Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications
Abstract
:1. Introduction
- Identify trends when analyzing studies published over the last 27 years on the use of geopolymer composites in different construction applications.
- Highlight the recent developments in the field of using geopolymer composites in construction applications.
- Determine trends and knowledge gaps and suggest future research ideas on the use of geopolymer composites in construction applications.
2. Background
3. Methodology
4. Scientometric Analysis
4.1. General Stastistics
4.2. Research Trends
4.2.1. Keyword Analysis
4.2.2. Keyword Co-Occurrence
4.2.3. Word Cloud
4.3. Sources
4.4. Countries and Institutions
4.5. Authors
5. Publications
6. Research Trends and Future Prospects
7. Conclusions
- The cumulative production rate showed an increase in annual growth rate (AGR) from 23.9% to 45.2% between the timeframes 2003–2013 and 2014–2022, highlighting the rapid emergence of research in this field.
- The journal Construction and Building Materials contributed the most to the research area, having the largest number of published articles in this field.
- China and the USA had the highest number of publications and exhibited the highest rates of international collaboration.
- Based on the authors’ analysis, Prinya Chindaprasirt, Maria Chiara Bignozzi, and Mohd Mustafa Al Bakri Abdullah from Khon Kaen University, University of Bologna, and Universiti Malaysia Perlis, respectively, were ranked the top three authors based on the total publications. However, Yanshuai Wang, Gregor Gluth, and Prinya Chindaprasirt were the most active authors in recent years based on the total publications per year.
- The publications analysis showed that geopolymer mortar and composite had been assessed in different applications, including heavy metal adsorption, fire resistance, strengthening, 3D printing, repair, and marine coating.
- Based on the keyword analysis, fire and corrosion protection were the most studied applications since 2003, while articles on coating, repair, masonry strengthening, and rehabilitation appeared in 2013.
- In the last five years, more publications have emerged on the usage of geopolymer mortars for 3D printing, grouting, sewage lining, and wastewater treatment.
- Bonding characteristics, durability testing, and microstructure analysis were extensively studied in the literature.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alex, J.; Dhanalakshmi, J.; Ambedkar, B. Experimental Investigation on Rice Husk Ash as Cement Replacement on Concrete Production. Constr. Build. Mater. 2016, 127, 353–362. [Google Scholar] [CrossRef]
- Yang, H.; Liu, L.; Yang, W.; Liu, H.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A Comprehensive Overview of Geopolymer Composites: A Bibliometric Analysis and Literature Review. Case Stud. Constr. Mater. 2022, 16, e00830. [Google Scholar] [CrossRef]
- Akashi, O.; Hanaoka, T.; Matsuoka, Y.; Kainuma, M. A Projection for Global CO2 Emissions from the Industrial Sector through 2030 Based on Activity Level and Technology Changes. Energy 2011, 36, 1855–1867. [Google Scholar] [CrossRef]
- Xie, J.-F.; Huang, Y.-X.; Li, W.-W.; Song, X.-N.; Xiong, L.; Yu, H.-Q. Efficient Electrochemical CO2 Reduction on a Unique Chrysanthemum-like Cu Nanoflower Electrode and Direct Observation of Carbon Deposite. Electrochim. Acta 2014, 139, 137–144. [Google Scholar] [CrossRef]
- Wei, J.; Cen, K. Empirical Assessing Cement CO2 Emissions Based on China’s Economic and Social Development during 2001–2030. Sci. Total Environ. 2019, 653, 200–211. [Google Scholar] [CrossRef]
- Gopalakrishnan, R.; Kaveri, R. Using Graphene Oxide to Improve the Mechanical and Electrical Properties of Fiber-Reinforced High-Volume Sugarcane Bagasse Ash Cement Mortar. Eur. Phys. J. Plus 2021, 136, 202. [Google Scholar] [CrossRef]
- Bawab, J.; Khatib, J.; Kenai, S.; Sonebi, M. A Review on Cementitious Materials Including Municipal Solid Waste Incineration Bottom Ash (MSWI-BA) as Aggregates. Buildings 2021, 11, 179. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers Inorganic Polymerie New Materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Bakri, A.M.A.; Kamarudin, H.; Bnhussain, M.; Nizar, I.K.; Mastura, W.I.W. Mechanism and Chemical Reaction of Fly Ash Geopolymer Cement—A Review. J. Asian Sci. Res. 2011, 1, 247–253. [Google Scholar]
- Ismail, I.; Bernal, S.A.; Provis, J.L.; San Nicolas, R.; Hamdan, S.; van Deventer, J.S.J. Modification of Phase Evolution in Alkali-Activated Blast Furnace Slag by the Incorporation of Fly Ash. Cem. Concr. Compos. 2014, 45, 125–135. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D. Geopolymerisation: A Review and Prospects for the Minerals Industry. Miner. Eng. 2007, 20, 1261–1277. [Google Scholar] [CrossRef]
- Yan, L.; Kasal, B.; Huang, L. A Review of Recent Research on the Use of Cellulosic Fibres, Their Fibre Fabric Reinforced Cementitious, Geo-Polymer and Polymer Composites in Civil Engineering. Compos. Part B Eng. 2016, 92, 94–132. [Google Scholar] [CrossRef]
- Fahim Huseien, G.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Abdulameer Hussein, A. Geopolymer Mortars as Sustainable Repair Material: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 80, 54–74. [Google Scholar] [CrossRef]
- Najm, O.; El-Hassan, H.; El-Dieb, A. Ladle Slag Characteristics and Use in Mortar and Concrete: A Comprehensive Review. J. Clean. Prod. 2021, 288, 125584. [Google Scholar] [CrossRef]
- Ahmad Zaidi, F.H.; Ahmad, R.; Al Bakri Abdullah, M.M.; Abd Rahim, S.Z.; Yahya, Z.; Li, L.Y.; Ediati, R. Geopolymer as Underwater Concreting Material: A Review. Constr. Build. Mater. 2021, 291, 123276. [Google Scholar] [CrossRef]
- Arulmoly, B.; Konthesingha, C. Pertinence of Alternative Fine Aggregates for Concrete and Mortar: A Brief Review on River Sand Substitutions. Aust. J. Civ. Eng. 2021, 20, 272–307. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G. Effect of Elevated Temperatures on Geopolymer Paste, Mortar and Concrete. Cem. Concr. Res. 2010, 40, 334–339. [Google Scholar] [CrossRef]
- Lyon, R.E.; Balaguru, P.N.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovics, M. Fire-Resistant Aluminosilicate Composites. Fire Mater. 1997, 21, 67–73. [Google Scholar] [CrossRef]
- Ariffin, M.A.M.; Bhutta, M.A.R.; Hussin, M.W.; Mohd Tahir, M.; Aziah, N. Sulfuric Acid Resistance of Blended Ash Geopolymer Concrete. Constr. Build. Mater. 2013, 43, 80–86. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.-B. Resistance of Alkali-Activated Slag Concrete to Acid Attack. Cem. Concr. Res. 2003, 33, 1607–1611. [Google Scholar] [CrossRef]
- Kuri, J.C.; Sarker, P.K.; Shaikh, F.U.A. Sulphuric Acid Resistance of Ground Ferronickel Slag Blended Fly Ash Geopolymer Mortar. Constr. Build. Mater. 2021, 313, 125505. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential Application of Geopolymers as Protection Coatings for Marine ConcreteI. Basic Properties. Appl. Clay Sci. 2010, 49, 1–6. [Google Scholar] [CrossRef]
- Zhang, Z.; Yao, X.; Zhu, H. Potential Application of Geopolymers as Protection Coatings for Marine ConcreteII. Microstructure and Anticorrosion Mechanism. Appl. Clay Sci. 2010, 49, 7–12. [Google Scholar] [CrossRef]
- Aguirre-Guerrero, A.M.; Robayo-Salazar, R.A.; de Gutiérrez, R.M. A Novel Geopolymer Application: Coatings to Protect Reinforced Concrete against Corrosion. Appl. Clay Sci. 2017, 135, 437–446. [Google Scholar] [CrossRef]
- Saxena, S.K.; Kumar, M.; Singh, N.B. Fire Resistant Properties of Alumino Silicate Geopolymer Cement Mortars. Mater. Today Proc. 2017, 4, 5605–5612. [Google Scholar] [CrossRef]
- Bhutta, A.; Farooq, M.; Banthia, N. Performance Characteristics of Micro Fiber-Reinforced Geopolymer Mortars for Repair. Constr. Build. Mater. 2019, 215, 605–612. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Peng, K.-D.; Alrefaei, Y.; Dai, J.-G. The Bond between Geopolymer Repair Mortars and OPC Concrete Substrate: Strength and Microscopic Interactions. Cem. Concr. Compos. 2021, 119, 103991. [Google Scholar] [CrossRef]
- Bencardino, F.; Condello, A.; Ashour, A.F. Single-Lap Shear Bond Tests on Steel Reinforced Geopolymeric Matrix-Concrete Joints. Compos. Part B Eng. 2017, 110, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Menna, C.; Asprone, D.; Ferone, C.; Colangelo, F.; Balsamo, A.; Prota, A.; Cioffi, R.; Manfredi, G. Use of Geopolymers for Composite External Reinforcement of RC Members. Compos. Part B Eng. 2013, 45, 1667–1676. [Google Scholar] [CrossRef]
- Tamburini, S.; Natali, M.; Garbin, E.; Panizza, M.; Favaro, M.; Valluzzi, M.R. Geopolymer Matrix for Fibre Reinforced Composites Aimed at Strengthening Masonry Structures. Constr. Build. Mater. 2017, 141, 542–552. [Google Scholar] [CrossRef]
- Longo, F.; Cascardi, A.; Lassandro, P.; Aiello, M.A. A Novel Composite Reinforced Mortar for the Structural and Energy Retrofitting of Masonry Panels. Key Eng. Mater. 2022, 916, 377–384. [Google Scholar] [CrossRef]
- Longo, F.; Lassandro, P.; Moshiri, A.; Phatak, T.; Aiello, M.A.; Krakowiak, K.J. Lightweight Geopolymer-Based Mortars for the Structural and Energy Retrofit of Buildings. Energy Build. 2020, 225, 110352. [Google Scholar] [CrossRef]
- Guo, L.; Zhou, M.; Wang, X.; Li, C.; Jia, H. Preparation of Coal Gangue-Slag-Fly Ash Geopolymer Grouting Materials. Constr. Build. Mater. 2022, 328, 126997. [Google Scholar] [CrossRef]
- Bai, T.; Liang, Y.; Li, C.; Jiang, X.; Li, Y.; Chen, A.; Wang, H.; Xu, F.; Peng, C. Application and Validation of Fly Ash Based Geopolymer Mortar as Grouting Material in Porous Asphalt Concrete. Constr. Build. Mater. 2022, 332, 127154. [Google Scholar] [CrossRef]
- Gouny, F.; Fouchal, F.; Maillard, P.; Rossignol, S. A Geopolymer Mortar for Wood and Earth Structures. Constr. Build. Mater. 2012, 36, 188–195. [Google Scholar] [CrossRef]
- Assaad, J.J.; Saba, M. Suitability of Metakaolin-Based Geopolymers for Masonry Plastering. ACI Mater. J. 2020, 117. [Google Scholar] [CrossRef]
- Hwalla, J.; Saba, M.; Assaad, J.J. Suitability of Metakaolin-Based Geopolymers for Underwater Applications. Mater. Struct. 2020, 53, 119. [Google Scholar] [CrossRef]
- Sarquah, K.; Narra, S.; Beck, G.; Awafo, E.A.; Antwi, E. Bibliometric Analysis; Characteristics and Trends of Refuse Derived Fuel Research. Sustainability 2022, 14, 1994. [Google Scholar] [CrossRef]
- de Sousa, F.D.B. A Simplified Bibliometric Mapping and Analysis about Sustainable Polymers. Mater. Today Proc. 2022, 49, 2025–2033. [Google Scholar] [CrossRef]
- Montalván-Burbano, N.; Pérez-Valls, M.; Plaza-Úbeda, J. Analysis of Scientific Production on Organizational Innovation. Cogent Bus. Manag. 2020, 7, 1745043. [Google Scholar] [CrossRef]
- Alzard, M.H.; El-Hassan, H.; El-Maaddawy, T.; Alsalami, M.; Abdulrahman, F.; Hassan, A.A. A Bibliometric Analysis of the Studies on Self-Healing Concrete Published between 1974 and 2021. Sustainability 2022, 14, 11646. [Google Scholar] [CrossRef]
- Boquera, L.; Castro, J.R.; Pisello, A.L.; Cabeza, L.F. Research Progress and Trends on the Use of Concrete as Thermal Energy Storage Material through Bibliometric Analysis. J. Energy Storage 2021, 38, 102562. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, R.; Cheng, S.; Xu, Y.; Luo, S.; Zhang, Y.; Kong, L. Bibliometrics and Visualization Analysis Regarding Research on the Development of Microplastics. Environ. Sci. Pollut. Res. 2021, 28, 8953–8967. [Google Scholar] [CrossRef]
- Jeris, S.S.; Ur Rahman Chowdhury, A.S.M.N.; Akter, T.; Frances, S.; Roy, M.H. Cryptocurrency and Stock Market: Bibliometric and Content Analysis. Heliyon 2022, 8, e10514. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Sang, P. A Bibliometric Review of Studies on Construction and Demolition Waste Management by Using CiteSpace. Energy Build. 2022, 258, 111822. [Google Scholar] [CrossRef]
- Jin, L.; Sun, X.; Ren, H.; Huang, H. Hotspots and Trends of Biological Water Treatment Based on Bibliometric Review and Patents Analysis. J. Environ. Sci. 2023, 125, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Anugerah, A.R.; Muttaqin, P.S.; Trinarningsih, W. Social Network Analysis in Business and Management Research: A Bibliometric Analysis of the Research Trend and Performance from 2001 to 2020. Heliyon 2022, 8, e09270. [Google Scholar] [CrossRef]
- Mat Daud, N.I.; Mohd, F.; Che Nawi, N.; Ibrahim, M.A.H.; Tan, W.H.; Zainuddin, Z.F.; Mohd Yussoff, N.H. Bibliometric Analysis of Optimization in Sports from 2011 to 2020 Using Scopus Database. Lect. Notes Netw. Syst. 2023, 487, 689–701. [Google Scholar] [CrossRef]
- Tian, Q.; Pan, Y.; Bai, Y.; Yao, S.; Sun, S. A Bibliometric Analysis of Research Progress and Trends on Fly Ash-Based Geopolymer. Materials 2022, 15, 4777. [Google Scholar] [CrossRef]
- Elmesalami, N.; Celik, K. A Critical Review of Engineered Geopolymer Composite: A Low-Carbon Ultra-High-Performance Concrete. Constr. Build. Mater. 2022, 346, 128491. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, Y. Bibliographic and Visualized Analysis of Geopolymer Research and Its Application in Heavy Metal Immobilization: A Review. J. Environ. Manag. 2019, 231, 256–267. [Google Scholar] [CrossRef] [PubMed]
- El-Mir, A.; Hwalla, J.; El-Hassan, H.; Assaad, J.J.; El-Dieb, A.; Shehab, E. Valorization of Waste Perlite Powder in Geopolymer Composites. Constr. Build. Mater. 2023, 368, 130491. [Google Scholar] [CrossRef]
- Hwalla, J.; El-Hassan, H.; Assaad, J.; El Maaddawy, T.; Bawab, J. Effect of Type of Sand on the Flowability and Compressive Strength of Slag-Fly Ash Blended Geopolymer Mortar. In Proceedings of the 8th International Conference on Civil Structural and Transportation Engineering (ICCSTE’23), Ottawa, ON, Canada, 4–6 June 2023. [Google Scholar]
- Hwalla, J.; El-Hassan, H.; Assaad, J.J.; El-Maaddawy, T. Performance of Cementitious and Slag-Fly Ash Blended Geopolymer Screed Composites: A Comparative Study. Case Stud. Constr. Mater. 2023, 18, e02037. [Google Scholar] [CrossRef]
- Sukmak, P.; De Silva, P.; Horpibulsuk, S.; Chindaprasirt, P. Sulfate Resistance of Clay-Portland Cement and Clay High-Calcium Fly Ash Geopolymer. J. Mater. Civ. Eng. 2015, 27, 04014158. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Mohamed, N.A.N.; Tay, Y.W.D.; Tan, M.J. Measurement of Tensile Bond Strength of 3D Printed Geopolymer Mortar. Measurement 2018, 113, 108–116. [Google Scholar] [CrossRef]
- Panda, B.; Paul, S.C.; Hui, L.J.; Tay, Y.W.D.; Tan, M.J. Additive Manufacturing of Geopolymer for Sustainable Built Environment. J. Clean. Prod. 2017, 167, 281–288. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Sata, V.; Hanjitsuwan, S.; Ridtirud, C.; Hatanaka, S.; Chindaprasirt, P. High Calcium Fly Ash Geopolymer Mortar Containing Portland Cement for Use as Repair Material. Constr. Build. Mater. 2015, 98, 482–488. [Google Scholar] [CrossRef]
- Vasconcelos, E.; Fernandes, S.; De Aguiar, J.B.; Pacheco-Torgal, F. Concrete Retrofitting Using Metakaolin Geopolymer Mortars and CFRP. Constr. Build. Mater. 2011, 25, 3213–3221. [Google Scholar] [CrossRef] [Green Version]
- Sivasakthi, M.; Jeyalakshmi, R.; Rajamane, N.P. Investigation of Microstructure and Thermomechanical Properties of Nano-TiO2 Admixed Geopolymer for Thermal Resistance Applications. J. Mater. Eng. Perform. 2021, 30, 3642–3653. [Google Scholar] [CrossRef]
- Hager, I.; Sitarz, M.; Mróz, K. Fly-Ash Based Geopolymer Mortar for High-Temperature Application—Effect of Slag Addition. J. Clean. Prod. 2021, 316, 128168. [Google Scholar] [CrossRef]
- Kozhukhova, N.; Kozhukhova, M.; Teslya, A.; Nikulin, I. The Effect of Different Modifying Methods on Physical, Mechanical and Thermal Performance of Cellular Geopolymers as Thermal Insulation Materials for Building Structures. Buildings 2022, 12, 241. [Google Scholar] [CrossRef]
- Kozhukhova, N.; Kozhukhova, M.; Zhernovskaya, I.; Promakhov, V. The Correlation of Temperature-Mineral Phase Transformation as a Controlling Factor of Thermal and Mechanical Performance of Fly Ash-Based Alkali-Activated Binders. Materials 2020, 13, 5181. [Google Scholar] [CrossRef] [PubMed]
- Khater, H.M.; Ghareib, M. Optimization of Geopolymer Mortar Incorporating Heavy Metals in Producing Dense Hybrid Composites. J. Build. Eng. 2020, 32, 101684. [Google Scholar] [CrossRef]
- Khater, H.M.; Ramadan, W.; Gharieb, M. Impact of Alkali Activated Mortar Incorporating Different Heavy Metals on Immobilization Proficiency Using Gamma Rays Attenuation. Prog. Nucl. Energy 2021, 137, 103729. [Google Scholar] [CrossRef]
- Nath, S.K. Fly Ash and Zinc Slag Blended Geopolymer: Immobilization of Hazardous Materials and Development of Paving Blocks. J. Hazard. Mater. 2020, 387, 121673. [Google Scholar] [CrossRef] [Green Version]
- Bibliometrix. Available online: https://www.bibliometrix.org/home/index.php/layout/bibliometrix (accessed on 7 January 2022).
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Singer, M.N.; Hamouda, M.A.; El-Hassan, H.; Hinge, G. Permeable Pavement Systems for Effective Management of Stormwater Quantity and Quality: A Bibliometric Analysis and Highlights of Recent Advancements. Sustainability 2022, 14, 13061. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pattnaik, D.; Pandey, N. A Bibliometric Review of International Marketing Review (IMR): Past, Present, and Future. Int. Mark. Rev. 2021, 38, 840–878. [Google Scholar] [CrossRef]
- Afuye, G.A.; Kalumba, A.M.; Busayo, E.T.; Orimoloye, I.R. A Bibliometric Review of Vegetation Response to Climate Change. Environ. Sci. Pollut. Res. 2022, 29, 18578–18590. [Google Scholar] [CrossRef]
- Ahmi, A.; Elbardan, H.; Raja Mohd Ali, R.H. Bibliometric Analysis of Published Literature on Industry 4. In Proceedings of the 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 22–25 January 2019; pp. 1–6. [Google Scholar]
- Shaikh, F.U.A. Effects of Alkali Solutions on Corrosion Durability of Geopolymer Concrete. Adv. Concr. Constr. 2014, 2, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Saba, M.; Assaad, J.J. Effect of Recycled Fine Aggregates on Performance of Geopolymer Masonry Mortars. Constr. Build. Mater. 2021, 279, 122461. [Google Scholar] [CrossRef]
- Branavan, A.; Konthesingha, K.M.C. Fine Aggregate Usage in Concrete and Masonry Mortar by Local Construction Industries. In Proceedings of the 10th International Conference on Structural Engineering and Construction Management (ICSECM), Kandy, Sri Lanka, 12–14 December 2019. [Google Scholar] [CrossRef]
- Khan, H.A.; Castel, A.; Sunarho, J. Neutralization and Corrosion of Geopolymer Mortar in an Aggressive Sewer Environment. In Proceedings of the Corrosion & Prevention, Adelaide, Australia, 11-14 November 2018. [Google Scholar]
- Khan, H.A.; Castel, A.; Khan, M.S.H. Corrosion Investigation of Fly Ash Based Geopolymer Mortar in Natural Sewer Environment and Sulphuric Acid Solution. Corros. Sci. 2020, 168, 108586. [Google Scholar] [CrossRef]
- Khan, H.A.; Khan, M.S.H.; Castel, A.; Sunarho, J. Deterioration of Alkali-Activated Mortars Exposed to Natural Aggressive Sewer Environment. Constr. Build. Mater. 2018, 186, 577–597. [Google Scholar] [CrossRef]
- Khan, H.A.; Yasir, M.; Castel, A. Performance of Cementitious and Alkali-Activated Mortars Exposed to Laboratory Simulated Microbially Induced Corrosion Test. Cem. Concr. Compos. 2022, 128, 104445. [Google Scholar] [CrossRef]
- Drugă, B.; Ukrainczyk, N.; Weise, K.; Koenders, E.; Lackner, S. Interaction between Wastewater Microorganisms and Geopolymer or Cementitious Materials: Biofilm Characterization and Deterioration Characteristics of Mortars. Int. Biodeterior. Biodegrad. 2018, 134, 58–67. [Google Scholar] [CrossRef]
- Panda, B.; Noor Mohamed, N.A.; Tay, Y.W.D.; He, L.; Tan, M.J. Effects of Slag Addition on Bond Strength of 3D Printed Geopolymer Mortar: An Experimental Investigation. In Proceedings of the 3rd International Conference on Progress in Additive Manufacturing (Pro-AM 2018), Singapore, 14–17 May 2018; pp. 62–67. [Google Scholar]
- Panda, B.; Noor Mohamed, N.A.; Tay, Y.W.D.; Tan, M.J. Bond Strength in 3D Printed Geopolymer Mortar. In RILEM Bookseries; Springer: Cham, Switzerland, 2019; Volume 19, pp. 200–206. [Google Scholar] [CrossRef]
- Lim, J.H.; Panda, B.; Pham, Q.-C. Improving Flexural Characteristics of 3D Printed Geopolymer Composites with in-Process Steel Cable Reinforcement. Constr. Build. Mater. 2018, 178, 32–41. [Google Scholar] [CrossRef]
- Güllü, H.; Cevik, A.; Al-Ezzi, K.M.A.; Gülsan, M.E. On the Rheology of Using Geopolymer for Grouting: A Comparative Study with Cement-Based Grout Included Fly Ash and Cold Bonded Fly Ash. Constr. Build. Mater. 2019, 196, 594–610. [Google Scholar] [CrossRef]
- Alexander, A.E.; Shashikala, A.P. Studies on the Microstructure and Durability Characteristics of Ambient Cured FA-GGBS Based Geopolymer Mortar. Constr. Build. Mater. 2022, 347, 128538. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, W. Fundamental Understanding of Carbonation Curing and Durability of Carbonation-Cured Cement-Based Composites: A Review. J. CO2 Util. 2021, 44, 101428. [Google Scholar] [CrossRef]
- Rostami, V.; Shao, Y.; Boyd, A.J. Durability of Concrete Pipes Subjected to Combined Steam and Carbonation Curing. Constr. Build. Mater. 2011, 25, 3345–3355. [Google Scholar] [CrossRef]
- Kozhukhova, N.I.; Lebedev, M.S.; Vasilenko, M.I.; Goncharova, E.N. Fly Ash Impact from Thermal Power Stations on the Environment. J. Phys. Conf. Ser. 2018, 1066, 012010. [Google Scholar] [CrossRef]
- Bawab, J.; Khatib, J.; El-Hassan, H.; Assi, L.; Kırgız, M.S. Properties of Cement-Based Materials Containing Cathode-Ray Tube (CRT) Glass Waste as Fine Aggregates—A Review. Sustainability 2021, 13, 11529. [Google Scholar] [CrossRef]
- Harzing, A.-W. Metrics: H and g-Index. Available online: https://harzing.com/resources/publish-or-perish/tutorial/metrics/h-and-g-index (accessed on 16 June 2022).
- Zhang, P.; Zheng, Y.; Wang, K.; Zhang, J. A Review on Properties of Fresh and Hardened Geopolymer Mortar. Compos. Part B Eng. 2018, 152, 79–95. [Google Scholar] [CrossRef]
- Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s Recent Emission Pattern Shifts. Earth’s Future 2021, 9, e2021EF002241. [Google Scholar] [CrossRef]
- Marinelli, M.; Janardhanan, M. Green Cement Production in India: Prioritization and Alleviation of Barriers Using the Best–Worst Method. Environ. Sci. Pollut. Res. 2022, 29, 63988–64003. [Google Scholar] [CrossRef]
- Rangelov, M.; Dylla, H.; Mukherjee, A.; Sivaneswaran, N. Use of Environmental Product Declarations (EPDs) of Pavement Materials in the United States of America (U.S.A.) to Ensure Environmental Impact Reductions. J. Clean. Prod. 2021, 283, 124619. [Google Scholar] [CrossRef]
- Cement: Production Ranking Top Countries. 2021. Available online: https://www.statista.com/statistics/267364/world-cement-production-by-country/ (accessed on 22 December 2022).
- Camana, D.; Manzardo, A.; Toniolo, S.; Gallo, F.; Scipioni, A. Assessing Environmental Sustainability of Local Waste Management Policies in Italy from a Circular Economy Perspective. An Overview of Existing Tools. Sustain. Prod. Consum. 2021, 27, 613–629. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Tang, K.H.D.; Maharjan, A.K.; Abdul Aziz, A.; Bunrith, S. Malaysia Moving Towards a Sustainability Municipal Waste Management. Ind. Domest. Waste Manag. 2021, 1, 26–40. [Google Scholar] [CrossRef]
- Li, D.; Shen, J.; Chen, Y.; Cheng, L.; Wu, X. Study of Properties on Fly Ash–Slag Complex Cement. Cem. Concr. Res. 2000, 30, 1381–1387. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. Comparative Study on the Characteristics of Fly Ash and Bottom Ash Geopolymers. Waste Manag. 2009, 29, 539–543. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; De Silva, P.; Sagoe-Crentsil, K.; Hanjitsuwan, S. Effect of SiO2 and Al2O3 on the Setting and Hardening of High Calcium Fly Ash-Based Geopolymer Systems. J. Mater. Sci. 2012, 47, 4876–4883. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Rattanasak, U. Improvement of Durability of Cement Pipe with High Calcium Fly Ash Geopolymer Covering. Constr. Build. Mater. 2016, 112, 956–961. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Dai, J.-G.; Ding, Z.; Xu, W.-T. Phosphate-Based Geopolymer: Formation Mechanism and Thermal Stability. Mater. Lett. 2017, 190, 209–212. [Google Scholar] [CrossRef]
- Masi, G.; Rickard, W.D.A.; Bignozzi, M.C.; van Riessen, A. The Effect of Organic and Inorganic Fibres on the Mechanical and Thermal Properties of Aluminate Activated Geopolymers. Compos. Part B Eng. 2015, 76, 218–228. [Google Scholar] [CrossRef]
- Monticelli, C.; Natali, M.E.; Balbo, A.; Chiavari, C.; Zanotto, F.; Manzi, S.; Bignozzi, M.C. Corrosion Behavior of Steel in Alkali-Activated Fly Ash Mortars in the Light of Their Microstructural, Mechanical and Chemical Characterization. Cem. Concr. Res. 2016, 80, 60–68. [Google Scholar] [CrossRef]
- Mobili, A.; Giosuè, C.; Bellezze, T.; Tittarelli, F. Corrosion Behavior of Galvanized and Bare Steel Reinforcements Embedded in Carbonated Alkali-Activated Metakaolin Mortar. Metall. Ital. 2020, 112, 22–26. [Google Scholar]
- Mobili, A.; Belli, A.; Giosuè, C.; Bellezze, T.; Tittarelli, F. Metakaolin and Fly Ash Alkali-Activated Mortars Compared with Cementitious Mortars at the Same Strength Class. Cem. Concr. Res. 2016, 88, 198–210. [Google Scholar] [CrossRef]
- Mobili, A.; Giosuè, C.; Belli, A.; Bellezze, T.; Tittarelli, F. Geopolymeric and Cementitious Mortars with the Same Mechanical Strength Class: Performances and Corrosion Behaviour of Black and Galvanized Steel Bars. Spec. Publ. 2015, 305, 18.1–18.10. [Google Scholar]
- Tittarelli, F.; Mobili, A.; Giosuè, C.; Belli, A.; Bellezze, T. Corrosion Behaviour of Bare and Galvanized Steel in Geopolymer and Ordinary Portland Cement Based Mortars with the Same Strength Class Exposed to Chlorides. Corros. Sci. 2018, 134, 64–77. [Google Scholar] [CrossRef]
- Giosuè, C.; Mobili, A.; Di Perna, C.; Tittarelli, F. Performance of Lightweight Cement-Based and Alkali-Activated Mortars Exposed to High-Temperature. Constr. Build. Mater. 2019, 220, 565–576. [Google Scholar] [CrossRef]
- Mobili, A.; Giosuè, C.; Bitetti, M.; Tittarelli, F. Cement Mortars and Geopolymers with the Same Strength Class. Proc. Inst. Civ. Eng. 2016, 169, 3–12. [Google Scholar] [CrossRef]
- Mobili, A.; Belli, A.; Telesca, A.; Marroccoli, M.; Tittarelli, F. Calcium Sulfoaluminate and Geopolymeric Binders as Alternatives to OPC. Spec. Publ. 2018, 326, 28.1–28.10. [Google Scholar]
- Mobili, A.; Belli, A.; Giosuè, C.; Telesca, A.; Marroccoli, M.; Tittarelli, F. Calcium Sulfoaluminate, Geopolymeric, and Cementitious Mortars for Structural Applications. Environments 2017, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Ferone, C.; Colangelo, F.; Roviello, G.; Asprone, D.; Menna, C.; Balsamo, A.; Prota, A.; Cioffi, R.; Manfredi, G. Application-Oriented Chemical Optimization of a Metakaolin Based Geopolymer. Materials 2013, 6, 1920–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roviello, G.; Ricciotti, L.; Ferone, C.; Colangelo, F.; Tarallo, O. Fire Resistant Melamine Based Organic-Geopolymer Hybrid Composites. Cem. Concr. Compos. 2015, 59, 89–99. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Tarallo, O.; Ferone, C.; Colangelo, F.; Roviello, V.; Cioffi, R. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties. Materials 2016, 9, 461. [Google Scholar] [CrossRef] [Green Version]
- Ferone, C.; Colangelo, F.; Cioffi, R.; Montagnaro, F.; Santoro, L. Mechanical Performances of Weathered Coal Fly Ash Based Geopolymer Bricks. Procedia Eng. 2011, 21, 745–752. [Google Scholar] [CrossRef]
- Hron, R.; Martaus, F.; Kadlec, M. Compressive properties of geopolymer matrix composites. MATEC Web Conf. 2018, 179, 02003. [Google Scholar] [CrossRef] [Green Version]
- Hron, R. Geopolymer laminate peel resistance of adhesive bonds with foam and honeycomb cores. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference: SGEM, Sofia, Bulgaria, 29 June–5 July 2017. [Google Scholar]
- Hron, R.; Kadlec, M.; Martaus, F. Mechanical Properties of Fibre Reinforced Geopolymer Composites Exposed to Operating Fluids. Solid State Phenom. 2018, 278, 82–88. [Google Scholar] [CrossRef]
- Rajendran, M. Parametric Investigation on the Post-Fire Flexural Behaviour of Novel Ferrocement Panels with Geopolymer Mortar. Eur. J. Environ. Civ. Eng. 2022, 27, 2985–3000. [Google Scholar] [CrossRef]
- Nagan, S.; Ponnudurai, R.; Mohana, R.; Manikandan, E.; Amsukodi, P. An Experimental Study on Workability, Strength and Fire Resistant of Geopolymer Mortar. Int. J. Earth Sci. Eng. 2013, 6, 563–569. [Google Scholar]
- Carabba, L.; Moricone, R.; Scarponi, G.E.; Tugnoli, A.; Bignozzi, M.C. Alkali Activated Lightweight Mortars for Passive Fire Protection: A Preliminary Study. Constr. Build. Mater. 2019, 195, 75–84. [Google Scholar] [CrossRef]
- Rashad, A.M. Insulating and Fire-Resistant Behaviour of Metakaolin and Fly Ash Geopolymer Mortars. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 37–44. [Google Scholar] [CrossRef]
- Abdel-Ghani, N.T.; Elsayed, H.A.; AbdelMoied, S. Geopolymer Synthesis by the Alkali-Activation of Blastfurnace Steel Slag and Its Fire-Resistance. HBRC J. 2018, 14, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Li, W.; Tao, Z.; Castel, A.; Wang, K. High Temperature Resistance of Fly Ash/GGBFS-Based Geopolymer Mortar with Load-Induced Damage. Mater. Struct./Mater. Constr. 2020, 53, 111. [Google Scholar] [CrossRef]
- Wongsa, A.; Wongkvanklom, A.; Tanangteerapong, D.; Chindaprasirt, P. Comparative Study of Fire-Resistant Behaviors of High-Calcium Fly Ash Geopolymer Mortar Containing Zeolite and Mullite. J. Sustain. Cem.-Based Mater. 2020, 9, 307–321. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, L.; Wu, B. Tensile and bond properties and strength degradation mechanism of geopolymer mortar after exposure to elevated temperatures. Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol. 2016, 48, 128–134. [Google Scholar] [CrossRef]
- Silva, G.; Salirrosas, J.; Ruiz, G.; Kim, S.; Nakamatsu, J.; Aguilar, R. Evaluation of Fire, High-Temperature and Water Erosion Resistance of Fiber-Reinforced Lightweight Pozzolana-Based Geopolymer Mortars. IOP Conf. Ser. Mater. Sci. Eng. 2019, 706, 012016. [Google Scholar] [CrossRef] [Green Version]
- Chindaprasirt, P.; Lao-un, J.; Zaetang, Y.; Wongkvanklom, A.; Phoo-ngernkham, T.; Wongsa, A.; Sata, V. Thermal Insulating and Fire Resistance Performances of Geopolymer Mortar Containing Auto Glass Waste as Fine Aggregate. J. Build. Eng. 2022, 60, 105178. [Google Scholar] [CrossRef]
- Fakhrian, S.; Behbahani, H.; Mashhadi, S. Predicting Post-Fire Behavior of Green Geopolymer Mortar Containing Recycled Concrete Aggregate via Gep Approach. J. Soft Comput. Civ. Eng. 2020, 4, 22–45. [Google Scholar] [CrossRef]
- Degirmenci, F.N. Freeze-Thaw and Fire Resistance of Geopolymer Mortar Based on Natural and Waste Pozzolans. Ceram.-Silik. 2018, 62, 41–49. [Google Scholar] [CrossRef] [Green Version]
- An, E.-M.; Cho, Y.-H.; Chon, C.-M.; Lee, D.-G.; Lee, S. Synthesizing and Assessing Fire-Resistant Geopolymer from Rejected Fly Ash. J. Korean Ceram. Soc. 2015, 52, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Saxena, S.K.; Singh, N.B. Influence of Some Additives on the Properties of Fly Ash Based Geopolymer Cement Mortars. SN Appl. Sci. 2019, 1, 481. [Google Scholar] [CrossRef] [Green Version]
- Saukani, M.; Febrianty, R.; Ariska, N.; Husein, S.; Astutiningsih, S. The Effect of TiO2 Addition on Thermal Resistance of Geopolymer Mortar Based Low Alumina Fly Ash. J. Phys. Conf. Ser. 2021, 1760, 012053. [Google Scholar] [CrossRef]
- Mawlod, A.O.; Bzeni, D.K.H. Durability and Fire Resistance Performance of Slag Based Geopolymer Composite. Proc. Inst. Civ. Eng. Eng. Sustain. 2022, 176, 28–38. [Google Scholar] [CrossRef]
- Peng, K.-D.; Zeng, J.-J.; Huang, B.-T.; Huang, J.-Q.; Zhuge, Y.; Dai, J.-G. Bond Performance of FRP Bars in Plain and Fiber-Reinforced Geopolymer under Pull-out Loading. J. Build. Eng. 2022, 57, 104893. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Yan, J.; Kodur, V.; Cao, L. Mechanical Behavior of Concrete Beams Shear Strengthened with Textile Reinforced Geopolymer Mortar. Eng. Struct. 2019, 196, 109348. [Google Scholar] [CrossRef]
- Ghazy, M.F.; Abd Elaty, M.A.; Taman, M.; Eissa, M.E. Durability Performance of Geopolymer Ferrocement Panels Prepared by Different Alkaline Activators. Structures 2022, 38, 168–183. [Google Scholar] [CrossRef]
- Supit, S.; Olivia, M.; Reza, A.; Tindoilo, O. Strength and Corrosion Resistance of Metakaolin-Based Geopolymer Hybrid Mortar. In Proceedings of the 4th European and Mediterranean Structural Engineering and Construction Conference (EURO-MED-SEC-4), Virtual Online, 20–25 June 2022; Volume 9, p. MAT-36-1. [Google Scholar]
- Zheng, Y.; Wang, A.; Liu, K.; Zhu, Y.; Wang, X. Sulfate Resistance and Mechanism Analysis of Different Geopolymer Mortars. Jianzhu Cailiao Xuebao/J. Build. Mater. 2021, 24, 1224–1233. [Google Scholar] [CrossRef]
- Fouad, H.E.E.; Soufi, W.H.; Elmannaey, A.S.; Abd-El-aziz, M.; El-Ghazaly, H. Durability and Steel Corrosion Resistance of Slag with Metakaolin Based Geopolymer Concrete. J. Eng. Appl. Sci. 2020, 67, 1381–1398. [Google Scholar]
- Liang, X.; Ji, Y. Experimental Study on Durability of Red Mud-Blast Furnace Slag Geopolymer Mortar. Constr. Build. Mater. 2021, 267, 120942. [Google Scholar] [CrossRef]
- Guo, X.; Xiong, G. Resistance of Fiber-Reinforced Fly Ash-Steel Slag Based Geopolymer Mortar to Sulfate Attack and Drying-Wetting Cycles. Constr. Build. Mater. 2021, 269, 121326. [Google Scholar] [CrossRef]
- Olivia, M.; Wulandari, C.; Sitompul, I.R.; Darmayanti, L.; Djauhari, Z. Study of Fly Ash (FA) and Palm Oil Fuel Ash (POFA) Geopolymer Mortar Resistance in Acidic Peat Environment. Mater. Sci. Forum 2016, 841, 126–132. [Google Scholar] [CrossRef]
- Rajendran, M. Corrosion Assessment of Ferrocement Element with Nanogeopolymer for Marine Application. Struct. Concr. 2021, 22, 2882–2894. [Google Scholar] [CrossRef]
- Babaee, M.; Castel, A. Chloride Diffusivity, Chloride Threshold, and Corrosion Initiation in Reinforced Alkali-Activated Mortars: Role of Calcium, Alkali, and Silicate Content. Cem. Concr. Res. 2018, 111, 56–71. [Google Scholar] [CrossRef]
- Hlaváček, P.; Gluth, G.J.G.; Reinemann, S.; Ebell, G.; Kühne, H.-C.; Mietz, J. Corrosion of Steel Reinforcement in Geopolymer Mortars—Carbonation Resistance, Chloride Migration, and Preliminary Corrosion Potential Data. In Proceedings of the 20th International Corrosion Congress and Process Safety (EUROCORR 2017), Prague, Czech Republic, 3–7 September 2017. [Google Scholar]
- Ryvolova, M.; Svobodova, L.; Bakalova, T.; Volesky, L. Influence of Basic Environment of Geopolymer Composites on Degradation Rates of E and AR Type Glass Fibers. Manuf. Technol. 2021, 21, 246–253. [Google Scholar] [CrossRef]
- Hasan, M.J.; Hossain, K.M.A. Assessing Suitability of Geopolymer Composites Under Chloride Exposure. Lect. Notes Civ. Eng. 2023, 240, 375–387. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, L.; Ma, G.; Zhao, X.; Zhao, X. Preparation and Properties of Bio-Geopolymer Composites with Waste Cotton Stalk Materials. J. Clean. Prod. 2020, 245, 118842. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, H.; Phalé Zeze, A.L.; Liu, X.; Tao, M. Coating Performance, Durability and Anti-Corrosion Mechanism of Organic Modified Geopolymer Composite for Marine Concrete Protection. Cem. Concr. Compos. 2022, 129, 104495. [Google Scholar] [CrossRef]
- Allison, P.G.; Weiss, C.A.; Moser, R.D.; Diaz, A.J.; Rivera, O.G.; Holton, S.S. Nanoindentation and SEM/EDX Characterization of the Geopolymer-to-Steel Interfacial Transition Zone for a Reactive Porcelain Enamel Coating. Compos. Part B Eng. 2015, 78, 131–137. [Google Scholar] [CrossRef]
- Kretzer, M.B.; Effting, C.; Schwaab, S.; Schackow, A. Hybrid Geopolymer-Cement Coating Mortar Optimized Based on Metakaolin, Fly Ash, and Granulated Blast Furnace Slag. Clean. Eng. Technol. 2021, 4, 100153. [Google Scholar] [CrossRef]
- Rathinam, K.; Kanagarajan, V.; Banu, S. Evaluation of Protective Coatings for Geopolymer Mortar under Aggressive Environment. Adv. Mater. Res. 2020, 9, 219–231. [Google Scholar] [CrossRef]
- Wang, Y.; Kou, X.; Zhao, J.; Deng, J. A Strategy to Improve the Compatibility of Carboxyl Methyl Cellulose with Silica Fume-Based Geopolymer Inorganic Siliceous Coatings for Flame-Retarding Plywood. J. Appl. Polym. Sci. 2022, 139, e53090. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M.; Zhao, J.; Xin, A. Nano-ZnO Modified Geopolymer Composite Coatings for Flame-Retarding Plywood. Constr. Build. Mater. 2022, 338, 127649. [Google Scholar] [CrossRef]
- Lashkari, S.; Yazdipanah, F.; Shahri, M.; Sarker, P. Mechanical and Durability Assessment of Cement-Based and Alkali-Activated Coating Mortars in an Aggressive Marine Environment. SN Appl. Sci. 2021, 3, 618. [Google Scholar] [CrossRef]
- Dassekpo, J.-B.M.; Feng, W.; Li, Y.; Miao, L.; Dong, Z.; Ye, J. Synthesis and Characterization of Alkali-Activated Loess and Its Application as Protective Coating. Constr. Build. Mater. 2021, 282, 122631. [Google Scholar] [CrossRef]
- Gupta, R.; Tomar, A.S.; Mishra, D.; Sanghi, S.K. Multifaceted Geopolymer Coating: Material Development, Characterization and Study of Long Term Anti-Corrosive Properties. Microporous Mesoporous Mater. 2021, 317, 110995. [Google Scholar] [CrossRef]
- Basri, M.S.M.; Yek, T.H.; Talib, R.A.; Tawakkal, I.S.M.A.; Kamarudin, S.H.; Mazlan, N.; Maidin, N.A.; Rahman, M.H.A. Rice Husk Ash/Silicone Rubber-Based Binary Blended Geopolymer Coating Composite: Fire Retardant, Moisture Absorption, Optimize Composition, and Microstructural Analysis. Polymers 2021, 13, 985. [Google Scholar] [CrossRef]
- Abdul Rashid, M.K.; Ramli Sulong, N.H.; Alengaram, U.J. Fire Resistance Performance of Composite Coating with Geopolymer-Based Bio-Fillers for Lightweight Panel Application. J. Appl. Polym. Sci. 2020, 137, 49558. [Google Scholar] [CrossRef]
- Zailan, S.N.; Mahmed, N.; Abdullah, M.M.A.B.; Rahim, S.Z.A.; Halin, D.S.C.; Sandu, A.V.; Vizureanu, P.; Yahya, Z. Potential Applications of Geopolymer Cement-Based Composite as Self-Cleaning Coating: A Review. Coatings 2022, 12, 133. [Google Scholar] [CrossRef]
- Zhu, A.; Wu, H.; Liu, J. Feasibility Study on Novel Fire-Resistant Coating Materials. J. Mater. Civ. Eng. 2022, 34, 04022080. [Google Scholar] [CrossRef]
- Basri, M.S.M.; Mustapha, F.; Mazlan, N.; Ishak, M.R. Optimization of Adhesion Strength and Microstructure Properties by Using Response Surface Methodology in Enhancing the Rice Husk Ash-Based Geopolymer Composite Coating. Polymers 2020, 12, 2709. [Google Scholar] [CrossRef] [PubMed]
- Basri, M.S.M.; Mustapha, F.; Mazlan, N.; Ishak, M.R. Optimization of Rice Husk Ash-Based Geopolymers Coating Composite for Enhancement in Flexural Properties and Microstructure Using Response Surface Methodology. Coatings 2020, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Marey Mahmoud, H.H. Developing Geopolymer Composites as Repair Mortars for Damaged Ancient Egyptian Wall Paintings in Rock Tombs. Egypt. J. Chem. 2022, 65, 249–258. [Google Scholar] [CrossRef]
- Alanazi, H.; Yang, M.; Zhang, D.; Gao, Z. (Jerry) Bond Strength of PCC Pavement Repairs Using Metakaolin-Based Geopolymer Mortar. Cem. Concr. Compos. 2016, 65, 75–82. [Google Scholar] [CrossRef]
- Musaddiq Laskar, S.; Talukdar, S. Development of Ultrafine Slag-Based Geopolymer Mortar for Use as Repairing Mortar. J. Mater. Civ. Eng. 2017, 29, 04016292. [Google Scholar] [CrossRef]
- Huseien, G.F.; Mirza, J.; Ismail, M.; Ghoshal, S.K.; Ariffin, M.A.M. Effect of Metakaolin Replaced Granulated Blast Furnace Slag on Fresh and Early Strength Properties of Geopolymer Mortar. Ain Shams Eng. J. 2018, 9, 1557–1566. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Singh, P.K.; Chaturvedi, R. Enlargement of Geo Polymer Compound Material for the Renovation of Conventional Concrete Structures. Mater. Today Proc. 2021, 45, 3534–3538. [Google Scholar] [CrossRef]
- Manikandan, P.; Selija, K.; Vasugi, V.; Prem Kumar, V.; Natrayan, L.; Helen Santhi, M.; Senthil Kumaran, G. An Artificial Neural Network Based Prediction of Mechanical and Durability Characteristics of Sustainable Geopolymer Composite. Adv. Civ. Eng. 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Ravi, A. Development of Sustainable Green Repair Material Using Fibre Reinforced Geopolymer Composites. J. Green Eng. 2020, 10, 494–510. [Google Scholar]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Elahi, M.A.; Subhani, M.; Hutchison, W. A Comparative Study on the Performance of Cementitious Composites Resilient to Airfield Conditions. Constr. Build. Mater. 2021, 282, 122709. [Google Scholar] [CrossRef]
- França, F.C.C.; Dias, D.P.; Garcia, S.L.G.; Rocha, T.D.S. Concrete beams repaired with geopolymer mortar. Rev. Mater. 2018, 23. [Google Scholar] [CrossRef]
- Maras, M.M. Characterization of Performable Geopolymer Mortars for Use as Repair Material. Struct. Concr. 2021, 22, 3173–3188. [Google Scholar] [CrossRef]
- Dassekpo, J.-B.M.; Feng, W.; Miao, L.; Dong, Z.; Dong, Z. Effect of Alkali Activators on Loess Geopolymer: Potential Waterproof Repair Material. J. Mater. Civ. Eng. 2021, 33, 04021247. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal Behavior and Mechanical Properties of Geopolymer Mortar after Exposure to Elevated Temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Ueng, T.-H.; Lyu, S.-J.; Chu, H.-W.; Lee, H.-H.; Wang, T.-T. Adhesion at Interface of Geopolymer and Cement Mortar under Compression: An Experimental Study. Constr. Build. Mater. 2012, 35, 204–210. [Google Scholar] [CrossRef]
- Tan, J.; Dan, H.; Ma, Z. Metakaolin Based Geopolymer Mortar as Concrete Repairs: Bond Strength and Degradation When Subjected to Aggressive Environments. Ceram. Int. 2022, 48, 23559–23570. [Google Scholar] [CrossRef]
- Le Chi, H.; Louda, P.; Periyasamy, A.P.; Bakalova, T.; Kovacic, V. Flexural Behavior of Carbon Textile-Reinforced Geopolymer Composite Thin Plate. Fibers 2018, 6, 87. [Google Scholar] [CrossRef] [Green Version]
- Kuang, F.; Long, Z.; Kuang, D.; Guo, R.; Sun, J. Experimental Study on Preparation and Properties of Low Content Rubberized Geopolymer Mortar. Constr. Build. Mater. 2022, 352, 128980. [Google Scholar] [CrossRef]
- Zanotti, C.; Borges, P.H.R.; Bhutta, A.; Banthia, N. Bond Strength between Concrete Substrate and Metakaolin Geopolymer Repair Mortar: Effect of Curing Regime and PVA Fiber Reinforcement. Cem. Concr. Compos. 2017, 80, 307–316. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Patel, A. Flexural Behavior of Hybrid PVA Fiber and AR-Glass Textile Reinforced Geopolymer Composites. Fibers 2018, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Zhang, P.; Wang, J.; Wang, K.; Zhang, T. Interfacial Properties of Geopolymer Mortar and Concrete Substrate: Effect of Polyvinyl Alcohol Fiber and Nano-SiO2 Contents. Constr. Build. Mater. 2022, 315, 125735. [Google Scholar] [CrossRef]
- Haruna, S.; Mohammed, B.S.; Shahir-Liew, M.; Alaloul, W.S.; Haruna, A. Effect of Water-Binder Ratio and Naoh Molarity on the Properties of High Calcium Fly Ash Geopolymer Mortars at Outdoor Curing. Int. J. Civ. Eng. Technol. 2018, 9, 1339–1352. [Google Scholar]
- Kumar, S.; Sekhar Das, C.; Lao, J.; Alrefaei, Y.; Dai, J.-G. Effect of Sand Content on Bond Performance of Engineered Geopolymer Composites (EGC) Repair Material. Constr. Build. Mater. 2022, 328, 127080. [Google Scholar] [CrossRef]
- Venugopal, K.; Radhakrishna; Sasalatti, V.M. Ambient Cured Alkali Activated Flyash Masonry Units. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012073. [Google Scholar] [CrossRef]
- Venugopal, K.; Radhakrishna; Sasalatti, V. Development of Alkali Activated Geopolymer Masonry Blocks. IOP Conf. Ser. Mater. Sci. Eng. 2016, 149, 012072. [Google Scholar] [CrossRef]
- Singh, S.; Aswath, M.U.; Ranganath, R.V. Performance Assessment of Bricks and Prisms: Red Mud Based Geopolymer Composite. J. Build. Eng. 2020, 32, 101462. [Google Scholar] [CrossRef]
- Haddad, R.H.; Lababneh, Z.K. Geopolymer Composites Using Natural Pozzolan and Oil-Shale Ash Base Materials: A Parametric Study. Constr. Build. Mater. 2020, 240, 117899. [Google Scholar] [CrossRef]
- Yan, S.; Sagoe-Crentsil, K. Properties of Wastepaper Sludge in Geopolymer Mortars for Masonry Applications. J. Environ. Manag. 2012, 112, 27–32. [Google Scholar] [CrossRef]
- Ban, C.C.; Ken, P.W.; Ramli, M. Effect of Sodium Silicate and Curing Regime on Properties of Load Bearing Geopolymer Mortar Block. J. Mater. Civ. Eng. 2017, 29, 04016237. [Google Scholar] [CrossRef]
- Lu, N.; Ran, X.; Pan, Z.; Korayem, A.H. Use of Municipal Solid Waste Incineration Fly Ash in Geopolymer Masonry Mortar Manufacturing. Materials 2022, 15, 8689. [Google Scholar] [CrossRef] [PubMed]
- Jitha, P.T.; Kumar, B.S.; Raghunath, S. Strength Development and Masonry Properties of Geopolymer Stabilised Soil-LPC (Lime-Pozzolana Cement) Mixes. Constr. Build. Mater. 2020, 250, 118877. [Google Scholar] [CrossRef]
- Vaibhav, K.S.; Nagaladinni, M.; Madhushree, M.; Priya, B.P. Effect of Silica Fume on Fly Ash Based Geopolymer Mortar with Recycled Aggregates. Lect. Notes Civ. Eng. 2019, 25, 595–602. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Phoo-ngernkham, T.; Damrongwiriyanupap, N. Comparative Study Using Portland Cement and Calcium Carbide Residue as a Promoter in Bottom Ash Geopolymer Mortar. Constr. Build. Mater. 2017, 133, 128–134. [Google Scholar] [CrossRef]
- Das, S.K.; Shrivastava, S. A Comparative Study on the Mechanical and Acid Resistance Characteristics of Ambient Temperature-Cured Glass Waste and Fly Ash-Based Geopolymeric Masonry Mortars. Environ. Dev. Sustain. 2022. [Google Scholar] [CrossRef]
- Venugopal, K.; Radhakrishna. Structural Behavior of Geopolymer Masonry. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Das, S.K.; Shrivastava, S. A Study on the Viability of Fly Ash and Construction and Demolition Waste as Geopolymerized Masonry Mortar and Their Comparative Analysis. Mater. Today Proc. 2020, 32, 574–583. [Google Scholar] [CrossRef]
- Castañeda, D.; Silva, G.; Salirrosas, J.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Production of a Lightweight Masonry Block Using Alkaline Activated Natural Pozzolana and Natural Fibers. Constr. Build. Mater. 2020, 253, 119143. [Google Scholar] [CrossRef]
- Salirrosas, J.; Silva, G.; Kim, S.; Nakamatsu, J.; Bertolotti, B.; Aguilar, R. Mechanical Characterization of a Masonry System Made of Alkaline Activated Pozzolana Blocks. Mater. Sci. Forum 2020, 1007, 111–117. [Google Scholar] [CrossRef]
- Gupta, V.; Pathak, D.K.; Kumar, R.; Miglani, A.; Siddique, S.; Chaudhary, S. Production of Colored Bi-Layered Bricks from Stone Processing Wastes: Structural and Spectroscopic Characterization. Constr. Build. Mater. 2021, 278, 122339. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Qin, X.; Li, L.; Chen, H.; Cheng, B. Behavior of Cement Concrete Confined by Fabric-Reinforced Geopolymer Mortar under Monotonic and Cyclic Compression. Structures 2021, 34, 4731–4744. [Google Scholar] [CrossRef]
- Carabba, L.; Santandrea, M.; Carloni, C.; Manzi, S.; Bignozzi, M.C. Steel Fiber Reinforced Geopolymer Matrix (S-FRGM) Composites Applied to Reinforced Concrete Structures for Strengthening Applications: A Preliminary Study. Compos. Part B Eng. 2017, 128, 83–90. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Liu, H.Y.; Kodur, V.; Li, M.Y.; Zhou, Y. Flexural Behavior of Concrete Slabs Strengthened with Textile Reinforced Geopolymer Mortar. Compos. Struct. 2022, 284, 115220. [Google Scholar] [CrossRef]
- Guades, E.J.; Stang, H. Analytical and Parametric Studies on Flexural Performance of Reinforced Concrete Beams Strengthened by Fiber-Reinforced Geopolymer Composites. ACI Struct. J. 2022, 119, 99–116. [Google Scholar] [CrossRef]
- Salman, S.M.; Salman, W.D. Confinement of RC Columns by Carbon Fiber Reinforced Geopolymer Adhesive Jackets. In Proceedings of the 2021 International Conference on Advance of Sustainable Engineering and its Application (ICASEA), Wasit, Iraq, 27–28 October 2021; pp. 107–112. [Google Scholar]
- Maras, M.M.; Kose, M.M. Structural Behavior of Masonry Panels Strengthened Using Geopolymer Composites in Compression Tests. Iran. J. Sci. Technol. Trans. Civ. Eng. 2021, 45, 767–777. [Google Scholar] [CrossRef]
- Allah, N.K.; El-Maaddawy, T.; El-Hassan, H. Shear Strengthening of Concrete Deep Beams with Geopolymer-Based Fabric-Reinforced Matrix Composites. In Proceedings of the 7th International Conference on Civil Structural and Transportation Engineering (ICCSTE’22), Niagara Falls, ON, Canada, 5–7 June 2022. [Google Scholar]
- Kuntal, V.S.; Chellapandian, M.; Prakash, S.S.; Sharma, A. Experimental Study on the Effectiveness of Inorganic Bonding Materials for Near-Surface Mounting Shear Strengthening of Prestressed Concrete Beams. Fibers 2020, 8, 40. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, H.-Y.; Wu, B. Shear behavior of RC beams strengthened with textile reinforced geopolymer mortar. Gongcheng Lixue/Eng. Mech. 2019, 36, 207–215. [Google Scholar] [CrossRef]
- Ghiassi, B.; Oliveira, D.V.; Marques, V.; Soares, E.; Maljaee, H. Multi-Level Characterization of Steel Reinforced Mortars for Strengthening of Masonry Structures. Mater. Des. 2016, 110, 903–913. [Google Scholar] [CrossRef]
- Khalid, H.R.; Ha, S.K.; Park, S.M.; Wang, Z.; Lee, H.K. Bond Characteristics of SFRP Composites Containing FRP Core/Anchors Coated on Geopolymer Mortar. Compos. Struct. 2018, 189, 435–442. [Google Scholar] [CrossRef]
- Jahangir, H.; Esfahani, M.R. Experimental Analysis on Tensile Strengthening Properties of Steel and Glass Fiber Reinforced Inorganic Matrix Composites. Sci. Iran. 2021, 28, 1152–1166. [Google Scholar]
- Dai, J.-G.; Munir, S.; Ding, Z. Comparative Study of Different Cement-Based Inorganic Pastes towards the Development of FRIP Strengthening Technology. J. Compos. Constr. 2014, 18, A4013011. [Google Scholar] [CrossRef]
- Irmawaty, R.; Fakhruddin; Ekaputri, J.J. Experimental and Analytical Study for Shear Strengthening of Reinforced-Concrete Beams Using a Prefabricated Geopolymer–Mortar Panel. Case Stud. Constr. Mater. 2022, 17, e01568. [Google Scholar] [CrossRef]
- Choudhury, A.H.; Laskar, A.I. Performance of Geopolymer Mortar and Steel Fiber Reinforced Geopolymer Mortar on Rehabilitation of Seismically Detailed Beam-Column Joint. J. Earthq. Eng. 2023, 27, 1607–1628. [Google Scholar] [CrossRef]
- Choudhury, A.H.; Laskar, A.I. Rehabilitation of Substandard Beam-Column Joint Using Geopolymer. Eng. Struct. 2021, 238, 112241. [Google Scholar] [CrossRef]
- Selvakumar, A.; Matthews, J.C. Demonstration and Evaluation of Innovative Rehabilitation Technologies for Water Infrastructure Systems. J. Pipeline Syst. Eng. Pract. 2017, 8, 06017001. [Google Scholar] [CrossRef]
- Montes, C.; Allouche, E.N. Evaluation of the Potential of Geopolymer Mortar in the Rehabilitation of Buried Infrastructure. Struct. Infrastruct. Eng. 2012, 8, 89–98. [Google Scholar] [CrossRef]
- Zailani, W.W.A.; Abdullah, M.M.A.B.; Zainol, M.R.R.M.A.; Razak, R.A.; Tahir, M.F.M. Compressive and Bonding Strength of Fly Ash Based Geopolymer Mortar. AIP Conf. Proc. 2017, 1887, 020058. [Google Scholar]
- Shang, J.; Dai, J.-G.; Zhao, T.-J.; Guo, S.-Y.; Zhang, P.; Mu, B. Alternation of Traditional Cement Mortars Using Fly Ash-Based Geopolymer Mortars Modified by Slag. J. Clean. Prod. 2018, 203, 746–756. [Google Scholar] [CrossRef]
- Ricciotti, L.; Occhicone, A.; Ferone, C.; Cioffi, R.; Tarallo, O.; Roviello, G. Development of Geopolymer-Based Materials with Ceramic Waste for Artistic and Restoration Applications. Materials 2022, 15, 8600. [Google Scholar] [CrossRef]
- Allouche, E.N.; Montes, C.; Diaz, E.I. A New Generation of Cementitious Materials for Mortar Lining of Buried Pipes. In Pipelines 2007: Advances and Experiences with Trenchless Pipeline Projects; American Society of Civil Engineers: Reston, VA, USA, 2007; pp. 1–9. [Google Scholar]
- Matthews, J.; Selvakumar, A.; Vaidya, S.; Condit, W. Large-Diameter Sewer Rehabilitation Using a Spray-Applied Fiber-Reinforced Geopolymer Mortar. Pract. Period. Struct. Des. Constr. 2015, 20, 04014050. [Google Scholar] [CrossRef]
- Royer, J.R. Geopolymer Lining of Corroded Reinforced Concrete Sanitary Sewer Pipes. Mater. Perform. 2019, 58, 28–32. [Google Scholar]
- Royer, J.; Iseley, T. Laboratory Testing and Analysis of Geopolymer Pipe-Lining Technology for Rehabilitation of Sewer & Storm Water Conduits, Part II—CMP Culvert Analysis. In Proceedings of the North American Society for Trenchless Technology (NASTT), NASTT’s 2017 No-Dig Show, Washington, DC, USA, 9–12 April 2017. [Google Scholar]
- Bian, S.; Naiva, S.; Bako, T. DC Water New Jersey B Street 12-to-18-Foot Diameter Trunk Sewer Geopolymer Rehabilitation during Live Dry Weather Flow. In Pipelines 2019; American Society of Civil Engineers: Reston, VA, USA, 2019; pp. 127–139. [Google Scholar]
- Liu, J.; Lv, C. Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review. Polymers 2022, 14, 1315. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, J.; Xiong, G. Effect of Magnesium Aluminum Silicate and Rest Time on Rheological Property of 3D Printing Geopolymer Mortar. Jianzhu Cailiao Xuebao/J. Build. Mater. 2022, 25, 89–96. [Google Scholar] [CrossRef]
- Ranjbar, N.; Kuenzel, C.; Gundlach, C.; Kempen, P.; Mehrali, M. Halloysite Reinforced 3D-Printable Geopolymers. Cem. Concr. Compos. 2023, 136, 104894. [Google Scholar] [CrossRef]
- Ma, S.; Yang, H.; Zhao, S.; He, P.; Zhang, Z.; Duan, X.; Yang, Z.; Jia, D.; Zhou, Y. 3D-Printing of Architectured Short Carbon Fiber-Geopolymer Composite. Compos. Part B Eng. 2021, 226, 109348. [Google Scholar] [CrossRef]
- Chougan, M.; Hamidreza Ghaffar, S.; Jahanzat, M.; Albar, A.; Mujaddedi, N.; Swash, R. The Influence of Nano-Additives in Strengthening Mechanical Performance of 3D Printed Multi-Binder Geopolymer Composites. Constr. Build. Mater. 2020, 250, 118928. [Google Scholar] [CrossRef]
- Ilcan, H.; Sahin, O.; Kul, A.; Yildirim, G.; Sahmaran, M. Rheological Properties and Compressive Strength of Construction and Demolition Waste-Based Geopolymer Mortars for 3D-Printing. Constr. Build. Mater. 2022, 328, 127114. [Google Scholar] [CrossRef]
- Yoris-Nobile, A.I.; Lizasoain-Arteaga, E.; Slebi-Acevedo, C.J.; Blanco-Fernandez, E.; Alonso-Cañon, S.; Indacoechea-Vega, I.; Castro-Fresno, D. Life Cycle Assessment (LCA) and Multi-Criteria Decision-Making (MCDM) Analysis to Determine the Performance of 3D Printed Cement Mortars and Geopolymers. J. Sustain. Cem.-Based Mater. 2022, 12, 609–626. [Google Scholar] [CrossRef]
- Alghamdi, H.; Neithalath, N. Synthesis and Characterization of 3D-Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials. Cem. Concr. Compos. 2019, 104, 103377. [Google Scholar] [CrossRef]
- Boukhelf, F.; Sebaibi, N.; Boutouil, M.; Yoris-Nobile, A.I.; Blanco-Fernandez, E.; Castro-Fresno, D.; Real-Gutierrez, C.; Herbert, R.J.H.; Greenhill, S.; Reis, B.; et al. On the Properties Evolution of Eco-Material Dedicated to Manufacturing Artificial Reef via 3D Printing: Long-Term Interactions of Cementitious Materials in the Marine Environment. Sustainability 2022, 14, 9353. [Google Scholar] [CrossRef]
- Krivenko, P.V.; Vozniuk, G.V.; Goncharova, A.M.; Kavalerova, E.S. Shrinkage-Compensating Alkali Activated Slag Cement Mortars for Crack Repair and Joint Grouting in Concretes. Adv. Mater. Res. 2014, 923, 134–137. [Google Scholar] [CrossRef]
- Lin, C.; Dai, W.; Li, Z.; Sha, F. Performance and Microstructure of Alkali-Activated Red Mud-Based Grouting Materials under Class F Fly Ash Amendment. Indian Geotech. J. 2020, 50, 1048–1056. [Google Scholar] [CrossRef]
- Thermou, G.E.; De Santis, S.; de Felice, G.; Alotaibi, S.; Roscini, F.; Hajirasouliha, I.; Guadagnini, M. Bond Behaviour of Multi-Ply Steel Reinforced Grout Composites. Constr. Build. Mater. 2021, 305, 124750. [Google Scholar] [CrossRef]
- Song, W.; Zhu, Z.; Pu, S.; Wan, Y.; Huo, W.; Peng, Y. Preparation and Engineering Properties of Alkali-Activated Filling Grouts for Shield Tunnel. Constr. Build. Mater. 2022, 314, 125620. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Zhou, Z.; Gao, Y.; Zhang, J. Compatibility of Different Fibres with Red Mud-Based Geopolymer Grouts. Constr. Build. Mater. 2022, 315, 125742. [Google Scholar] [CrossRef]
- Fang, S.; Yan Zhang, H.; Quan, J. Anchorage Performance of Geopolymer-Grouted Rock Bolts. J. Mater. Civ. Eng. 2022, 34, 04022029. [Google Scholar] [CrossRef]
- Samarina, T.; Takaluoma, E.; Kazmaganbetova, A. Geopolymers Supported on Inert Substrate for Phosphate Removal from Natural Waters. In Proceedings of the 6th World Congress on New Technologies (NewTech’20), Prague, Czech Republic, 19–22 August 2020. [Google Scholar]
- Chindaprasirt, P.; Rattanasak, U.; Vongvoradit, P.; Jenjirapanya, S. Thermal Treatment and Utilization of Al-Rich Waste in High Calcium Fly Ash Geopolymeric Materials. Int. J. Min. Met. Mater. 2012, 19, 872–878. [Google Scholar] [CrossRef]
- Ding, R.; Chen, L.; Jiang, Y. The Performance Study of Eco-Friendly Alkali-Activated Oil Shale Cementing Materials for Wastewater Treatment Structure. Desalination Water Treat. 2018, 125, 250–257. [Google Scholar] [CrossRef]
- Alouani, M.E.; Alehyen, S.; Achouri, M.E.; Taibi, M. Comparative Studies on Removal of Textile Dye onto Geopolymeric Adsorbents. Environ. Asia 2019, 12, 143153. [Google Scholar] [CrossRef]
- Kozhukhova, N.; Zhernovsky, I.; Strokova, V.V. Evaluation of Geopolymer Binders Biopositivity Based on Low-Calcium Fly Ash. Int. J. Appl. Eng. Res. 2015, 10, 35618–35620. [Google Scholar]
- Kozhukhova, N.I.; Lebedev, M.S.; Vasilenko, M.I.; Goncharova, E.N. Toxic Effect of Fly Ash on Biological Environment. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022065. [Google Scholar] [CrossRef]
General Information | |
---|---|
Timespan | 1996–2023 |
Sources (Journals, Books, etc.) | 273 |
Documents | 789 |
Average years from publication | 3.97 |
Average citations per document | 18.34 |
Average citations per year per doc | 3.47 |
References | 31765 |
Authors | |
Authors | 2072 |
Author appearances | 3050 |
Authors of multi-authored documents | 2042 |
Authors collaboration | |
Single-authored documents | 31 |
Documents per author | 0.348 |
Authors per document | 2.87 |
Co-authors per documents | 4.22 |
Collaboration index | 2.96 |
Sources | TP | LC | h-Index | IF |
---|---|---|---|---|
Constr. Build. Mater. | 114 | 2676 | 33 | 7.69 |
MDPI Mater. | 45 | 431 | 10 | 3.75 |
Cem. Concr. Compos. | 30 | 583 | 13 | 9.93 |
Ceram. Int. | 29 | 287 | 9 | 5.53 |
J. Clean. Prod. | 26 | 653 | 11 | 11.07 |
Key Eng. Mater. | 16 | 66 | 5 | 0.49 |
IOP Conf. Ser. Mater. Sci. Eng. | 15 | 95 | 5 | 0.48 |
Compos. B. Eng. | 13 | 1161 | 13 | 11.32 |
J. Mater. Civ. Eng. | 13 | 239 | 7 | 3.53 |
J. Build. Eng. | 13 | 163 | 8 | 7.09 |
Authors | TP | LC | h-Index | TP/Year | AAC |
---|---|---|---|---|---|
Prinya Chindaprasirt | 18 | 623 | 12 | 1.63 | 34.61 |
Maria Chiara Bignozzi | 11 | 433 | 8 | 1.10 | 39.36 |
Mohd Mustafa Al Bakri Abdullah | 10 | 76 | 5 | 1.42 | 7.60 |
Gregor Gluth | 10 | 46 | 4 | 1.67 | 4.60 |
Fernando Pacheco-Torgal | 10 | 174 | 7 | 0.83 | 17.40 |
Yanshuai Wang | 10 | 132 | 7 | 2.00 | 13.20 |
Maria Criado | 9 | 217 | 6 | 0.75 | 24.11 |
Alessandra Mobili | 9 | 290 | 7 | 1.13 | 32.22 |
Francesca Tittareli | 9 | 290 | 7 | 1.13 | 32.22 |
Lianyang Zhang | 9 | 81 | 4 | 1.50 | 9.00 |
Rank | Paper Title | TC | Year | TC/Year | LC |
---|---|---|---|---|---|
1 | Geopolymerisation: A review and prospects for the minerals industry [11] | 648 | 2007 | 40.5 | 14 |
2 | Effect of elevated temperatures on geopolymer paste, mortar, and concrete [17] | 593 | 2010 | 45.6 | 22 |
3 | A review of recent research on the use of cellulosic fibers, their fiber fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering [12] | 350 | 2016 | 50.0 | 8 |
4 | Fire-resistant aluminosilicate composites [18] | 301 | 1997 | 11.6 | 14 |
5 | Additive manufacturing of geopolymer for sustainable built environment [57] | 251 | 2017 | 41.8 | 11 |
6 | Measurement of tensile bond strength of 3D printed geopolymer mortar [56] | 245 | 2018 | 49.0 | 7 |
7 | Geopolymer mortars as sustainable repair material: A comprehensive review [13] | 208 | 2017 | 34.7 | 25 |
8 | Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties [22] | 168 | 2010 | 12.9 | 16 |
9 | High calcium fly ash geopolymer mortar containing Portland cement for use as repair material [58] | 155 | 2015 | 19.4 | 32 |
10 | Potential application of geopolymers as protection coatings for marine concrete: II. Microstructure and anticorrosion mechanism [23] | 134 | 2010 | 10.3 | 13 |
Research Topic | Current Knowledge | Future Prospects |
---|---|---|
Fire protection |
|
|
Corrosion resistance |
| |
Coating |
| |
Repair | ||
Masonry |
| |
Strengthening |
| |
Rehabilitation and sewage pipes lining |
| |
3D printing |
| |
Grouting |
| |
Wastewater treatment |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwalla, J.; Bawab, J.; El-Hassan, H.; Abu Obaida, F.; El-Maaddawy, T. Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications. Sustainability 2023, 15, 11340. https://doi.org/10.3390/su151411340
Hwalla J, Bawab J, El-Hassan H, Abu Obaida F, El-Maaddawy T. Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications. Sustainability. 2023; 15(14):11340. https://doi.org/10.3390/su151411340
Chicago/Turabian StyleHwalla, Joud, Jad Bawab, Hilal El-Hassan, Feras Abu Obaida, and Tamer El-Maaddawy. 2023. "Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications" Sustainability 15, no. 14: 11340. https://doi.org/10.3390/su151411340
APA StyleHwalla, J., Bawab, J., El-Hassan, H., Abu Obaida, F., & El-Maaddawy, T. (2023). Scientometric Analysis of Global Research on the Utilization of Geopolymer Composites in Construction Applications. Sustainability, 15(14), 11340. https://doi.org/10.3390/su151411340