earthquakes (m~7) in the offshore of Tohoku area of Japan. Geosciences 2021, 11, 481. [Google Scholar] [CrossRef]
Earthquake Date | Latitude (°) | Longitude (°) | Depth (km) | Magnitude (Richter) | Faulting Mechanism * | Seismological Region |
---|---|---|---|---|---|---|
27 January 2011 | 28.20 | 59.02 | 10 | 6.2 | Strike slip | Kerman |
11 August 2012 | 38.33 | 46.83 | 11 | 6.4 | Strike slip | Alborz |
11 August 2012 | 38.39 | 46.75 | 12 | 6.2 | Strike slip | Alborz |
9 April 2013 | 28.43 | 51.59 | 12 | 6.4 | Strike slip | Zagros |
16 April 2013 | 28.03 | 62.00 | 80 | 7.7 | Normal dip slip | Makran |
11 May 2013 | 26.56 | 57.77 | 15 | 6.1 | Strike slip | Makran |
18 August 2014 | 32.70 | 47.70 | 10 | 6.2 | Compressional | Zagros |
18 August 2014 | 32.58 | 47.70 | 5 | 6.0 | Compressional | Zagros |
5 April 2017 | 35.78 | 60.44 | 13 | 6.1 | Strike slip | Kopet Dagh |
12 November 2017 | 34.91 | 45.96 | 19 | 7.3 | Compressional | Zagros |
1 December 2017 | 30.75 | 57.31 | 9 | 6.1 | Thrust | Kerman |
12 December 2017 | 30.83 | 57.30 | 8 | 6.0 | Thrust | Kerman |
12 December 2017 | 30.74 | 57.28 | 12 | 6.0 | Thrust | Kerman |
25 August 2018 | 34.61 | 46.24 | 10 | 6.0 | Strike slip | Zagros |
25 November 2018 | 34.36 | 45.74 | 18 | 6.3 | Strike slip | Zagros |
14 November 2021 | 27.73 | 56.07 | 10 | 6.4 | Thrust | Zagros |
14 November 2021 | 27.72 | 56.07 | 9 | 6.0 | Thrust | Zagros |
Lag (day) | 27 January 2011 | 11 August 2012 | 9 April 2013 | 16 April 2013 | 11 May 2013 | 18 August 2014 | 5 April 2017 | 12 November 2017 | 1 December 2017 | 12 December 2017 | 25 August 2018 | 25 November 2018 | 14 November 2021 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
−30 | 0.01 | 0.00 | −0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 |
−29 | 0.01 | −0.01 | −0.02 | −0.01 | 0.00 | 0.01 | 0.01 | −0.01 | 0.01 | 0.01 | 0.00 | −0.10 | 0.01 | −0.01 |
−28 | 0.02 | 0.01 | −0.02 | −0.02 | 0.01 | 0.01 | 0.01 | −0.01 | −0.01 | 0.02 | −0.01 | −0.13 | 0.01 | −0.01 |
−27 | 0.02 | −0.02 | 0.01 | −0.01 | 0.00 | 0.01 | 0.02 | −0.01 | −0.09 | 0.02 | 0.01 | 0.00 | 0.01 | 0.00 |
−26 | 0.03 | 0.00 | −0.01 | −0.01 | −0.02 | 0.01 | 0.00 | −0.01 | −0.08 | 0.03 | −0.01 | 0.00 | 0.03 | 0.00 |
−25 | 0.04 | 0.00 | 0.04 | −0.01 | 0.03 | 0.01 | −0.02 | −0.01 | −0.07 | 0.03 | 0.09 | −0.05 | 0.00 | 0.01 |
−24 | 0.03 | 0.02 | 0.02 | 0.01 | 0.00 | 0.01 | −0.02 | −0.02 | −0.07 | 0.04 | −0.10 | −0.04 | 0.00 | −0.01 |
−23 | −0.01 | 0.05 | 0.03 | 0.16 | 0.03 | 0.01 | −0.03 | −0.05 | −0.09 | 0.01 | 0.20 | −0.09 | −0.03 | 0.02 |
−22 | −0.06 | 0.07 | 0.04 | 0.18 | 0.00 | 0.01 | −0.03 | −0.09 | −0.13 | −0.03 | 0.06 | 0.03 | −0.02 | 0.00 |
−21 | −0.13 | 0.23 | 0.19 | −0.11 | −0.09 | 0.01 | −0.11 | −0.08 | −0.07 | −0.09 | 0.30 | 0.23 | −0.05 | 0.02 |
−20 | −0.13 | 0.30 | 0.33 | −0.12 | −0.25 | 0.01 | −0.14 | −0.06 | 0.31 | −0.10 | 0.78 | 0.49 | −0.09 | 0.10 |
−19 | −0.13 | −0.10 | −0.07 | −0.10 | −0.18 | 0.00 | −0.14 | −0.08 | 0.67 | −0.09 | 0.34 | 0.47 | −0.07 | 0.04 |
−18 | −0.15 | −0.14 | −0.09 | −0.13 | −0.07 | −0.04 | −0.05 | −0.10 | 0.45 | −0.11 | −0.15 | −0.09 | −0.09 | −0.06 |
−17 | −0.16 | −0.10 | −0.10 | −0.11 | −0.03 | −0.04 | 0.02 | −0.10 | −0.19 | −0.12 | −0.15 | −0.15 | −0.13 | −0.10 |
−16 | −0.19 | −0.09 | −0.10 | 0.12 | 0.22 | −0.04 | 0.27 | −0.07 | −0.21 | −0.15 | −0.14 | −0.15 | −0.15 | −0.05 |
−15 | −0.20 | −0.06 | −0.11 | 0.15 | 0.18 | −0.05 | 0.61 | −0.04 | −0.11 | −0.07 | −0.14 | −0.14 | −0.20 | −0.01 |
−14 | −0.18 | 0.02 | −0.14 | −0.16 | 0.42 | −0.11 | −0.14 | −0.01 | −0.08 | −0.01 | −0.14 | −0.17 | −0.16 | −0.07 |
−13 | −0.18 | 0.06 | −0.12 | 0.03 | 0.34 | −0.11 | −0.11 | −0.04 | −0.06 | −0.02 | −0.13 | −0.10 | −0.12 | −0.04 |
−12 | −0.11 | 0.57 | −0.13 | 0.09 | −0.05 | −0.10 | −0.03 | 0.00 | −0.01 | 0.05 | −0.13 | −0.16 | −0.20 | −0.02 |
−11 | 0.05 | 0.55 | −0.13 | −0.13 | −0.29 | −0.07 | 0.00 | −0.09 | 0.10 | −0.01 | −0.13 | 0.03 | −0.16 | −0.02 |
−10 | 0.29 | −0.15 | −0.08 | 0.28 | −0.39 | −0.05 | 0.45 | −0.03 | 0.11 | 0.01 | −0.12 | −0.02 | −0.12 | 0.01 |
−9 | 0.57 | −0.14 | −0.10 | 0.40 | −0.37 | −0.01 | −0.13 | 0.04 | 0.20 | 0.40 | −0.12 | 0.30 | 0.00 | 0.08 |
−8 | 0.55 | −0.14 | −0.01 | 0.79 | −0.28 | −0.06 | −0.10 | 0.42 | 0.23 | 0.65 | −0.12 | −0.13 | 0.25 | 0.16 |
−7 | 0.38 | −0.14 | −0.07 | −0.13 | −0.01 | −0.02 | −0.07 | 0.32 | 0.14 | 0.52 | −0.11 | −0.14 | 0.62 | 0.10 |
−6 | 0.13 | −0.13 | 0.00 | −0.15 | 0.19 | 0.04 | 0.09 | 0.49 | −0.13 | −0.14 | −0.11 | −0.13 | 0.65 | 0.06 |
−5 | −0.10 | −0.13 | 0.10 | −0.15 | 0.17 | 0.03 | 0.05 | 0.24 | −0.12 | −0.13 | −0.11 | −0.15 | 0.57 | 0.02 |
−4 | −0.11 | −0.13 | 0.35 | −0.14 | 0.22 | 0.01 | 0.07 | −0.12 | −0.10 | −0.05 | −0.11 | −0.09 | 0.48 | 0.02 |
−3 | −0.13 | −0.12 | 0.54 | −0.14 | 0.29 | 0.09 | 0.06 | −0.12 | −0.12 | −0.06 | −0.11 | −0.12 | 0.28 | 0.03 |
−2 | −0.18 | −0.12 | −0.14 | −0.13 | 0.18 | 0.46 | 0.08 | −0.12 | −0.12 | −0.02 | −0.11 | 0.07 | −0.23 | −0.03 |
−1 | −0.15 | −0.12 | −0.04 | −0.13 | −0.02 | 0.92 | 0.05 | −0.11 | −0.08 | −0.02 | −0.10 | 0.06 | −0.27 | 0.00 |
0 | −0.09 | −0.11 | −0.08 | −0.12 | −0.13 | 0.20 | −0.11 | −0.09 | −0.05 | 0.10 | −0.06 | 0.34 | −0.25 | −0.03 |
Earthquake Date | Spatial Pixel | Preceding Date | Preceding Time (day) | tcc (%) | lcc (%) | tp (mm) | slhf (W/m2) | tcrw (kg−3/m2) |
---|---|---|---|---|---|---|---|---|
27 January 2011 | 28–29° N, 59–60° E | 19 January 2011 | 9 | 100 | 90 | 9.5 | 50 | 150 |
11 August 2012 | 38–39° N, 46–47° E | 30 July 2012 | 12 | 90 | 50 | 4.6 | 110 | 120 |
9 April 2013 | 28–29° N, 51–52° E | 6 April 2013 | 3 | 90 | 90 | 7.2 | 240 | 25 |
16 April 2013 | 28–29° N, 61–62° E | 8 April 2013 | 8 | 100 | 100 | 12.9 | 130 | 90 |
11 May 2013 | 26–27° N, 57–58° E | 27 April 2013 | 14 | 100 | 10 | 6.2 | 250 | 240 |
18 August 2014 | 32–33° N, 47–48° E | 18 August 2014 | 1 | 100 | 25 | 1.1 | 20 | 30 |
5 April 2017 | 35–36° N, 60–61° E | 21 March 2017 | 15 | 100 | 100 | 12.1 | 110 | 10 |
12 November 2017 | 34–35° N, 45–46° E | 6 November 2017 | 6 | 90 | 40 | 9.6 | 50 | 80 |
1 December 2017 | 30–31° N, 57–58° E | 23 November 2017 | 8 | 100 | 70 | 4.1 | 50 | 20 |
12 December 2017 | 19 | |||||||
25 August 2018 | 34–35° N, 46–47° E | 6 August 2018 | 20 | 90 | 15 | 0.9 | 90 | 15 |
25 November 2018 | 34–35° N, 45–46° E | 5 November 2018 | 20 | 100 | 100 | 13.1 | 80 | 275 |
14 November 2021 | 27–28° N, 56–57° E | 8 November 2021 | 6 | 100 | 40 | 13.4 | 80 | 65 |
Mean | - | - | - | 95 | 60 | 8.0 | 105 | 95 |
Earthquake Date | tcc | lcc | tp | slhf | tcrw |
---|---|---|---|---|---|
27 January 2011 | 0.688 | 0.835 | 0.938 | 0.898 | 0.875 |
11 August 2012 | 0.535 | 0.650 | 0.562 | 0.637 | 0.688 |
9 April 2013 | 0.624 | 0.667 | 0.750 | 0.821 | 0.833 |
16 April 2013 | 0.610 | 0.733 | 0.625 | 0.768 | 0.750 |
11 May 2013 | 0.603 | 0.557 | 0.729 | 0.755 | 0.829 |
18 August 2014 | 0.857 | 0.729 | 0.901 | 0.938 | 0.929 |
5 April 2017 | 0.778 | 0.556 | 0.500 | 0.598 | 0.667 |
12 November 2017 | 0.825 | 0.629 | 0.700 | 0.815 | 0.800 |
12 December 2017 | 0.771 | 0.700 | 0.915 | 0.923 | 0.917 |
25 August 2018 | 0.586 | 0.614 | 0.514 | 0.618 | 0.928 |
25 November 2018 | 0.612 | 0.721 | 0.700 | 0.833 | 0.828 |
14 November 2021 | 0.635 | 0.750 | 0.660 | 0.667 | 0.677 |
Mean | 0.677 | 0.678 | 0.708 | 0.773 | 0.810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri Daneshvar, M.R.; Freund, F.T.; Ebrahimi, M. Spatial and Temporal Analysis of Climatic Precursors before Major Earthquakes in Iran (2011–2021). Sustainability 2023, 15, 11023. https://doi.org/10.3390/su151411023
Mansouri Daneshvar MR, Freund FT, Ebrahimi M. Spatial and Temporal Analysis of Climatic Precursors before Major Earthquakes in Iran (2011–2021). Sustainability. 2023; 15(14):11023. https://doi.org/10.3390/su151411023
Chicago/Turabian StyleMansouri Daneshvar, Mohammad Reza, Friedemann T. Freund, and Majid Ebrahimi. 2023. "Spatial and Temporal Analysis of Climatic Precursors before Major Earthquakes in Iran (2011–2021)" Sustainability 15, no. 14: 11023. https://doi.org/10.3390/su151411023
APA StyleMansouri Daneshvar, M. R., Freund, F. T., & Ebrahimi, M. (2023). Spatial and Temporal Analysis of Climatic Precursors before Major Earthquakes in Iran (2011–2021). Sustainability, 15(14), 11023. https://doi.org/10.3390/su151411023