Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies
Abstract
:1. Introduction
- How does the seasonal tilt angle throughout the year impact the annual energy yield of a grid-connected PV solar power plant?
- How do SAVST and SAHST impact the annual energy yield of a grid-connected PV solar power plant?
- How can seasonal tilt angle and solar tracking strategies preserve the environment in a grid-connected PV solar power plant?
- Are the implications of seasonal tilt angle and solar tracking strategies economically feasible?
- Can the excess energy obtained from the solar tracking strategies help meet partial demand?
2. Presentation of Site
3. Methodology
3.1. Data Collection and Analysis
3.2. Scenarios Explanations
3.2.1. Fixed Tilt
3.2.2. Seasonal Tilt Adjustment
3.2.3. Single-Axis Horizontal Solar Tracking
3.2.4. Single-Axis Vertical Solar Tracking
3.2.5. Difference between SAVST and SAHST
4. Economic and Environmental Analysis
4.1. Economic Analysis
4.1.1. NPV
4.1.2. Payback Period
SAVST Payback Period
SAHST Payback Period
4.2. Environmental Impact Analysis
5. Results
5.1. Energy Yield for Each Scenario
5.2. Comparison of Energy Yield and Financial Performance
5.3. Environmental Impact and Sustainability Aspects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AEIC | Afghanistan Energy Information Center |
BOT | Built-operate-transfer. |
Co | Company |
DABS | Da Afghanistan Breshna Sherkat |
IPPs | Independent power producers |
MEW | Ministry of Energy and Water |
MoF | Ministry of Finance |
MW | Megawatt |
MWp | Megawatt peak |
NEPA | National Environmental Protection Agency |
NEPS | Northeast power system |
NPV | Net present value |
O&M | Operation and maintenance |
PR | Performance ratio |
Pspp | Solar power plant power |
ROI | Return on investment |
SAHST | Single axis horizontal solar tracking |
SAVST | Single axis vertical solar tracking |
SCADA | Supervisory control and data acquisition |
SEPS | Southeast Power System |
SP | Specific yield |
T-Rate | Tax rate |
WPS | West power system |
References
- Carballo, J.A.; Bonilla, J.; Roca, L.; Berenguel, M. New low-cost solar tracking system based on open source hardware for educational purposes. Sol. Energy 2018, 174, 826–836. [Google Scholar] [CrossRef]
- Ge, L.; Du, T.; Li, C.; Li, Y.; Yan, J.; Rafiq, M.U. Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications. Energies 2022, 15, 8783. [Google Scholar] [CrossRef]
- Obara, S.; Matsumura, K.; Aizawa, S.; Kobayashi, H.; Hamada, Y.; Suda, T. Development of a solar tracking system of a nonelectric power source by using a metal hydride actuator. Sol. Energy 2017, 158, 1016–1025. [Google Scholar] [CrossRef]
- Khadidja, B.; Dris, K.; Boubeker, A.; Noureddine, S. Optimisation of a Solar Tracker System for Photovoltaic Power Plants in Saharian Region, Example of Ouargla. Energy Procedia 2014, 50, 610–618. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, J.; Yang, X. Design and performance analysis of a solar tracking system with a novel single-axis tracking structure to maximize energy collection. Appl. Energy 2020, 264, 114647. [Google Scholar] [CrossRef]
- Sidek, M.; Azis, N.; Hasan, W.; Ab Kadir, M.; Shafie, S.; Radzi, M. Automated positioning dual-axis solar tracking system with precision elevation and azimuth angle control. Energy 2017, 124, 160–170. [Google Scholar] [CrossRef]
- Naval, N.; Yusta, J.M. Comparative assessment of different solar tracking systems in the optimal management of PV-operated pumping stations. Renew. Energy 2022, 200, 931–941. [Google Scholar] [CrossRef]
- Al-Rousan, N.; Isa, N.A.M.; Desa, M.K.M. Advances in solar photovoltaic tracking systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 2548–2569. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types—A review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Rad, M.A.V.; Toopshekan, A.; Rahdan, P.; Kasaeian, A.; Mahian, O. A comprehensive study of techno-economic and environmental features of different solar tracking systems for residential photovoltaic installations. Renew. Sustain. Energy Rev. 2020, 129, 109923. [Google Scholar] [CrossRef]
- Abhilash, P.; Kumar, R.N.; Kumar, R.P. Solar powered water pump with single axis tracking system for irrigation purpose. Mater. Today Proc. 2020, 39, 553–557. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Murali Manohar, S.R.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Dekkiche, M.; Tahri, T.; Denai, M. Techno-economic comparative study of grid-connected PV/reformer/FC hybrid systems with distinct solar tracking systems. Energy Convers. Manag. X 2023, 18, 100360. [Google Scholar] [CrossRef]
- Tarigan, E. Comparison of Energy Production Between Fixed-Mount and Tracking Systems of Solar PV Systems in Jakarta, Indonesia. Futur. Cities Environ. 2023, 9, 1–8. [Google Scholar] [CrossRef]
- Li, M.; Yang, M.; Yu, Y.; Lee, W.-J. A Wind Speed Correction Method Based on Modified Hidden Markov Model for Enhancing Wind Power Forecast. IEEE Trans. Ind. Appl. 2022, 58, 656–666. [Google Scholar] [CrossRef]
- Sun, B.; Li, Y.; Zeng, Y.; Chen, J.; Shi, J. Optimization planning method of distributed generation based on steady-state security region of distribution network. Energy Rep. 2022, 8, 4209–4222. [Google Scholar] [CrossRef]
- Hohne, P.A.; Kusakana, K.; Numbi, B.P. Model Development and Validation of a Dual-Axis PV Tracking System: A Case of South Africa. Int. J. Electr. Electron. Eng. Telecommun. 2021, 10, 288–293. [Google Scholar] [CrossRef]
- Chen, J.; Sun, B.; Li, Y.; Jing, R.; Zeng, Y.; Li, M. Credible capacity calculation method of distributed generation based on equal power supply reliability criterion. Renew. Energy 2022, 201, 534–547. [Google Scholar] [CrossRef]
- Sekyere, C.K.; Davis, F.; Opoku, R.; Otoo, E.; Takyi, G.; Atepor, L. Performance evaluation of a 20 MW grid-coupled solar park located in the southern oceanic environment of Ghana. Clean. Eng. Technol. 2021, 5, 100273. [Google Scholar] [CrossRef]
- Ngo, X.C.; Nguyen, T.H.; Do, N.Y.; Nguyen, D.M.; Vo, D.-V.N.; Lam, S.S.; Heo, D.; Shokouhimehr, M.; Nguyen, V.-H.; Varma, R.S.; et al. Grid-Connected Photovoltaic Systems with Single-Axis Sun Tracker: Case Study for Central Vietnam. Energies 2020, 13, 1457. [Google Scholar] [CrossRef] [Green Version]
- Dang, W.; Liao, S.; Yang, B.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. An encoder-decoder fusion battery life prediction method based on Gaussian process regression and improvement. J. Energy Storage 2023, 59, 106469. [Google Scholar] [CrossRef]
- Liang, J.; Kato, B.; Wang, Y. Constructing simplified models for dynamic analysis of monopile-supported offshore wind turbines. Ocean Eng. 2023, 271, 113785. [Google Scholar] [CrossRef]
- Cheng, F.; Li, J.; Zhou, L.; Lin, G. Fragility analysis of nuclear power plant structure under real and spectrum-compatible seismic waves considering soil-structure interaction effect. Eng. Struct. 2023, 280, 115684. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Li, Q.; Wang, T.; Chu, F. Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks. Energy Convers. Manag. 2023, 283, 116916. [Google Scholar] [CrossRef]
- Asiabanpour, B.; Almusaied, Z.; Aslan, S.; Mitchell, M.; Leake, E.; Lee, H.; Fuentes, J.; Rainosek, K.; Hawkes, N.; Bland, A. Fixed versus sun tracking solar panels: An economic analysis. Clean Technol. Environ. Policy 2017, 19, 1195–1203. [Google Scholar] [CrossRef]
- Liu, Q.; Wan, X. LCOE Analysis of Solar Tracker Application in China. Comput. Water Energy Environ. Eng. 2020, 9, 87–100. [Google Scholar] [CrossRef]
- Bazyari, S.; Keypour, R.; Farhangi, S.; Ghaedi, A.; Bazyari, K. A Study on the Effects of Solar Tracking Systems on the Performance of Photovoltaic Power Plants. J. Power Energy Eng. 2014, 2, 718–728. [Google Scholar] [CrossRef]
- Alktranee, M.H.; Al-Yasiri, Q.; Sahib, M.M. Power output enhancement of grid-connected PV system using dual-axis tracking. Renew. Energy Environ. Sustain. 2020, 5, 8. [Google Scholar] [CrossRef]
- Baouche, F.Z.; Abderezzak, B.; Ladmi, A.; Arbaoui, K.; Suciu, G.; Mihaltan, T.C.; Raboaca, M.S.; Hudișteanu, S.V.; Țurcanu, F.E. Design and Simulation of a Solar Tracking System for PV. Appl. Sci. 2022, 12, 9682. [Google Scholar] [CrossRef]
- Alkaff, S.A.; Shamdasania, N.H.; Ii, G.Y.; Venkiteswaran, V.K. A Study on Implementation of PV Tracking for Sites Proximate and Away from the Equator. Process. Integr. Optim. Sustain. 2019, 3, 375–382. [Google Scholar] [CrossRef]
- Chowdhury, M.E.H.; Khandakar, A.; Hossain, B.; Abouhasera, R. A Low-Cost Closed-Loop Solar Tracking System Based on the Sun Position Algorithm. J. Sens. 2019, 2019, 3681031. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, S.; Rodrigo, P.M.; Alvarez, J.; Acero, A.; Montoya, A. Development and testing of a single-axis photovoltaic sun tracker through the internet of things. Energies 2020, 13, 10. [Google Scholar] [CrossRef]
- Wibowo, H.; Bow, Y.; Sitompul, C.R. Performance Comparison Analysis of Fixed and Solar-Tracker Installed Panel at PV System. IOP Conf. Ser. Earth Environ. Sci. 2021, 709, 012003. [Google Scholar] [CrossRef]
- Huang, B.; Huang, J.; Xing, K.; Liao, L.; Xie, P.; Xiao, M.; Zhao, W. Development of a Solar-Tracking System for Horizontal Single-Axis PV Arrays Using Spatial Projection Analysis. Energies 2023, 16, 4008. [Google Scholar] [CrossRef]
- Wang, J.; Tian, J.; Zhang, X.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Control of Time Delay Force Feedback Teleoperation System With Finite Time Convergence. Front. Neurorobotics 2022, 16, 877069. [Google Scholar] [CrossRef]
- Gu, Q.; Tian, J.; Yang, B.; Liu, M.; Gu, B.; Yin, Z.; Yin, L.; Zheng, W. A Novel Architecture of a Six Degrees of Freedom Parallel Platform. Electronics 2023, 12, 1774. [Google Scholar] [CrossRef]
- Ponniran, A.; Hashim, A.; Munir, H.A. A design of single axis sun tracking system. In Proceedings of the 2011 5th International Power Engineering and Optimization Conference, Shah Alam, Malaysia, 6–7 June 2011; pp. 107–110. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Yu, R.; Yu, J.; Wen, H. Constant-Coupling-Effect-Based PLL for Synchronization Stability Enhancement of Grid-Connected Converter Under Weak Grids. IEEE Trans. Ind. Electron. 2022, 70, 11310–11323. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yuan, X.; Shen, Y.; Lu, Z.; Wang, Z. Adaptive Dynamic Surface Control with Disturbance Observers for Battery/Supercapacitor-based Hybrid Energy Sources in Electric Vehicles. IEEE Trans. Transp. Electrif. 2022, 1. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Tang, R. Optical performance of inclined south-north single-axis tracked solar panels. Energy 2010, 35, 2511–2516. [Google Scholar] [CrossRef]
- Huang, X.-M.; Chen, N.; Ye, D.-N.; Zhong, A.-G.; Liu, H.; Li, Z.; Liu, S.-Y. Structurally Complementary Star-Shaped Unfused Ring Electron Acceptors with Simultaneously Enhanced Device Parameters for Ternary Organic Solar Cells. Sol. RRL 2023, 7, 2300143. [Google Scholar] [CrossRef]
- Lin, X.; Wen, Y.; Yu, R.; Yu, J.; Wen, H. Improved Weak Grids Synchronization Unit for Passivity Enhancement of Grid-Connected Inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7084–7097. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, M.; Liang, L.; Liu, Q.; Gao, Y. Research and design of low-power grid-connected PV power generation system based on automatic solar tracking. Syst. Sci. Control. Eng. 2018, 6, 278–288. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Z.; Liu, H. A novel droop control method to achieve maximum power output of photovoltaic for parallel inverter system. CSEE J. Power Energy Syst. 2022, 8, 1636–1645. [Google Scholar] [CrossRef]
- Zhao, P.; Ma, K.; Yang, J.; Yang, B.; Guerrero, J.M.; Dou, C.; Guan, X. Distributed Power Sharing Control Based on Adaptive Virtual Impedance in Seaport Microgrids With Cold Ironing. IEEE Trans. Transp. Electrif. 2022, 9, 2472–2485. [Google Scholar] [CrossRef]
- Axaopoulos, P.J.; Fylladitakis, E.D. Energy and economic comparative study of a tracking vs. a fixed photovoltaic system in the northern hemisphere. Int. J. Energy Environ. Econ. 2013, 21, 1–20. [Google Scholar]
- Qader, V.S.; Ali, O.M.; Hasan, N.I. Technical, Economic and Environmental Comparison of Three Different Grid-Connected PV Tracking Systems Power Plant Under Kurdistan Region/Iraq Climate Condition. Eurasia Proc. Sci. Technol. Eng. Math. 2022, 17, 102–119. [Google Scholar] [CrossRef]
- Vermaak, H. Techno-economic Analysis of Solar Tracking Systems in South Africa. Energy Procedia 2014, 61, 2435–2438. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yu, P.; Huang, L.; Zhang, Y. An integrated technical, economic, and environmental framework for evaluating the rooftop photovoltaic potential of old residential buildings. J. Environ. Manag. 2022, 317, 115296. [Google Scholar] [CrossRef]
- Huang, N.; Zhao, X.; Guo, Y.; Cai, G.; Wang, R. Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China. Energy 2023, 278, 127761. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, L.; Wen, X.; Valipour, E.; Nojavan, S. Risk-based performance of power-to-gas storage technology integrated with energy hub system regarding downside risk constrained approach. Int. J. Hydrogen Energy 2022, 47, 39429–39442. [Google Scholar] [CrossRef]
15 MWp PV Solar Power Plant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Geographical Information | |||||||||||
Country | Province | Time Zone | Latitude | Longitude | |||||||
Afghanistan | Kandahar | UT + 4.5 | 31.46° N | 65.86° E | |||||||
PV Module | |||||||||||
Type | Model | Power (Wp) | Manufacturer | ||||||||
Si-poly | Q. POWER-G5 275 | 275 | Hanwha Q Cells (Seoul, South Korea) | ||||||||
Total Number of PV Modules | |||||||||||
Total PV Module | In Series | In Parallel | |||||||||
54,912 | 22 modules | 2496 strings | |||||||||
Array Global Power | |||||||||||
Nominal (STC) | At Operating Condition | ||||||||||
15,101 kWp | 13,594 kWp (50 °C) | ||||||||||
Array Operating Characteristics (50 ℃) | |||||||||||
Umpp | Impp | ||||||||||
618 V | 22,000 A | ||||||||||
Total Area | |||||||||||
Module Area | Cell Area | ||||||||||
89,789 m2 | 80,193 m2 | ||||||||||
Inverter | |||||||||||
Type | Model | Unit Power | Total Power | Operating Voltage | Manufacturers | ||||||
MPPT | PVS-120-TL | 120 kWac | 12,480 kWac | 360–1000 V | ABB |
Difference between SAVST and SAHST | |
---|---|
SAVST | SAHST |
Vertical axis of rotation (north–south direction) | Horizontal axis of rotation (east–west direction) |
Suitable for high-latitude locations | Suitable for low-latitude locations |
Less maintenance | More maintenance |
Simple mechanical design | Complex mechanical design |
Aesthetics (more visually appealing) | Aesthetics (less visually appealing) |
Captures more sunlight during the morning and evening hours when the sun is lower in the sky | Captures more sunlight during the midday hours when the sun is at its highest point in the sky |
No need for precise ground leveling | More accurate ground leveling needed |
Minimizes the shadowing effect between adjacent rows of panels | Lead to potential shadowing between rows of panels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaheb, H.; Amiry, H.; Ahmadi, M.; Fedayi, H.; Amiry, S.; Yona, A. Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies. Sustainability 2023, 15, 11053. https://doi.org/10.3390/su151411053
Zaheb H, Amiry H, Ahmadi M, Fedayi H, Amiry S, Yona A. Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies. Sustainability. 2023; 15(14):11053. https://doi.org/10.3390/su151411053
Chicago/Turabian StyleZaheb, Hameedullah, Habibullah Amiry, Mikaeel Ahmadi, Habibullah Fedayi, Sajida Amiry, and Atsushi Yona. 2023. "Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies" Sustainability 15, no. 14: 11053. https://doi.org/10.3390/su151411053
APA StyleZaheb, H., Amiry, H., Ahmadi, M., Fedayi, H., Amiry, S., & Yona, A. (2023). Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies. Sustainability, 15(14), 11053. https://doi.org/10.3390/su151411053