Remote Sensing-Based Revegetation Assessment at Post-Closure Mine Sites in Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mining Sites
2.2. Remote Sensing Imagery Data
2.3. Analysis Method
3. Results
3.1. NDVI Analysis
3.2. Image Classification and Post-Classification Change Detection
3.3. Regrowth Index Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- The Mining Associate of Canada. Facts and Figures. 2020. Available online: https://mining.ca/resources/reports/facts-and-figures-2020 (accessed on 10 March 2022).
- Holcombe, S.; Kemp, D. From pay-out to participation: Indigenous mining employment as local development? Sustain. Dev. 2020, 28, 1122–1135. [Google Scholar] [CrossRef]
- Bolan, N.S.; Kirkham, M.B.; Ok, Y.S. Spoil to Soil: Mine Site Rehabilitation and Revegetation; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 1–371. [Google Scholar]
- Rooney, R.C.; Bayley, S.E.; Schindler, D.W. Oil sands mining and reclamation cause massive loss of peatland and stored carbon. Proc. Natl. Acad. Sci. USA 2012, 109, 4933–4937. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zheng, Z.; Wu, P.; Wu, Y. Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: Implications for phytoremediation. Chemosphere 2022, 286, 131678. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Ahirwal, J.; Maiti, S.K. Assessment of soil carbon pool, carbon sequestration and soil CO2 flux in unreclaimed and reclaimed coal mine spoils. Environ. Earth Sci. 2018, 77, 9. [Google Scholar] [CrossRef]
- Álvarez-Rogel, J.; Peñalver-Alcalá, A.; Jiménez-Cárceles, F.J.; Tercero, M.C.; González-Alcaraz, M.N. Evidence supporting the value of spontaneous vegetation for phytomanagement of soil ecosystem functions in abandoned metal(loid) mine tailings. Catena 2021, 201, 105191. [Google Scholar] [CrossRef]
- Prach, K.; Šebelíková, L.; Řehounková, K.; Del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 2020, 45, 247–253. [Google Scholar] [CrossRef]
- Šebelíková, L.; Řehounková, K.; Prach, K. Spontaneous revegetation vs. Forestry reclamation in post-mining sand pits. Environ. Sci. Pollut. Res. 2016, 23, 13598–13605. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef] [Green Version]
- LeClerc, E.; Wiersma, Y.F. Assessing post-industrial land cover change at the Pine Point Mine, NWT, Canada using multi-temporal Landsat analysis and landscape metrics. Environ. Monit. Assess. 2017, 189, 185. [Google Scholar] [CrossRef]
- Antwi, E.K.; Boakye-Danquah, J.; Asabere, S.B.; Takeuchi, K.; Wiegleb, G. Land cover transformation in two post-mining landscapes subjected to different ages of reclamation since dumping of spoils. Springerplus 2014, 3, 702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werner, T.; Bebbington, A.; Gregory, G. Assessing impacts of mining: Recent contributions from GIS and remote sensing. Extr. Ind. Soc. 2019, 6, 993–1012. [Google Scholar] [CrossRef]
- Gillanders, S.N.; Coops, N.C.; Wulder, M.A.; Goodwin, N.R. Application of Landsat satellite imagery to monitor land-cover changes at the Athabasca Oil Sands, Alberta, Canada. Can. Geogr. 2008, 52, 466–485. [Google Scholar] [CrossRef]
- Lévesque, J.; Staenz, K. Monitoring mine tailings revegetation using multitemporal hyperspectral image data. Can. J. Remote Sens. 2008, 34, S172–S186. [Google Scholar] [CrossRef]
- Staenz, K.; Neville, R.; Lévesque, J.; Szeredi, T.; Singhroy, V.; Borstad, G.; Hauff, P. Evaluation of casi and SFSI hyperspectral data for environmental and geological applications—Two case studies. Can. J. Remote Sens. 2014, 25, 311–322. [Google Scholar] [CrossRef]
- Badreldin, N.; Sanchez-Azofeifa, A. Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada. Remote Sens. 2015, 7, 2832–2849. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guindon, B.; Lantz, N.; Shipman, T.; Chao, D.; Raymond, D. Quantification of anthropogenic and natural changes in oil sands mining infrastructure land based on RapidEye and SPOT5. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 31–43. [Google Scholar] [CrossRef]
- Chasmer, L.; Baker, T.; Carey, S.; Straker, J.; Strilesky, S.; Petrone, R. Monitoring ecosystem reclamation recovery using optical remote sensing: Comparison with field measurements and eddy covariance. Sci. Total Environ. 2018, 642, 436–446. [Google Scholar] [CrossRef]
- McKenna, P.B.; Lechner, A.M.; Phinn, S.; Erskine, P.D. Remote Sensing of Mine Site Rehabilitation for Ecological Outcomes: A Global Systematic Review. Remote Sens. 2020, 12, 3535. [Google Scholar] [CrossRef]
- Murray, X.; Apan, A.; Deo, R.; Maraseni, T. Rapid assessment of mine rehabilitation areas with airborne LiDAR and deep learning: Bauxite strip mining in Queensland, Australia. Geocarto Int. 2022, 37, 11223–11252. [Google Scholar] [CrossRef]
- Vasuki, Y.; Yu, L.; Holden, E.-J.; Kovesi, P.; Wedge, D.; Grigg, A.H. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore Geol. Rev. 2019, 108, 23–32. [Google Scholar] [CrossRef]
- Almeida-Filho, R.; Shimabukuro, Y.E. Digital processing of a Landsat-TM time series for mapping and monitoring degraded areas caused by independent gold miners, Roraima State, Brazilian Amazon. Remote Sens. Environ. 2002, 79, 42–50. [Google Scholar] [CrossRef]
- Corrêa, R.S.; Balduíno, A.P.D.C.; Teza, C.T.V.; Baptista, G.M.D.M. Vegetation Cover Development Resulting from Different Restoration Approaches of Exploited Mines. Floresta Ambient. 2018, 25, e20171116. [Google Scholar] [CrossRef]
- Bao, N.; Li, W.; Gu, X.; Liu, Y. Biomass Estimation for Semiarid Vegetation and Mine Rehabilitation Using Worldview-3 and Sentinel-1 SAR Imagery. Remote Sens. 2019, 11, 2855. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhao, H.; Yin, P.; Wu, L.; Li, G. Landscape ecological quality assessment and its dynamic change in coal mining area: A case stuy of Peixian. Environ. Earth Sci. 2019, 78, 708. [Google Scholar] [CrossRef]
- Xiao, W.; Deng, X.; He, T.; Guo, J. Using POI and time series Landsat data to identify and rebuilt surface mining, vegetation disturbance and land reclamation process based on Google Earth Engine. J. Environ. Manag. 2023, 327, 116920. [Google Scholar] [CrossRef]
- Isokangas, E.; Davids, C.; Kujala, K.; Rauhala, A.; Ronkanen, A.-K.; Rossi, P.M. Combining unmanned aerial vehicle-based remote sensing and stable water isotope analysis to monitor treatment peatlands of mining areas. Ecol. Eng. 2019, 133, 137–147. [Google Scholar] [CrossRef]
- Moudrý, V.; Gdulová, K.; Fogl, M.; Klápště, P.; Urban, R.; Komárek, J.; Moudrá, L.; Štroner, M.; Barták, V.; Solský, M. Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success. Appl. Geogr. 2019, 104, 32–41. [Google Scholar] [CrossRef]
- Padró, J.-C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
- Zenkov, I.V.; Vokin, V.N.; Kiryushina, E.V.; Raevich, K.V. Remote monitoring data on opencast mining and disturbed land ecology in the Bakal iron ore field. Eurasian Min. 2018, 2018, 29–33. [Google Scholar] [CrossRef]
- Maxwell, A.; Warner, T.; Strager, M.; Conley, J.; Sharp, A. Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Yang, Z.; Li, J.; Zipper, C.E.; Shen, Y.; Miao, H.; Donovan, P.F. Identification of the disturbance and trajectory types in mining areas using multitemporal remote sensing images. Sci. Total Environ. 2018, 644, 916–927. [Google Scholar] [CrossRef]
- Teck Cominco. Pine Point Mine: The 1991 Closure and Reclamation Plan with 2006 Update. Available online: http://registry.mvlwb.ca/Documents/MV2017L2-0007/MV2017L2-0007%20-%20Teck%20Metals%20-%201991%20Closure%20and%20Reclamation%20Plan%20with%202006%20update%20-%20Dec-2006.pdf (accessed on 1 March 2022).
- Magas, A. Landscapes of Avulsion: Proposed Future Ecologies for Canadian Oil Sands Reclamation. Master’s Thesis, University of Manitoba, Winnipeg, MB, Canada, 27 March 2020. Available online: http://hdl.handle.net/1993/34599 (accessed on 15 February 2022).
- Richens, T.; Bergstrom, D.; Purdy, B. Reclamation of boreal forest ecosystems following Oil-Sands mining. Alsk. Park Sci. 2014, 31, 42–47. [Google Scholar]
- Grant, J.; Dyer, S.; Woynillowicz, D. Fact or Fiction: Oil Sands Reclamation, Revised ed.; The Pembina Institute: Calgary, AB, Canada, 2008; Available online: http://epe.lac-bac.gc.ca/100/200/300/pembina_institute/fact_fiction/fact_or_fiction_report_rev_dec08.pdf (accessed on 1 May 2021).
- Witt, P.; Hamaguchi, B.A. Preparing a High Elevation Tailings Impoundment for Final Closure. In Proceedings of the British Columbia Mine Reclamation Symposium, Smithers, BC, Canada, 19–22 June 2006. [Google Scholar] [CrossRef]
- Freberg, M.R.; Gizikoff, K.G. Development and utilization of an end land use plan for Highland Valley Copper. In Proceedings of the 23rd Annual British Columbia Mine Reclamation Symposium, Kamloops, BC, Canada, 23 September 1999. [Google Scholar] [CrossRef]
- Canadian Environmental Assessment Agency. Decommissioning of Uranium Mine Tailings Management Areas in the Elliot Lake Area. Report of the Environmental Assessment Panel, June 1996. Available online: https://publications.gc.ca/site/archivee-archived.html?url=https://publications.gc.ca/collections/collection_2017/acee-ceaa/En105-52-1996-eng.pdf (accessed on 10 May 2022).
- Nicholson, R.V.; Ludgate, I.; Clyde, E.; Venhuis, M. The successful reclamation of acid generating tailings in the Elliot Lake uranium district of Canada. In Proceedings of the 9th International Conference on Acid Rock Drainage, Ottawa, ON, Canada, 20 May 2012. [Google Scholar]
- Ludgate, I.R.; Counsell, H.C.; Knapp, R.; Feasby, D.G. Decommissioning of denison and Stanrock tailings management areas. In Proceedings of the Annual Hydrometallurgical Meeting of the Metallurgical Society of Canadian Institute of Mining, Saskatoon, SK, Canada, 9–15 September 2000. [Google Scholar]
- Tetra Tech Canada Inc. 2021 Annual Report Long-Term Performance Monitoring Program: Clinton Creek Mine, Yukon. Available online: https://open.yukon.ca/information/publications/clinton-creek-mine-site-reports (accessed on 10 January 2023).
- Laberge Environmental Services. Clinton Creek Mine Waste Rock Dump: Assessment of Revegetation Potential, July 2008. Available online: https://open.yukon.ca/information/publications/clinton-creek-mine-site-reports (accessed on 10 January 2023).
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 4th ed.; Pearson: London, UK, 2015; p. 325. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Jaen, M.C.; Aide, T.M. Restoration success: How is it being measured? Restor. Ecol. 2005, 13, 569–577. [Google Scholar] [CrossRef]
- Su, W.; Sun, Z.P.; Li, D.L.; Ramsankaran, R.; Zhu, X.; Guo, X.Y. Vegetation recovery monitoring over the waste dump in Haizhou opencast coalmine area, China, during 1975–2000 using NDVI and VF index. J. Indian Soc. Remote Sens. 2009, 37, 631–645. [Google Scholar] [CrossRef]
- Li, J.; Xia, Q.; Zipper, C.E.; Li, S.; Donovan, P.F.; Wynne, R.H.; Oliphant, A.J. Character analysis of mining disturbance and reclamation trajectory in surface coal-mine area by time-series NDVI. Trans. Chin. Soc. Agric. Eng. 2015, 31, 251–257. [Google Scholar]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2020, 32, 1–6. [Google Scholar] [CrossRef]
- Shu, W.S.; Ye, Z.H.; Zhang, Z.Q.; Lan, C.Y.; Wong, M.H. Natural Colonization of Plants on Five Lead/Zinc Mine Tailings in Southern China. Restor. Ecol. 2005, 13, 49–60. [Google Scholar] [CrossRef]
- Young, I.; Naguit, C.; Markham, J.; Goh, T.B.; Renault, S. Natural Revegetation of a Boreal Gold Mine Tailings Pond. Restor. Ecol. 2012, 21, 498–505. [Google Scholar] [CrossRef]
- Xie, L.; van Zyl, D. Distinguishing reclamation, revegetation and phytoremediation, and the importance of geochemical processes in the reclamation of sulfidic mine tailings: A review. Chemosphere 2020, 252, 126446. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.A.; Helmers, D.P.; Kingdon, C.C.; McNeil, B.E.; de Beurs, K.M.; Eshleman, K.N. Changes in the extent of surface mining and reclamation in the Central Appalachians detected using a 1976–2006 Landsat time series. Remote Sens. Environ. 2009, 113, 62–72. [Google Scholar] [CrossRef]
Mine Sites | Location | Operation Period | Revegetation Type |
---|---|---|---|
Pine Point | 60.8781° N, 114.4311° W | 1964–1988 | Passive |
Wapisiw Lookout | 56.9875° N, 111.4634° W | 1967–1997 | Active |
Gateway Hill | 56.9957° N, 111.5695° W | 1970s–1980s | Active |
Highmont | 50.4374° N, 120.9188° W | 1980–1984 | Active |
Stanrock | 46.4677° N, 82.6440° W | 1950s–1960s | Active |
Clinton Creek | 64.4392° N, 140.7161° W | 1968–1978 | Passive |
Mine Sites | Regression Slope (Year−1) | Significance Test |
---|---|---|
Pine Point | 0.0011 ± 0.0002 1 | p < 0.001 |
Wapisiw Lookout | 0.0121 ± 0.0012 | p < 0.001 |
Gateway Hill | 0.0045 ± 0.0006 | p < 0.001 |
Highmont | 0.0075 ± 0.0004 | p < 0.001 |
Stanrock | 0.0093 ± 0.0005 | p < 0.001 |
Clinton Creek | 0.0039 ± 0.0004 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordon, S.; Xu, X.; Wang, Y. Remote Sensing-Based Revegetation Assessment at Post-Closure Mine Sites in Canada. Sustainability 2023, 15, 11287. https://doi.org/10.3390/su151411287
Gordon S, Xu X, Wang Y. Remote Sensing-Based Revegetation Assessment at Post-Closure Mine Sites in Canada. Sustainability. 2023; 15(14):11287. https://doi.org/10.3390/su151411287
Chicago/Turabian StyleGordon, Sam, Xiaoyong Xu, and Yanyu Wang. 2023. "Remote Sensing-Based Revegetation Assessment at Post-Closure Mine Sites in Canada" Sustainability 15, no. 14: 11287. https://doi.org/10.3390/su151411287
APA StyleGordon, S., Xu, X., & Wang, Y. (2023). Remote Sensing-Based Revegetation Assessment at Post-Closure Mine Sites in Canada. Sustainability, 15(14), 11287. https://doi.org/10.3390/su151411287