Smart Agricultural–Industrial Crop-Monitoring System Using Unmanned Aerial Vehicle–Internet of Things Classification Techniques
Abstract
:1. Introduction
- ➢
- To monitor the crop in a remote area where the cultivation is below average, thereby analyzing the climatic conditions of the region.
- ➢
- To segment the pre-trained image using CNN for extraction of the feature, thereby detecting the crop abnormality.
- ➢
- A fast recurrent neural network-based classification technique has been used to classify the abnormality of crops.
2. Methodology
2.1. CNN-Based Feature Extraction
- First, CNN could be able to process enormous amounts of labeled data from different domains.
- Second, it runs quicker when parallelized with graphics processing units (GPU). As a result, this is also expanded to include additional pixels.
- Training data are simulated by reducing kernel size through the computational learning procedure of the suggested technique. Optimization becomes challenging, since there are so many training patches. A binary classifier with minimal changes can be used for this. A few of the hyperparameters have been slightly changed. The hyperparameters have been analyzed using sensitivity so that they may be tweaked more precisely.
2.2. Fast Recurrent Neural Networks (FRNN) Based Classification
2.3. Gradient Computing with Back-Propagation
2.4. Hidden Layer Online Adaptation
3. Experimental Results and Discussion
3.1. Parameter Settings
3.2. Performance Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maimaitijiang, M.; Sagan, V.; Sidike, P.; Daloye, A.M.; Erkbol, H.; Fritschi, F.B. Crop Monitoring Using Satellite/UAV Data Fusion and Machine Learning. Remote Sens. 2020, 12, 1357. [Google Scholar] [CrossRef]
- Kwak, G.-H.; Park, N.-W. Impact of texture information on crop classification with machine learning and UAV images. Appl. Sci. 2019, 9, 643. [Google Scholar] [CrossRef] [Green Version]
- Vittorio, M. UAV and machine learning based refinement of a satellite-driven vegetation index for precision agricul-ture. Sensors 2020, 20, 2530. [Google Scholar]
- Villegas-Ch, W.; García-Ortiz, J.; Urbina-Camacho, I. Framework for a Secure and Sustainable Internet of Medical Things, Requirements, Design Challenges, and Future Trends. Appl. Sci. 2023, 13, 6634. [Google Scholar] [CrossRef]
- Su, J.; Coombes, M.; Liu, C.; Zhu, Y.; Song, X.; Fang, S.; Guo, L.; Chen, W.-H. Machine Learning-Based Crop Drought Mapping System by UAV Remote Sensing RGB Imagery. Unmanned Syst. 2020, 8, 71–83. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, L.; Wang, W.; Chen, B. UAV Data as an Alternative to Field Sampling to Monitor Vineyards Using Machine Learning Based on UAV/Sentinel-2 Data Fusion. Remote Sens. 2021, 13, 457. [Google Scholar] [CrossRef]
- Han, L. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Ghazal, T.M.; Hasan, M.K.; Abdullah, S.N.; Bakar, K.A.; Al Hamadi, H. Private blockchain-based encryption framework using computational intelligence approach. Egypt. Inform. J. 2022, 23, 69–75. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, G.; Sun, H.; Wang, H.; Chen, S.; Senthilnath, J.; Wang, J.; Fu, Y. Scaling Effects on Chlorophyll Content Estimations with RGB Camera Mounted on a UAV Platform Using Machine-Learning Methods. Sensors 2020, 20, 5130. [Google Scholar] [CrossRef]
- Eskandari, R.; Mahdianpari, M.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S. Meta-Analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-Environmental Monitoring Using Machine Learning and Statistical Models. Remote Sens. 2020, 12, 3511. [Google Scholar] [CrossRef]
- Zhang, Z.; Al Hamadi, H.; Damiani, E.; Yeun, C.Y.; Taher, F. Explainable artificial intelligence applications in cyber security: State-of-the-art in research. IEEE Access 2022, 10, 93104–93139. [Google Scholar] [CrossRef]
- Lottes, P. UAV-based crop and weed classification for smart farming. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I. Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Chadhar, M.; Firmin, S. Cybersecurity challenges in blockchain technology: A scoping review. Hum. Behav. Emerg. Technol. 2022, 2022, 7384000. [Google Scholar] [CrossRef]
- Zhou, X. Predicting within-field variability in grain yield and protein content of winter wheat using UAV-based mul-tispectral imagery and machine learning approaches. Plant Prod. Sci. 2020, 24, 137–151. [Google Scholar] [CrossRef]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Al-Zahrani, A.; Almomani, O.; Alhwaitat, A.K. Classification of cyber security threats on mobile devices and ap-plications. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer International Publishing: Cham, Switzerland, 2021; pp. 107–123. [Google Scholar]
- Böhler, J.; Schaepman, M.; Kneubühler, M. Crop classification in a heterogeneous arable landscape using uncalibrated UAV data. Remote Sens. 2018, 10, 1282. [Google Scholar] [CrossRef] [Green Version]
- Hall, O.; Dahlin, S.; Marstorp, H.; Archila Bustos, M.; Öborn, I.; Jirström, M. Classification of maize in complex smallholder farming systems using UAV imagery. Drones 2018, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Sharma, L.; Lal, C.; Roy, S. Anomaly based network intrusion detection for IoT attacks using deep learning technique. Comput. Electr. Eng. 2023, 107, 108626. [Google Scholar] [CrossRef]
- Al Nafea, R.; Almaiah, M.A. Cyber security threats in cloud: Literature review. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 779–786. [Google Scholar]
- Velayudhan, N.K.; Pradeep, P.; Rao, S.N.; Devidas, A.R.; Ramesh, M.V. IoT-enabled water distribution systems-a comparative technological review. IEEE Access 2022, 10, 101042–101070. [Google Scholar] [CrossRef]
- Almaiah, M.A.; Hajjej, F.; Ali, A.; Pasha, M.F.; Almomani, O. A Novel hybrid trustworthy decentralized authentication and data preservation model for digital healthcare Iot based CPS. Sensors 2022, 22, 1448. [Google Scholar] [CrossRef]
- Nijhawan, R.; Sharma, H.; Sahni, H.; Batra, A. A deep learning hybrid CNN framework approach for vegetation cover mapping using deep features. In Proceedings of the 13th International Conference on SignalImage Technology and Internet-Based Systems, Jaipur, India, 4–7 December 2017; pp. 192–196. [Google Scholar]
- Baeta, R.; Nogueira, K.; Menotti, D.; Santos, J.A.D. Learning Deep Features on Multiple Scales for Coffee Crop Recog-nition. In Proceedings of the 30th Conference on Graphics, Patterns and Images, Niteroi, Brazil, 17–20 October 2017; pp. 262–268. [Google Scholar]
- Almaiah, M.A.; Ali, A.; Hajjej, F.; Pasha, M.F.; Alohali, M.A. A lightweight hybrid deep learning privacy preserving model for FC-based industrial internet of medical things. Sensors 2022, 22, 2112. [Google Scholar] [CrossRef]
- Siam, A.I.; Almaiah, M.A.; Al-Zahrani, A.; Elazm, A.A.; El Banby, G.M.; El-Shafai, W.; El-Samie, F.E.A.; El-Bahnasawy, N.A. Secure health monitoring communication systems based on IoT and cloud computing for medical emergency applications. Comput. Intell. Neurosci. 2021, 2021, 5016525. [Google Scholar] [CrossRef]
- Bubukayr, M.A.; Almaiah, M.A. Cybersecurity concerns in smart-phones and applications: A survey. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 725–731. [Google Scholar]
- Alamer, M.; Almaiah, M.A. Cybersecurity in Smart City: A systematic mapping study. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 719–724. [Google Scholar]
- AlMedires, M.; AlMaiah, M. Cybersecurity in Industrial Control System (ICS). In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 640–647. [Google Scholar]
- Bah, M.D.; Hafiane, A.; Canal, R. Weeds detection in uav imagery using slic and the hough transform. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November—1 December 2017; pp. 1–6. [Google Scholar]
- Kampourakis, V.; Gkioulos, V.; Katsikas, S. A systematic literature review on wireless security testbeds in the cyber-physical realm. Comput. Secur. 2023, 103383. [Google Scholar] [CrossRef]
- Almudaires, F.; Almaiah, M. Data an Overview of Cybersecurity Threats on Credit Card Companies and Credit Card Risk Mitigation. In Proceedings of the 2021 International Conference on Information Technology (ICIT), Amman, Jordan, 14–15 July 2021; pp. 732–738. [Google Scholar] [CrossRef]
- Suleski, T.; Ahmed, M.; Yang, W.; Wang, E. A review of multi-factor authentication in the Internet of Healthcare Things. Digit. Health 2023, 9, 20552076231177144. [Google Scholar] [CrossRef]
- dos Santos Ferreira, A.; Matte Freitas, D.; Gonc¸alves da Silva, G.; Pistori, H.; TheophiloFolhes, M. Weed detection in soybean crops using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324. [Google Scholar] [CrossRef]
- Albalawi, A.M.; Almaiah, M.A. Assessing and reviewing of cyber-security threats, attacks, mitigation techniques in IoT envi-ronment. J. Theor. Appl. Inf. Technol. 2022, 100, 2988–3011. [Google Scholar]
- Rahnemoonfar, M.; Sheppard, C. Real-time yield estimation based on deep learning. In Proceedings Volume 10218, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping II; SPIE: Bellingham, WA, USA, 2017. [Google Scholar]
- Sampathkumar, A.; Murugan, S.; Rastogi, R.; Mishra, M.K.; Malathy, S.; Manikandan, R. Energy Efficient ACPI and JEHDO Mechanism for IoT Device Energy Management in Healthcare. In Internet of Things in Smart Technologies for Sustainable Urban Development; Springer: Berlin/Heidelberg, Germany, 2020; pp. 131–140. [Google Scholar]
- Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Zhang, L.; Wen, S.; Zhang, H.; Zhang, Y.; Deng, Y. Detection of helminthosporium leaf blotch disease based on UAV imagery. Appl. Sci. 2019, 9, 558. [Google Scholar] [CrossRef] [Green Version]
- Almaiah, M.A.; Hajjej, F.; Lutfi, A.; Al-Khasawneh, A.; Alkhdour, T.; Almomani, O.; Shehab, R. A conceptual framework for deter-mining quality requirements for mobile learning applications using Delphi Method. Electronics 2022, 11, 788. [Google Scholar] [CrossRef]
- Latif, G.; Alghazo, J.M.; Maheswar, R.; Sampathkumar, A.; Sountharrajan, S. IoT in the Field of the Future Digital Oil Fields and Smart Wells. In Internet of Things in Smart Technologies for Sustainable Urban Development; Springer: Cham, Switzerland, 2020; pp. 1–17. [Google Scholar]
- Wiling, B. Monitoring of Sona Massori Paddy Crop and its Pests Using Image Processing. Int. J. New Pract. Manag. Eng. 2017, 6, 1–6. [Google Scholar] [CrossRef]
- Althunibat, A.; Almaiah, M.A.; Altarawneh, F. Examining the factors influencing the mobile learning applications usage in higher education during the COVID-19 pandemic. Electronics 2021, 10, 2676. [Google Scholar] [CrossRef]
- Arumugam, S.; Shandilya, S.K.; Bacanin, N. Federated Learning-Based Privacy Preservation with Blockchain Assistance in IoT 5G Heterogeneous Networks. J. Web Eng. 2022, 21, 1323–1346. [Google Scholar] [CrossRef]
- Sampathkumar, A.; Tesfayohani, M.; Shandilya, S.K.; Goyal, S.B.; Jamal, S.S.; Shukla, P.K.; Bedi, P.; Albeedan, M. Internet of Medical Things (IoMT) and Reflective Belief Design-Based Big Data Analytics with Convolution Neural Network-Metaheuristic Optimization Procedure (CNN-MOP). Comput. Intell. Neurosci. 2022, 2022, 2898061. [Google Scholar] [CrossRef]
- Murugan, S.; Sampathkumar, A.; Raja, S.K.S.; Ramesh, S.; Manikandan, R.; Gupta, D. Autonomous Vehicle Assisted by Heads up Display (HUD) with Augmented Reality Based on Machine Learning Techniques. In Virtual and Augmented Reality for Automobile Industry: Innovation Vision and Applications. Studies in Systems, Decision and Control; Hassanien, A.E., Gupta, D., Khanna, A., Slowik, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 45–64. [Google Scholar] [CrossRef]
- Jat, N.C.; Kumar, C. Design Assessment and Simulation of PCA Based Image Difference Detection and Segmen-tation for Satellite Images Using Machine Learning. Int. J. Recent Innov. Trends Comput. Commun. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- Vaidhehi, M.; Malathy, C. An unique model for weed and paddy detection using regional convolutional neural networks. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2022, 72, 463–475. [Google Scholar] [CrossRef]
Parameters | Ranges |
---|---|
Pooling layer | 2 by 2 along a stride of 2 |
Activation function | ReLu |
Learning rate | 0.001 |
Weight | Random normal distribution |
Method of pooling | Max pooling function |
SL.NO | Soil Moisture Experimental Analysis | |||
---|---|---|---|---|
Rainfall (mm) | Soil Moisture (%) | Temperature (°C) | Humidity (%) | |
1 | 100 | 51 | 24 | 78 |
2 | 200 | 49 | 24 | 78 |
3 | 300 | 49 | 24 | 78 |
4 | 400 | 49 | 24 | 78 |
5 | 500 | 50 | 24 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vijayalakshmi, K.; Al-Otaibi, S.; Arya, L.; Almaiah, M.A.; Anithaashri, T.P.; Karthik, S.S.; Shishakly, R. Smart Agricultural–Industrial Crop-Monitoring System Using Unmanned Aerial Vehicle–Internet of Things Classification Techniques. Sustainability 2023, 15, 11242. https://doi.org/10.3390/su151411242
Vijayalakshmi K, Al-Otaibi S, Arya L, Almaiah MA, Anithaashri TP, Karthik SS, Shishakly R. Smart Agricultural–Industrial Crop-Monitoring System Using Unmanned Aerial Vehicle–Internet of Things Classification Techniques. Sustainability. 2023; 15(14):11242. https://doi.org/10.3390/su151411242
Chicago/Turabian StyleVijayalakshmi, K., Shaha Al-Otaibi, Leena Arya, Mohammed Amin Almaiah, T. P. Anithaashri, S. Sam Karthik, and Rima Shishakly. 2023. "Smart Agricultural–Industrial Crop-Monitoring System Using Unmanned Aerial Vehicle–Internet of Things Classification Techniques" Sustainability 15, no. 14: 11242. https://doi.org/10.3390/su151411242
APA StyleVijayalakshmi, K., Al-Otaibi, S., Arya, L., Almaiah, M. A., Anithaashri, T. P., Karthik, S. S., & Shishakly, R. (2023). Smart Agricultural–Industrial Crop-Monitoring System Using Unmanned Aerial Vehicle–Internet of Things Classification Techniques. Sustainability, 15(14), 11242. https://doi.org/10.3390/su151411242