Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data Sources
2.1.3. Data Processing
2.2. Methods
2.2.1. Comprehensive Evaluation Methods for Habitat Quality
- The Invest Habitat Quality Model
- 2.
- Topographic Diversity Index
- 3.
- Integrated Evaluation of Habitat Quality Based on the Invest Model and Topographic Diversity Index
2.2.2. Spatial Distribution Evaluation
3. Results
3.1. Integrated Evaluation of Land Use and Habitat Quality
3.1.1. Habitat Quality Evaluation Based on the Invest Model
3.1.2. Integrated Evaluation of Habitat Quality Based on Topographic Diversity Index
3.1.3. Comprehensive Evaluation of Habitat Quality
3.2. Spatial Statistical Analysis of Integrated Habitat Quality Index
4. Discussion
4.1. Habitat Quality Evaluation of Hai Tan Island Based on Invest Model
4.2. Terrain Diversity Index and Analysis of Island Habitat Quality
4.3. Comprehensive Evaluation of Island Habitat Quality Incorporating Terrain Factors
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, M.D.; Arcata, C. Habitat Quality: A Brief Review for Wildlife Biologists. Trans.-West. Sect. Wildl. Soc. 2005, 41, 31. [Google Scholar]
- Li, S.P.; Liu, J.L.; Lin, J.; Fam, S.L. Based on the land use changes from 1980 to 2018, the temporal and spatial evolution of habitat quality in Fujian Province. Appl. Ecol. J. 2020, 31, 4080–4090. [Google Scholar]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The Habitat Concept and a Plea for Standard Technology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Ouyang, A.Y.; Liu, J.G.; Xiao, H.; Tan, Y.C.; Zhang, H.M. Evaluation of Giant Panda Habitat in Wolong Nature Reserve. Chin. J. Ecol. 2001, 21, 1869–1874. [Google Scholar]
- Tzortzi, J.N.; Guaita, L.; Kouzoupi, A. Sustainable Strategies for Urban and Landscape Regeneration Related to Agri-Cultural Heritage in the Urban-Periphery of South Milan. Sustainability 2022, 14, 6581. [Google Scholar] [CrossRef]
- Wagner, H.H.; Wildi, O.; Ewald, K.C. Additive Partitioning of Plant Species Diversity in an Agricultural Mosaic Landscape. Landsc. Ecol. 2000, 15, 219–227. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.-S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the Evidence for Biodiversity Effects on Ecosystem Functioning and Services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Su, X.H.; Wu, X.M. Surveys of Wild Fern Resources and Their Habitats in the Beijing Area. J. Beijing For. Univ. 1993, 15, 109–114. [Google Scholar]
- Whitaker, G.A.; McCuen, R.H. A Proposed Methodology for Assessing the Quality of Wildlife Habitat. Ecol. Model. 1976, 2, 251–272. [Google Scholar] [CrossRef]
- Schwartz, C.C.; Franzmann, A.W. Bears, Wolves, Moose, and Forest Succession, Some Management Considerations on the Kenai Peninsula, Alaska. Alces A J. Devoted Biol. Manag. Moose 1989, 25, 1–10. [Google Scholar]
- Congdon, J. Effect of Habitat Quality on Distributions of Three Sympatric Species of Desert Rodents. J. Mammal. 1974, 55, 659–662. [Google Scholar] [CrossRef]
- Van Horne, B. Density as a Misleading Indicator of Habitat Quality. J. Wildl. Manag. 1983, 47, 893–901. [Google Scholar] [CrossRef]
- Boumans, R.; Roman, J.; Altman, I.; Kaufman, L. The Multiscale Integrated Model of Ecosystem Services (MIMES): Simulating the Interactions of Coupled Human and Natural Systems. Ecosyst. Serv. 2015, 12, 30–41. [Google Scholar] [CrossRef]
- Abdollahi, S. Habitat Quality Assessment of Wildlife to Identify Key Habitat Patches Using Landscape Ecology Approach. J. Nat. Environ. 2023. [Google Scholar] [CrossRef]
- Luan, Y.; Huang, G.; Zheng, G. Spatiotemporal Evolution and Prediction of Habitat Quality in Hohhot City of China Based on the InVEST and CA-Markov Models. J. Arid. Land 2023, 15, 20–33. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, F.; Xia, P.; Zhao, G.; Wei, M.; Wei, F.; Han, R. Assessment of Suitable Cultivation Region for Panax Notoginseng under Different Climatic Conditions Using MaxEnt Model and High-Performance Liquid Chromatography in China. Ind. Crops Prod. 2022, 176, 114416. [Google Scholar] [CrossRef]
- Wang, J.; Liu, H.; Li, Y.; Zhang, H. Habitat Quality of Overwintering Red-Crowned Cranes Based on Ecological Niche Modeling. Arab. J. Geosci. 2019, 12, 1–10. [Google Scholar] [CrossRef]
- Narouei-Khandan, H.A.; Worner, S.P.; Viljanen, S.L.H.; Van Bruggen, A.H.C.; Jones, E.E. Projecting the Suitability of Global and Local Habitats for Myrtle Rust (Austropuccinia psidii) Using Model Consensus. Plant Pathol. 2020, 69, 17–27. [Google Scholar] [CrossRef]
- Xie, B.; Meng, S.; Zhang, M. Evolution of Habitat Quality and Its Response to Topographic Gradient Effect in a Karst Plateau: A Case Study of the Key Biodiversity Conservation Project Area of Wuling Mountains. Int. J. Environ. Res. Public Health 2022, 20, 331. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhou, Y.; Xiao, P.; Tian, Y.; Huang, H.; Xiao, L. Evolution of Habitat Quality and Its Topographic Gradient Effect in Northwest Hubei Province from 2000 to 2020 Based on the InVEST Model. Land 2021, 10, 857. [Google Scholar] [CrossRef]
- Liu, S.; Liao, Q.; Xiao, M.; Zhao, D.; Huang, C. Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2022, 19, 3594. [Google Scholar] [CrossRef]
- Li, Y.; Duo, L.; Zhang, M.; Yang, J.; Guo, X. Habitat Quality Assessment of Mining Cities Based on InVEST Model—A Case Study of Yanshan County, Jiangxi Province. Int. J. Coal Sci. Technol. 2022, 9, 28. [Google Scholar] [CrossRef]
- Zhang, X.; Liao, L.; Xu, Z.; Zhang, J.; Chi, M.; Lan, S.; Gan, Q. Interactive Effects on Habitat Quality Using InVEST and GeoDetector Models in Wenzhou, China. Land 2022, 11, 630. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014. [Google Scholar]
- Weiss, S.B.; Murphy, D.D.; White, R.R. Sun, Slope, and Butterflies: Topographic Determinants of Habitat Quality for Euphydryas Editha. Ecology 1988, 69, 1486–1496. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, R.I.M. Habitat Quality, Population Dynamics, and Group Composition in Colobus Monkeys (Colobus guereza). Int. J. Primatol. 1987, 8, 299–329. [Google Scholar] [CrossRef]
- Chen, Q. The Grasslands and Their Habitats in the Nagqu Region of Tibet. Grassl. Sci. 1992, 9, 21–27. [Google Scholar]
- Zhang, X. The Study of Habitat Conditions and Growth Characteristics of Red Bamboo Forest in Qu County. J. Bamboo Res. 1992, 11, 76–80. [Google Scholar]
- Pay, J.M.; Patterson, T.A.; Proft, K.M.; Cameron, E.Z.; Hawkins, C.E.; Koch, A.J.; Wiersma, J.M.; Katzner, T.E. Considering Behavioral State When Predicting Habitat Use: Behavior-Specific Spatial Models for the Endangered Tasmanian Wedge-Tailed Eagle. Biol. Conserv. 2022, 274, 109743. [Google Scholar] [CrossRef]
- Xiang, Q.; Kan, A.; Yu, X.; Liu, F.; Huang, H.; Li, W.; Gao, R. Assessment of Topographic Effect on Habitat Quality in Mountainous Area Using InVEST Model. Land 2023, 12, 186. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, E.; Dong, N.; Tian, G.; Kim, G.; Song, P.; Ge, S.; Liu, S. Driving Mechanism of Habitat Quality at Different Grid-Scales in a Metropolitan City. Forests 2022, 13, 248. [Google Scholar] [CrossRef]
- Yang, W.-X.; Li, S.H.; Peng, S.-Y.; Li, Y.-X.; Zhao, S.-L.; Qiu, L.-D. Identification of Important Biodiversity Areas by InVEST Model Considering Opographic Relief: A Case Study of Yunnan Province, China. Chin. J. Appl. Ecol. 2021, 32, 4339–4348. [Google Scholar] [CrossRef]
- Feinsinger, P.; Wolfe, J.A.; Swarm, L.A. Island Ecology: Reduced Hummingbird Diversity and the Pollination Biology of Plants, Trinidad and Tobago, West Indies. Ecology 1982, 63, 494–506. [Google Scholar] [CrossRef]
- Hong, H.-J.; Kim, C.-K.; Lee, H.-W.; Lee, W.-K. Conservation, Restoration, and Sustainable Use of Biodiversity Based on Habitat Quality Monitoring: A Case Study on Jeju Island, South Korea (1989–2019). Land 2021, 10, 774. [Google Scholar] [CrossRef]
- Gao, D.; Wang, Y. A Global Synthesis of the Small-Island Effect in Amphibians and Reptiles. Ecography 2022, 2022. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Millien, V. A Global Synthesis of the Small-Island Effect in Habitat Islands. Proc. R. Soc. B 2018, 285, 20181868. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Perry, G. Detecting the Small Island Effect and Nestedness of Herpetofauna of the West Indies. Ecol. Evol. 2016, 6, 5390–5403. [Google Scholar] [CrossRef] [Green Version]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape Change Effects on Habitat Quality in a Forest Biosphere Reserve: Implications for the Conservation of Native Habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Gou, M.; Li, L.; Ouyang, S.; Shu, C.; Xiao, W.; Wang, N.; Hu, J.; Liu, C. Integrating Ecosystem Service Trade-Offs and Rocky Desertification into Ecological Security Pattern Construction in the Daning River Basin of Southwest China. Ecol. Indic. 2022, 138, 108845. [Google Scholar] [CrossRef]
- Duan, H.; Yu, X.; Zhang, L.; Xia, S.; Liu, Y.; Mao, D.; Zhang, G. An Evaluating System for Wetland Ecological Risk: Case Study in Coastal Mainland China. Sci. Total Environ. 2022, 828, 154535. [Google Scholar] [CrossRef] [PubMed]
- Jiangyi, L.; Shiquan, D.; Hmeimar, A.E.H. Cost-Effectiveness Analysis of Different Types of Payments for Ecosystem Services: A Case in the Urban Wetland Ecosystem. J. Clean. Prod. 2020, 249, 119325. [Google Scholar] [CrossRef]
- Zhou, M.; Fang, X.N.; Yu, W.; Liu, L. Spatial and Temporal Distribution Differences of Soft Fish Habitats under El Niño and La Niña Events in the Northwestern Pacific Ocean. J. Shanghai Ocean. Univ. 2022, 31, 984–993. [Google Scholar]
- Li, X.; Li, W.; Gao, C.; Shao, L.; Chen, G.; Wang, S. Study on the Change of Eco-Environmental Quality in Jiufeng Mountain Area Based on InVEST Model. Open J. Ecol. 2022, 12, 36–50. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Xia, F.; Yang, Y.; Xie, Y. Can Habitat Quality Index Measured Using the Invest Model Explain Variations in Bird Diversity in an Urban Area? Sustainability 2021, 13, 5747. [Google Scholar] [CrossRef]
- Benitez-Capistros, F.; Huge, J.; Koedam, N. Environmental Impacts on the Galapagos Islands: Identification of Interactions, Perceptions and Steps Ahead. Ecol. Indic. 2014, 38, 113–123. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Hu, N. Spatial Variation and Terrain Gradient Effect of Ecosystem Services in Heihe River Basin over the Past 20 Years. Sustainability 2021, 13, 11271. [Google Scholar] [CrossRef]
- Huang, L.J.; Zhang, Z.K.; Zheng, J.M.; Huang, S.J.; Lin, L.L.; Wang, Q. Functional Characteristics and Evolution Trends of Wild Plants in Continental Island: A Case Study of Pingtan Island. J. Trop. Subtrop. Bot. 2017, 25, 9. [Google Scholar]
- Rahbek, C. The Relationship among Area, Elevation, and Regional Species Richness in Neotropical Birds. Am. Nat. 1997, 149, 875–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, T.; Cui, W.; Ma, X.Y. Analysis of Factors Influencing Terrain Rugosity Extraction Based on Mean Shift Algorithm: A Case Study in the Yellow River Basin (Shanxi Section). Surv. Mapp. Bull. 2022, 2, 159. [Google Scholar]
- Ma, W.B.; Zhao, L.J.; Tian, J.R.; Wang, N.; Gao, Y.; Li, H.D. Study on Vegetation Spatial and Temporal Changes in Chishui River Basin Based on Topographic Position Index. Res. Environ. Sci. 2020, 33, 2705–2712. [Google Scholar]
- Xu, C.X.; Gong, J.; Li, Y.; Yan, L.L.; Gao, B.L. Distribution characteristics of typical ecosystem services in the Bai Longjiang River Basin in Gansu based on terrain gradient. Acta Ecol. Sin. 2020, 40, 4291–4301. [Google Scholar]
- Zhang, C.X.; Yang, Q.K.; Li, R. Progress in the Study of Terrain Moisture Index Based on DEM and Its Application. Prog. Geogr. 2005, 24, 116–123. [Google Scholar]
- Ma, S.W.; Xie, D.T.; Zhang, X.C.; Peng, Z.T.; Hong, H.K.; Luo, Z.; Xiao, J.J. Land ecological security early warning measurement and spatiotemporal evolution of ecologically sensitive areas in the Three Gorges Reservoir region: A case study of Wanzhou District, Chongqing City. Acta Ecol. Sin. 2017, 37, 8227–8240. [Google Scholar]
- Qiu, T.; Wang, X. Spatial and Temporal Evolution Analysis of Habitat Quality in the Changzhutan Urban Agglomeration Using the InVEST Model. For. Resour. Manag. 2022, 5, 99–106. [Google Scholar]
- Qin, Z.B.; Xuan, J.; Huang, L.J.; Liu, X.Z. Construction of ecological network in island-type cities based on MSPA and MCR models: A case study of Pingtan Island in Fujian Province. Soil Water Conserv. Res. 2023, 30, 303–311. [Google Scholar]
- Gao, Y.L.; Huang, H.; Li, Z.H.; Chen, L.Y.; He, T.Y.; Zheng, Y.S. Building the Ecological Network of Pintan Island Based on MSPA. J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) 2019, 48, 640–648. [Google Scholar]
- Mi, Z.; Kai-hua, Z.; Jin-zhu, Y.; Bin, G. Analysis on Slope Revegetation Diversity in Different Habitats. Procedia Earth Planet. Sci. 2012, 5, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.W.; Sexton, J.O.; Jobe, R.T.; Haddad, N.M. The Relative Contribution of Terrain, Land Cover, and Vegetation Structure Indices to Species Distribution Models. Biol. Conserv. 2013, 164, 170–176. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Chang, S.T.; Chen, W.H.; Wang, M.S.; Wu, S.J.; Chen, B.Q. Remote Sensing Monitoring and Evaluation of Ecological Environmental Quality in Pingtan Comprehensive Experimental Zone from 2007 to 2017. J. Fujian Norm. Univ. (Nat. Sci. Ed.) 2019, 35, 89–97. [Google Scholar]
- Chen, T.; Peng, L.; Liu, S.; Wang, Q. Land Cover Change in Different Altitudes of Guizhou-Guangxi Karst Mountain Area, China: Patterns and Drivers. J. Mt. Sci. 2017, 14, 1873–1888. [Google Scholar] [CrossRef]
- Xiong, Y.; Li, Y.; Xiong, S.; Wu, G.; Deng, O. Multi-Scale Spatial Correlation between Vegetation Index and Terrain Attributes in a Small Watershed of the Upper Minjiang River. Ecol. Indic. 2021, 126, 107610. [Google Scholar] [CrossRef]
- Méndez-Toribio, M.; Meave, J.A.; Zermeño-Hernández, I.; Ibarra-Manríquez, G. Effects of Slope Aspect and Topographic Position on Environmental Variables, Disturbance Regime and Tree Community Attributes in a Seasonal Tropical Dry Forest. J. Veg. Sci. 2016, 27, 1094–1103. [Google Scholar] [CrossRef]
Threat Factor | Maximum Distance (km) | Weight | Spatial Decay Type |
---|---|---|---|
Urban land | 3 | 1.0 | Exponential |
Rural resident land | 2.5 | 0.8 | Exponential |
Farmland | 1.2 | 0.5 | Linear |
Primary road | 1.8 | 0.7 | Linear |
Secondary road | 1.2 | 0.6 | Linear |
Landscape Type | Landscape Type | Landscape Type | Landscape Type | Landscape Type | Landscape Type | Primary Road | Secondary Road |
---|---|---|---|---|---|---|---|
1 | Farmland | 0.6 | 0.6 | 0.5 | 0.1 | 0.2 | 0.2 |
2 | Forestland | 1 | 1 | 0.9 | 0.4 | 0.3 | 0.4 |
3 | Grassland | 0.7 | 0.7 | 0.7 | 0.3 | 0.4 | 0.3 |
4 | Water area | 0.9 | 0.9 | 0.8 | 0.3 | 0.5 | 0.2 |
5 | Construction land | 0 | 0 | 0 | 0 | 0 | 0 |
6 | Bare land | 0.3 | 0.6 | 0.5 | 0.1 | 0.3 | 0.3 |
Index | Definition | Slop Position | Habitat Suitability |
---|---|---|---|
SPI | TPI > 1 SD | Ridge | 1 |
0.5 SD < TPI ≤ 1 SD | Upper slope | 2 | |
−0.5 SD < TPI < 0.5 SD, Slope > 5° | Middle slope | 3 | |
−0.5 SD ≤ TPI ≤ 0.5 SD, Slope ≤ 5° | Flat slope | 4 | |
−SD ≤ TPI < −0.5 SD | Lower slope | 5 | |
TPI < −SD | Valley bottom | 6 |
Habitat Grade | Farmland (km2)/ Percentage (%) | Forest (km2)/ Percentage (%) | Grass (km2)/ Percentage (%) | Water Area (km2)/ Percentage (%) | Construction Land (km2)/ Percentage (%) | Bare Land (km2)/ Percentage (%) | Total (km2) |
---|---|---|---|---|---|---|---|
I | 0/0 | 33.22/31.91 | 0/0 | 2/22.65 | 0/0 | 0/0 | 35.22 |
II | 0/0 | 29.37/28.22 | 2.51/62.53 | 5.37/60.82 | 0/0 | 0/0 | 37.26 |
III | 66.24/92.53 | 25.93/24.91 | 1.11/27.54 | 1.15/13.02 | 0/0 | 0/0 | 94.43 |
IV | 5.35/7.47 | 15.22/14.62 | 0.41/10.17 | 0.31/3.51 | 0/0 | 15.26/99.28 | 36.55 |
V | 0/0 | 0.33/0.34 | 0/0 | 0/0 | 76.55/100 | 0.11/0.72 | 76.99 |
Total | 71.59/100 | 104.08/100 | 4.03/100 | 8.83/100 | 76.55/100 | 15.37/100 | 280.45 |
Habitat Grade | Farmland (km2)/ Percentage (%) | Forest (km2)/ Percentage (%) | Grass (km2)/ Percentage (%) | Water Area (km2)/ Percentage (%) | Construction Land (km2)/ Percentage (%) | Bare Land (km2)/ Percentage (%) | Total (km2) |
---|---|---|---|---|---|---|---|
Excellent | 0.03/0.04 | 14.12/13.56 | 0.29/7.20 | 0.81/9.17 | 0/0 | 0/0 | 15.25 |
Good | 7.38/10.31 | 17.60/16.91 | 0.89/22.08 | 4.37/49.49 | 0/0 | 0.02/0.13 | 30.26 |
Moderate | 31.34/43.78 | 24.20/23.25 | 1.20/29.78 | 2.20/24.92 | 0/0 | 4.15/27.00 | 63.09 |
Fair | 25.78/36.01 | 34.22/32.88 | 1.23/30.52 | 1.08/12.23 | 0/0 | 8.98/58.43 | 71.29 |
Poor | 7.06/9.86 | 13.94/13.39 | 0.42/10.42 | 0.37/4.19 | 76.55/100 | 2.22/14.44 | 100.56 |
Total | 71.59/100 | 104.08/100 | 4.03/100 | 8.83/100 | 76.55/100 | 15.37/100 | 280.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Xiao, Y.; Ding, G.; Liao, L.; Yan, C.; Liu, Q.; Gao, Y.; Xie, X. Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China. Sustainability 2023, 15, 11293. https://doi.org/10.3390/su151411293
Huang H, Xiao Y, Ding G, Liao L, Yan C, Liu Q, Gao Y, Xie X. Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China. Sustainability. 2023; 15(14):11293. https://doi.org/10.3390/su151411293
Chicago/Turabian StyleHuang, He, Yanzhi Xiao, Guochang Ding, Lingyun Liao, Chen Yan, Qunyue Liu, Yaling Gao, and Xiangcai Xie. 2023. "Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China" Sustainability 15, no. 14: 11293. https://doi.org/10.3390/su151411293
APA StyleHuang, H., Xiao, Y., Ding, G., Liao, L., Yan, C., Liu, Q., Gao, Y., & Xie, X. (2023). Comprehensive Evaluation of Island Habitat Quality Based on the Invest Model and Terrain Diversity: A Case Study of Haitan Island, China. Sustainability, 15(14), 11293. https://doi.org/10.3390/su151411293