Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. Effect of Layout on Data Reading Time
3.2. Differences in Eye Movement Indicators of Layout
3.3. Visual Perception Evaluation of Interfaces
3.4. Effect of Visual Perception Characteristics on Data Readability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jern, M.; Franzen, J. Integrating infovis and geovis components. In Proceedings of the 2007 11th International Conference Information Visualization (IV’07), Zurich, Switzerland, 4–6 July 2007; pp. 511–520. [Google Scholar]
- Park, J.; Yang, B. GIS-enabled digital twin system for sustainable evaluation of carbon emissions: A case study of Jeonju city, south Korea. Sustainability 2020, 12, 9186. [Google Scholar] [CrossRef]
- Wu, C.; Hu, W.; Zhou, M.; Li, S.; Jia, Y. Data-driven regionalization for analyzing the spatiotemporal characteristics of air quality in China. Atmos. Environ. 2019, 203, 172–182. [Google Scholar] [CrossRef]
- Adenle, Y.A.; Alshuwaikhat, H.M. Spatial estimation and visualization of CO2 emissions for campus sustainability: The case of King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Sustainability 2017, 9, 2124. [Google Scholar] [CrossRef] [Green Version]
- Middleton, R.S.; Yaw, S.P.; Hoover, B.A.; Ellett, K.M. SimCCS: An open-source tool for optimizing CO2 capture, transport, and storage infrastructure. Environ. Model. Softw. 2020, 124, 104560. [Google Scholar] [CrossRef]
- Ming, F.X.; Habeeb, R.A.A.; Nasaruddin, F.H.B.; Gani, A.B. Real-time carbon dioxide monitoring based on iot & cloud technologies. In Proceedings of the 2019 8th International Conference on Software and Computer Applications, Penang, Malaysia, 19–21 February 2019; pp. 517–521. [Google Scholar]
- Liu, X.; Jin, Z. Visualisation approach and economic incentives toward low carbon practices in households: A survey study in Hyogo, Japan. J. Clean. Prod. 2019, 220, 298–312. [Google Scholar] [CrossRef]
- Nilsson, A.; Stoll, P.; Brandt, N. Assessing the impact of real-time price visualization on residential electricity consumption, costs, and carbon emissions. Resour. Conserv. Recycl. 2017, 124, 152–161. [Google Scholar] [CrossRef]
- Liu, G.; Yang, H.; Fu, Y.; Mao, C.; Xu, P.; Hong, J.; Li, R. Cyber-physical system-based real-time monitoring and visualization of greenhouse gas emissions of prefabricated construction. J. Clean. Prod. 2020, 246, 119059. [Google Scholar] [CrossRef]
- Tao, X.; Mao, C.; Xie, F.; Liu, G.; Xu, P. Greenhouse gas emission monitoring system for manufacturing prefabricated components. Autom. Constr. 2018, 93, 361–374. [Google Scholar] [CrossRef]
- Su, Y.; Fan, Q.M. The green vehicle routing problem from a smart logistics perspective. IEEE Access 2019, 8, 839–846. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Yang, C.S.; Yu, L.C.; Lin, C.F.; Yao, H.H.; Chen, D.Y.; Lai, K.R.; Chang, P.C. Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system. Int. J. Prod. Econ. 2015, 164, 454–461. [Google Scholar] [CrossRef]
- Li, X.; Tang, J.; Li, W.; Si, Q.; Guo, X.; Niu, L. A Bibliometric Analysis and Visualization of Aviation Carbon Emissions Studies. Sustainability 2023, 15, 4644. [Google Scholar] [CrossRef]
- Xu, J.; Liu, T. Technological paradigm-based approaches towards challenges and policy shifts for sustainable wind energy development. Energy Policy 2020, 142, 111538. [Google Scholar] [CrossRef]
- Yu, X.; Zheng, H.; Sun, L.; Shan, Y. An emissions accounting framework for industrial parks in China. J. Clean. Prod. 2020, 244, 118712. [Google Scholar] [CrossRef]
- Vulic, N.; Rüdisüli, M.; Orehounig, K. Evaluating energy flexibility requirements for high shares of variable renewable energy: A heuristic approach. Energy 2023, 270, 126885. [Google Scholar] [CrossRef]
- Chen, Y.; Xia, R.; Zou, K.; Yang, K. FFTI: Image inpainting algorithm via features fusion and two-steps inpainting. J. Vis. Commun. Image Represent. 2023, 91, 103776. [Google Scholar] [CrossRef]
- Trappey, A.J.C.; Liang, C.-P.; Lin, H.-J. Using Machine Learning Language Models to Generate Innovation Knowledge Graphs for Patent Mining. Appl. Sci. 2022, 12, 9818. [Google Scholar] [CrossRef]
- Kang, R.; Liatsis, P.; Kyritsis, D.C. Emission Quantification via Passive Infrared Optical Gas Imaging: A Review. Energies 2022, 15, 3304. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Yi, W. Massive-scale carbon pollution control and biological fusion under big data context. Future Gener. Comput. Syst. 2021, 118, 257–262. [Google Scholar] [CrossRef]
- Healey, C.; Kocherlakota, S.; Rao, V.; Mehta, R.; Amant, R.S. Visual perception and mixed-initiative interaction for assisted visualization design. IEEE Trans. Vis. Comput. Graph. 2008, 14, 396–411. [Google Scholar] [CrossRef] [Green Version]
- Franconeri, S.L.; Padilla, L.M.; Shah, P.; Zacks, J.M.; Hullman, J. The science of visual data communication: What works. Psychol. Sci. Public Interest 2021, 22, 110–161. [Google Scholar]
- Bigne, E.; Chatzipanagiotou, K.; Ruiz, C. Pictorial content, sequence of conflicting online reviews and consumer decision-making: The stimulus-organism-response model revisited. J. Bus. Res. 2020, 115, 403–416. [Google Scholar] [CrossRef]
- Wang, J.; Gui, T.; Cheng, M.; Wu, X.; Ruan, R.; Du, M. A survey on emotional visualization and visual analysis. J. Vis. 2023, 26, 177–198. [Google Scholar] [CrossRef]
- Sulikowski, P.; Kucznerowicz, M.; Bąk, I.; Romanowski, A.; Zdziebko, T. Online Store Aesthetics Impact Efficacy of Product Recommendations and Highlighting. Sensors 2022, 22, 9186. [Google Scholar] [CrossRef]
- Fu, J. Usability evaluation of software store based on eye-tracking technology. In Proceedings of the 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, Chongqing, China, 20–22 May 2016. [Google Scholar]
- Wu, Z.; Li, Z.; Li, X.; Li, H. Research on Aging Design of News APP Interface Layout Based on Perceptual Features. In Human-Computer Interaction. Design and User Experience Case Studies: Thematic Area, HCI 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, 24–29 July 2021; Springer International Publishing: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Zuo, Y.; Qi, J.; Fan, Z.; Wang, Z.; Xu, H.; Wang, S.; Zhang, N.; Hu, J. The influence of target layout and target graphic type on searching performance based on eye-tracking technology. Front. Psychol. 2023, 14, 1052488. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Miao, K.; Huang, Y. The effects of graphical encodings on reading performance of the data chart displayed on the periphery of attention. Displays 2023, 77, 102378. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y. An Analysis of the Influence of Visual Perception Characteristics to the Usability Design of Infants application Interface. Adv. Mater. Res. 2013, 655, 2093–2098. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Wang, C. Evaluation of graph layout methods based on visual perception. In Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, Guwahati, India, 18–22 December 2016. [Google Scholar]
- Wang, S.; Xue, C.; Zhang, J.; Shao, J. Interface Design of GIS System Based on Visual Complexity. In Advances in Usability and User Experience, Proceedings of the AHFE 2019 International Conferences on Usability & User Experience, and Human Factors and Assistive Technology, Washington, DC, USA, 24–28 July 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Wang, W.; Hong, X.; Dang, S.; Xu, N.; Qu, J. 3D Space Layout Design of Holographic Command Cabin Information Display in Mixed Reality Environment Based on HoloLens 2. Brain Sci. 2022, 12, 971. [Google Scholar] [CrossRef]
- Huang, X.; Huang, C. NGD: Filtering graphs for visual analysis. IEEE Trans. Big Data 2016, 4, 381–395. [Google Scholar] [CrossRef]
- Tian, L.; Ma, Y.; Liu, Z. Teaching Reform of Web Page Design Based on Computer Vision. In Proceedings of the 2016 4th International Education, Economics, Social Science, Arts, Sports and Management Engineering Conference (IEESASM 2016), Yinchuan, China, 13–14 August 2016; Atlantis Press: Paris, France, 2016. [Google Scholar]
- Namoun, A. Three column website layout vs. grid website layout: An eye tracking study. In Design, User Experience, and Usability: Designing Interactions: 7th International Conference, DUXU 2018, Held as Part of HCI International 2018, Las Vegas, NV, USA, 15–20 July 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Diego-Mas, J.A.; Garzon-Leal, D.; Poveda-Bautista, R.; Alcaide-Marzal, J. User-interfaces layout optimization using eye-tracking, mouse movements and genetic algorithms. Appl. Ergon. 2019, 78, 197–209. [Google Scholar] [CrossRef]
- Peruzzini, M.; Grandi, F.; Pellicciari, M. Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng. 2020, 139, 105600. [Google Scholar] [CrossRef]
- Goldberg, J.; Helfman, J. Eye tracking for visualization evaluation: Reading values on linear versus radial graphs. Inf. Vis. 2011, 10, 182–195. [Google Scholar] [CrossRef]
- Yan, S.; Tran, C.C.; Chen, Y.; Tan, K.; Habiyaremye, J.L. Effect of user interface layout on the operators’ mental workload in emergency operating procedures in nuclear power plants. Nucl. Eng. Des. 2017, 322, 266–276. [Google Scholar] [CrossRef]
- Majooni, A.; Masood, M.; Akhavan, A. An eye-tracking study on the effect of infographic structures on viewer’s comprehension and cognitive load. Inf. Vis. 2018, 17, 257–266. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Jin, X.; Kuang, L.D.; Zhang, J. Siamese visual tracking based on criss-cross attention and improved head network. Multimed. Tools Appl. 2023, 1–27. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, X.; Nie, W.; Yu, Z.; Zhu, Y.; Anandkumar, A. Bongard-hoi: Benchmarking few-shot visual reasoning for human-object interactions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 19056–19065. [Google Scholar]
- Aflalo, E.; Du, M.; Tseng, S.Y.; Liu, Y.; Wu, C.; Duan, N.; Lal, V. Vl-interpret: An interactive visualization tool for interpreting vision-language transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 21406–21415. [Google Scholar]
- Brychtova, A.; Coltekin, A. An empirical user study for measuring the influence of colour distance and font size in map reading using eye tracking. Cartogr. J. 2016, 53, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Timothy, D.; Onisimo, M.; Riyad, I. Quantifying aboveground biomass in African environments: A review of the trade-offs between sensor estimation accuracy and costs. Trop. Ecol. 2016, 57, 393–405. [Google Scholar]
- Li, Y.; Yang, R. Research on Information Interfaces Visual Search Efficiency and Matching Mechanism Based on Similarity Theory. In HCI International 2018–Posters’ Extended Abstracts: 20th International Conference, HCI International 2018, Las Vegas, NV, USA, 15–20 July 2018; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Ren, J.; Wang, H.; Shao, J. Experimental Study on Dynamic Map Information Layout Based on Eye Tracking. In Intelligent Human Systems Integration 2020, Proceedings of the 3rd International Conference on Intelligent Human Systems Integration (IHSI 2020): Integrating People and Intelligent Systems, Modena, Italy, 19–21 February 2020; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hao, M.; Xiaozhou, Z.; Chengqi, X.; Weiye, X.; Lesong, J. The Influence of the Threshold of the Size of the Graphic Element on the General Dynamic Gesture Behavior. In Human Systems Engineering and Design II, Proceedings of the 2nd International Conference on Human Systems Engineering and Design (IHSED2019): Future Trends and Applications, Munich, Germany, 16–18 September 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Stewart, B.M.; Cipolla, J.M.; Best, L.A. Extraneous information and graph comprehension: Implications for effective design choices. Campus-Wide Inf. Syst. 2009, 26, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Wang, H. Research on three-dimensional visualization technologies. In 2016 4th International Conference on Advanced Materials and Information Technology Processing (AMITP 2016), Guilin, China, 24–25 September 2016; Atlantis Press: Paris, France, 2016; pp. 261–265. [Google Scholar]
- Žilinskas, A.; Žilinskas, J. Three-dimensional visualization by means of multidimensional scaling. In Proceedings of the 20th International Conference EURO Mini Conference Continuous Optimization and Knowledge-Based Technologies (EurOPT-2008), Neringa, Lithuania, 20–23 May 2008; pp. 71–76. [Google Scholar]
- Liang, J.; Gong, J.; Liu, J.; Zou, Y.; Zhang, J.; Sun, J.; Chen, S. Generating orthorectified multi-perspective 2.5 D maps to facilitate Web GIS-based visualization and exploitation of massive 3D city models. ISPRS Int. J. Geo-Inf. 2016, 5, 212. [Google Scholar] [CrossRef] [Green Version]
- Capece, N.; Erra, U.; Grippa, J. GraphVR: A Virtual Reality Tool for the Exploration of Graphs with HTC Vive System. In Proceedings of the 2018 22nd International Conference Information Visualisation (IV), Fisciano, Italy, 10–13 July 2018; pp. 448–453. [Google Scholar]
- Steinbeck, M.; Koschke, R.; Rüdel, M.O. How evostreets are observed in three-dimensional and virtual reality environments. In Proceedings of the 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), London, ON, Canada, 18–21 February 2020; pp. 332–343. [Google Scholar]
- Xie, Y.; Yang, J.; Wen, Y. Research on Comprehensive Energy Efficiency Control and Optimization Technology for the Internet of Things for Three-Dimensional “Common Intelligence” Visualization. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; pp. 801–806. [Google Scholar]
Sample | Participants | Task1 Duration | Task2 Duration |
---|---|---|---|
A1 | 1 | 14.0 | 19.4 ** |
2 | 9.0 | 3.4 * | |
3 | 8.7 | 18.8 | |
4 | 5.1 * | 5.2 | |
5 | 02:58.4 ** | 7.2 | |
A2 | 1 | 16.5 | 17.6 ** |
2 | 4.4 * | 8.4 * | |
3 | 8.8 | 14.6 | |
4 | 7.6 | 12.0 | |
5 | 01:01.6 ** | 11.8 | |
A3 | 1 | 8.4 | 7.8 |
2 | 6.8 | 7.6 | |
3 | 5.7 * | 8.9 | |
4 | 18.0 | 21.1 ** | |
5 | 21.1 ** | 4.2 * | |
B1 | 1 | 34.4 ** | 24.4 |
2 | 21.7 | 12.4 * | |
3 | 14.4 * | 36.4 ** | |
4 | 26.7 | 13.1 | |
5 | 16.4 | 15.4 | |
B2 | 1 | 4.1 * | 7.7 * |
2 | 17.7 | 25.7 | |
3 | 12.6 | 12.9 | |
4 | 15.6 | 31.2 ** | |
5 | 39.5 ** | 11.4 | |
B3 | 1 | 19.2 | 3.9 * |
2 | 02:20.8 ** | 12.8 | |
3 | 14.7 | 13.4 ** | |
4 | 7.3 * | 5.3 | |
5 | 11.4 | 8.4 |
Time 1 | A1 | A2 | A3 | B1 | B2 | B3 |
---|---|---|---|---|---|---|
Task 1 average duration | 10.5 | 10.9 | 11.1 | 21.6 | 15.3 | 15.1 |
Task 2 average duration | 10.4 | 12.8 | 08.1 | 17.6 | 16.7 | 08.8 |
Total duration | 20.9 | 23.7 | 19.2 | 39.2 | 31.9 | 23.9 |
Category | Total Average Duration |
---|---|
A | 21.3 |
B | 31.7 |
Type | Integrity | Understandability | Selectivity | |
---|---|---|---|---|
A | Total duration | −0.704 | 0.114 | −0.917 |
B | Total duration | −0.746 | −0.314 | 0.550 |
A&B | Total duration | −0.777 * | −0.458 | 0.697 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wang, L.; Hu, J. Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology. Sustainability 2023, 15, 11102. https://doi.org/10.3390/su151411102
Li G, Wang L, Hu J. Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology. Sustainability. 2023; 15(14):11102. https://doi.org/10.3390/su151411102
Chicago/Turabian StyleLi, Guangxu, Lingyu Wang, and Jie Hu. 2023. "Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology" Sustainability 15, no. 14: 11102. https://doi.org/10.3390/su151411102
APA StyleLi, G., Wang, L., & Hu, J. (2023). Integration with Visual Perception—Research on the Usability of a Data Visualization Interface Layout in Zero-Carbon Parks Based on Eye-Tracking Technology. Sustainability, 15(14), 11102. https://doi.org/10.3390/su151411102