Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Datasets
2.2. Data Preprocessing
2.2.1. Data Quality Control
2.2.2. Data Matching
- (1)
- The geographic location information of the meteorological and air quality stations is used to match the average PM2.5 concentration of corresponding stations and obtain a simultaneous dataset;
- (2)
- Based on the simultaneous dataset, future 1–6 h time scale data are matched;
- (3)
- The daily average dataset is then calculated and obtained from the simultaneous dataset;
- (4)
- Finally, based on the daily average dataset, future 1–6-day time scale data are matched.
2.2.3. Normalization and Division of the Datasets
2.3. Research Methods
2.3.1. Prediction Model
- (1)
- Random Forest model
- (2)
- XGBoost model
- (3)
- LightGBM model
- (4)
- Stacking model
- (5)
- Adaboost model
- (6)
- DT model
- (1)
- Obtain the original training set and the original test set;
- (2)
- Each model was trained using 5-fold cross-validation [70,71]. First, divide the training set into 5 parts, select 4 of them as training data and leave 1 as test data. Every time the training data are used to train, the test data are predicted to obtain a prediction result, a, and the test set data are predicted by the trained model to obtain the test set prediction result, b. After five training processes, the five-times prediction result, a, was combined into one column as A, and the prediction result, b, of the five training processes are averaged as B. Finally, new datasets, A and B, were obtained, where the number of one-dimensional A is the same as the number of training sets;
- (3)
- The step shown in step (2) was used to train the RF model, the XGBoost model, and the LightGBM model, respectively; after that, 3 A and 3 B were generated. Then, by combining 3 A and the actual value of the original training set, the 3 B data, and the original test set, the actual value expansion obtained a new training set and a new test set, which were input into the “meta-learner”;
- (4)
- A multiple linear regression algorithm was used to train the new training set. The trained model was saved and the stacking model was then performed by inputting the new test set.
2.3.2. Model Evaluation
3. Results
3.1. PM2.5 Concentration Prediction Based on Meteorological Datasets
3.1.1. Current PM2.5 Concentration Estimation
3.1.2. Hourly PM2.5 Concentration Prediction
3.1.3. Daily Average PM2.5 Concentration Prediction
3.1.4. Model Stability Comparison Analysis
3.2. PM2.5 Concentration Prediction Based on Historical PM2.5 Concentration with Meteorological Datasets
3.2.1. Hourly PM2.5 Concentration Prediction
3.2.2. Daily Average PM2.5 Concentration Prediction
3.2.3. Model Stability Comparison Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, W.; Ma, Z.; Ha, X. Spatial-Temporal Patterns of PM2.5 Concentrations for 338 Chinese Cities. Sci. Total Environ. 2018, 631–632, 524–533. [Google Scholar] [CrossRef]
- Cao, X.C.X.; Kostka, G.K.G.; Xu, X. Environmental Political Business Cycles: The Case of PM2.5 Air Pollution in Chinese Prefectures. Environ. Sci. Policy 2019, 93, 92–100. [Google Scholar] [CrossRef]
- Fontes, T.; Li, P.; Barros, N.; Zhao, P. Trends of PM2.5 Concentrations in China: A Long Term Approach. J. Environ. Manag. 2017, 196, 719–732. [Google Scholar] [CrossRef]
- Zanobetti, A.; Franklin, M.; Koutrakis, P. Fine Particulate Air Pollution and Its Components in Association with Cause-Specific Emergency Admissions. Environ. Health-Glob. 2009, 19, S315–S316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.; Xu, Y.; Shi, M.; Lian, Y. The Impact of PM2.5 on the Human Respiratory System. J. Thorac. Dis. 2016, 8, 69–74. [Google Scholar]
- Whittaker, A.; BeruBe, K.; Jones, T.; Maynard, R.; Richards, R. Killer Smog of London, 50 Years On: Particle Properties and Oxidative Capacity. Sci. Total Environ. 2004, 334–335, 435–445. [Google Scholar] [CrossRef]
- Kim, Y.; Manley, J.; Radoias, V. Medium-and Long-Term Consequences of Pollution on Labor Supply: Evidence from Indonesia. IZA J. Labor Econ. 2017, 6, 1010. [Google Scholar] [CrossRef] [Green Version]
- Mimura, T.; Ichinose, T.; Yamagami, S.; Fujishima, H.; Kamei, Y.; Goto, M.; Matsubara, M. Airborne Particulate Matter (PM2.5) and the Prevalence of Allergic Conjunctivitis in Japan. Sci. Total Environ. 2014, 487, 493–499. [Google Scholar] [CrossRef]
- Nguyen, G.; Shimadera, H.; Uranishi, K.; Matsuo, T.; Kondo, A. Numerical assessment of PM2.5 and O-3 air quality in Continental Southeast Asia: Impacts of potential future climate change. Atmos. Environ. 2019, 215, 116901. [Google Scholar] [CrossRef]
- Requia, W.J.; Jhun, I.; Coull, B.A.; Koutrakis, P. Climate impact on ambient PM2.5 elemental concentration in the United States: A trend analysis over the last 30 years. Environ. Int. 2019, 131, 104888. [Google Scholar] [CrossRef]
- Bu, Q.; Hong, Y.; Tan, H.; Liu, L.; Wang, C.; Zhu, J.; Chan, P.; Chen, C. The Modulation of Meteorological Parameters on Surface PM2.5 and O3 Concentrations in Guangzhou, China. Aerosol. Air Qual. Res. 2020, 20, 200084. [Google Scholar] [CrossRef]
- Hou, P.; Wu, S.L. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality. Sci. Rep. 2016, 6, 23792. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.Y.; Jiang, Y.Y.; Han, X.P.; Liu, L.; Xu, X.L.; Qiao, Z.; Sun, W. Spatiotemporal Relationships between Air Quality and Multiple Meteorological Parameters in 221 Chinese Cities. Complexity 2020, 2020, 6829142. [Google Scholar] [CrossRef]
- Wang, J.W.; Xu, H. A novel hybrid spatiotemporal land use regression model system at the megacity scale. Atmos. Environ. 2021, 244, 117971. [Google Scholar] [CrossRef]
- Huang, L.; Sun, J.; Jin, L.; Brown, N.J.; Hu, J. Strategies to Reduce PM2.5 and O3 Together During Late Summer and Early Fall in San Joaquin Valley. Calif. Atmos. Res. 2021, 258, 105633. [Google Scholar] [CrossRef]
- Dennis, R.L.; Byun, D.W.; Novak, J.H.; Galluppi, K.J.; Coats, C.J.; Vouk, M.A. The Next Generation of Integrated Air Quality Modeling: EPA’s Models-3. Atmos. Environ. 1996, 30, 1925–1938. [Google Scholar] [CrossRef]
- Wang, Q.W.Q.; Zeng, Q.Z.Q.; Tao, J.T.J.; Sun, L.S.L.; Zhang, L.Z.L.; Gu, T.G.T.; Chen, L.C.L. Estimating PM2.5 Concentrations Based on Modis Aod and Naqpms Data Over Beijing-Tianjin-Hebei. Sensors 2019, 19, 1207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wu, L.; Chen, Y. Forecasting PM2.5 and PM10 Concentrations Using GMCN(1,N) Model with the Similar Meteorological Condition: Case of Shijiazhuang in China. Ecol. Indic. 2020, 119, 106871. [Google Scholar] [CrossRef]
- Pai, T.; Ho, C.; Chen, S.; Lo, H.; Sung, P.; Lin, S.; Kao, J. Using Seven Types of GM (1, 1) Model to Forecast Hourly Particulate Matter Concentration in Banciao City of Taiwan. Water Air Soil Pollut. 2011, 217, 25–33. [Google Scholar] [CrossRef]
- Ziomas, I.C.; Melas, D.; Zerefos, C.S. Forecasting Peak Pollutant Levels From Meteorological Variables. Atmos. Environ. 1995, 29, 3703–3711. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, L.; Wang, W. Optimal-Combined Model for Air Quality Index Forecasting: 5 Cities in North China. Environ. Pollut. 2018, 243, 842–850. [Google Scholar] [CrossRef]
- Murillo-Escobar, J.; Sepulveda-Suescun, J.P.; Correa, M.A. Forecasting Concentrations of Air Pollutants Using Support Vector Regression Improved with Particle Swarm Optimization: Case Study in AburrÁ Valley, Colombia. Urban Clim. 2019, 29, 100473. [Google Scholar] [CrossRef]
- Sun, W.S.W.; Sun, J.S.J. Daily PM2.5 Concentration Prediction Based on Principal Component Analysis and LSSVM Optimized by Cuckoo Search Algorithm. J. Environ. Manag. 2017, 188, 144–152. [Google Scholar] [CrossRef]
- Chen, G.C.G.; Li, S.L.S.; Knibbs, L.K.L.D.; Hamm, N.H.N.A.; Cao, W.C.W.; Li, T.L.T.; Guo, Y.G.Y. A Machine Learning Method to Estimate PM2.5 Concentrations Across China with Remote Sensing, Meteorological and Land Use Information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef]
- Huang, K.H.K.; Xiao, Q.X.Q.; Meng, X.M.X.; Geng, G.G.G.; Wang, Y.W.Y.; Lyapustin, A.L.A.; Liu, Y.L.Y. Predicting Monthly High Resolution PM2.5 Concentrations with Random Forest Model in the North China Plain. Environ. Pollut. 2018, 242, 675–683. [Google Scholar] [CrossRef]
- Li, X.L.X.; Zhang, X.Z.X. Predicting Ground-Level PM2.5 Concentrations in The Beijing-Tianjin-Hebei Region: A Hybrid Remote Sensing and Machine Learning Approach. Environ. Pollut. 2019, 249, 735–749. [Google Scholar] [CrossRef] [Green Version]
- Sekula, P.; Ustrnul, Z.; Bokwa, A.; Bochenek, B.; Zimnoch, M. Random Forests Assessment of the Role of Atmospheric Circulation in PM10 in an Urban Area with Complex Topography. Sustainability 2022, 14, 3388. [Google Scholar] [CrossRef]
- Zhai, W.X.; Cheng, C.Q. A Long Short-Term Memory Approach to Predicting Air Quality Based on Social Media Data. Atmos. Environ. 2020, 237, 117411. [Google Scholar] [CrossRef]
- Ma, J.; Ding, Y.; Cheng, J.C.P.; Jiang, F.; Wan, Z. A Temporal-Spatial Interpolation and Extrapolation Method Based on Geographic Long Short-Term Memory Neural Network for PM2.5. J. Clean. Prod. 2019, 237, 117729. [Google Scholar] [CrossRef]
- Wen, C.W.C.; Liu, S.L.S.; Yao, X.Y.X.; Peng, L.P.L.; Li, X.L.X.; Hu, Y.H.Y.; Chi, T.C.T. A Novel Spatiotemporal Convolutional Long Short-Term Neural Network for Air Pollution Prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
- Kristiani, E.; Lin, H.; Lin, J.; Chuang, Y.; Huang, C.; Yang, C. Short-Term Prediction of PM2.5 Using LSTM Deep Learning Methods. Sustainability 2022, 14, 2068. [Google Scholar] [CrossRef]
- Wang, X.; Lin, X.; Dang, X. Supervised Learning in Spiking Neural Networks: A Review of Algorithms and Evaluations. Neural Netw. 2020, 125, 258–280. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Qi, S.F.; Hu, F.; Ma, S.B.; Mao, W.; Li, W. Recognizing Activities of the Elderly Using Wearable Sensors: A Comparison of Ensemble Algorithms Based on Boosting. Sensor Rev. 2019, 39, 743–751. [Google Scholar] [CrossRef]
- Bai, Y.B.Y.; Wu, L.W.L.; Qin, K.Q.K.; Zhang, Y.Z.Y.; Shen, Y.S.Y.; Zhou, Y.Z.Y. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 2016, 8, 262. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, T.G. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Mach. Learn. 2000, 40, 139–157. [Google Scholar] [CrossRef]
- Liu, D.; Sun, K. Short-Term PM2.5 Forecasting Based on CEEMD-RF in Five Cities of China. Environ. Sci. Pollut. Res. 2019, 32, 32790–32803. [Google Scholar] [CrossRef]
- Liu, H.; Tian, H.; Li, Y.; Zhang, L. Comparison of Four Adaboost Algorithm Based Artificial Neural Networks in Wind Speed Predictions. Energy Convers. Manag. 2015, 92, 67–81. [Google Scholar] [CrossRef]
- Ysc, A.; Htc, B.; Sa, C.; Yph, D.; Ytt, A.; Kml, A. An LSTM-Based Aggregated Model for Air Pollution Forecasting. Atmos. Pollut. Res. 2020, 11, 1451–1463. [Google Scholar]
- Bai, Y.A.; Li, Y.A.; Zeng, B.A.; Li, C.A.C.C.; Zhang, J.A. Hourly PM2.5 Concentration Forecast Using Stacked Autoencoder Model with Emphasis on Seasonality. J. Clean. Prod. 2019, 224, 739–750. [Google Scholar] [CrossRef]
- Bai, Y.B.Y.; Zeng, B.Z.B.; Li, C.L.C.; Zhang, J.Z.J. An Ensemble Long Short-Term Memory Neural Network for Hourly PM2.5 Concentration Forecasting. Chemosphere 2019, 222, 286–294. [Google Scholar] [CrossRef]
- Liu, H.; Jin, K.; Duan, Z. Air PM2.5 Concentration Multi-Step Forecasting Using a New Hybrid Modeling Method: Comparing Cases for Four Cities in China. Atmos. Pollut. Res. 2019, 10, 1588–1600. [Google Scholar] [CrossRef]
- Liu, H.; Dong, S. A Novel Hybrid Ensemble Model for Hourly PM2.5 Forecasting Using Multiple Neural Networks: A Case Study in China. Air Qual. Atmos. Health 2020, 13, 1411–1420. [Google Scholar] [CrossRef]
- Dai, H.; Huang, G.; Zeng, H.; Yang, F. PM2.5 Concentration Prediction Based on Spatiotemporal Feature Selection Using XGBoost-MSCNN-GA-LSTM. Sustainability 2021, 13, 12071. [Google Scholar] [CrossRef]
- Zhai, B.; Chen, J. Development of A Stacked Ensemble Model for Forecasting and Analyzing Daily Average PM2.5 Concentrations in Beijing, China. Sci. Total Environ. 2018, 635, 644–658. [Google Scholar] [CrossRef]
- Chen, J.A.; Yin, J.A.Y.W.; Zang, L.A.; Zhang, T.A.; Zhao, M.A. Stacking Machine Learning Model for Estimating Hourly PM2.5 in China Based on Himawari 8 Aerosol Optical Depth Data. Sci. Total Environ. 2019, 697, 134021. [Google Scholar] [CrossRef]
- Jahangir, H.; Golkar, M.A.; Alhameli, F.; Mazouz, A.; Ahmadian, A.; Elkamel, A. Short-Term Wind Speed Forecasting Framework Based on Stacked Denoising Auto-Encoders with Rough ANN. Sustain. Energy Technol. 2020, 38, 100601. [Google Scholar] [CrossRef]
- Agarwal, S.A.S.R.; Chowdary, C.R.A.R. A-Stacking and A-Bagging: Adaptive Versions of Ensemble Learning Algorithms for Spoof Fingerprint Detection. Expert Syst. Appl. 2020, 146, 113160. [Google Scholar] [CrossRef]
- Moon, J.; Jung, S.; Rew, J.; Rho, S.; Hwang, E. Combination of Short-Term Load Forecasting Models Based on a Stacking Ensemble Approach. Energy Build. 2020, 216, 109921. [Google Scholar] [CrossRef]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-Time Air Quality Forecasting, Part I: History, Techniques, and Current Status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Gang, L.; Jing, F.; Dong, J.; Wang, J.H. Spatial Variation of the Relationship between PM2.5 Concentrations and Meteorological Parameters in China. BioMed Res. Int. 2015, 2015, 684618. [Google Scholar]
- Wang, Z.; Tan, Y.; Guo, M.; Cheng, M.M.; Gu, Y.Y.; Chen, S.Y.; Wu, X.F.; Chai, F.H. Prospect of China’s ambient air quality standards. J. Environ. Sci. 2023, 123, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.Y.; Ren, X.D.; Xiong, K.N.; Li, L.Q.; Bi, X.C.; Wu, Q.L. Analysis of the driving factors of PM2.5 concentration in the air: A case study of the Yangtze River Delta, China. Ecol. Indic. 2020, 110, 5889. [Google Scholar] [CrossRef]
- Tan, H.A.T.W.; Chen, Y.A.Y.W.; Wilson, J.P.A.J.; Zhang, J.A.J.W.; Cao, J.A.C.W.; Chu, T.A.C.W. An eigenvector spatial filtering based spatially varying coefficient model for PM2.5 concentration estimation: A case study in Yangtze River Delta region of China. Atmos. Environ. 2020, 223, 117205. [Google Scholar] [CrossRef]
- Roy, M.; Brokamp, C.; Balachandran, S. Clustering and Regression-Based Analysis of PM2.5 Sensitivity to Mete-orology in Cincinnati, Ohio. Atmosphere 2022, 13, 545. [Google Scholar] [CrossRef]
- Tandon, A.; Yadav, S.; Attri, A.K. Non-linear analysis of short term variations in ambient visibility. Atmos. Pollut. Res. 2013, 4, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.F.; Huang, L.X.; Zhang, C.Y.; Zeng, Z.L.; Yao, S.J. Hourly PM2.5 prediction and comparative analysis under multiple machine learning models. China Environ. Sci. 2020, 40, 1895–1905. (In Chinese) [Google Scholar]
- Peng, H.J.; Zhou, Y.; Hu, J.F.; Zhang, L.; Peng, Y.Z.; Cai, X.Y. PM2.5 concentration prediction model based on deep learning and random forest. J. Remote Sens. 2023, 27, 430–440. [Google Scholar]
- Wenchao, B.; Liangduo, S. PM2.5 Prediction Based on the CEEMDAN Algorithm and a Machine Learning Hybrid Model. Sustainability 2022, 14, 16128. [Google Scholar]
- Van, D.G.; Hoffman, T.P.P.I.; Remijsen, M.P.P.I.; Hijman, R.U.M.C. The Five-Factor Model of the Positive and Negative Syndrome Scale II: A Ten-Fold Cross-Validation of A Revised Model. Schizophr. Res. 2006, 85, 280–287. [Google Scholar]
- Liu, D.A.; Sun, K.A.N.E. Random Forest Solar Power Forecast Based on Classification Optimization. Energy 2019, 187, 115940. [Google Scholar] [CrossRef]
- Su, X.; Ntilde, A.T.P.A.; Liu, L.; Levine, R.A. Random Forests of Interaction Trees for Estimating Individualized Treatment Effects in Randomized Trials. Stat. Med. 2018, 37, 2547–2560. [Google Scholar] [CrossRef]
- Zhao, J.; Yuan, L.; Sun, K.; Huang, H.; Guan, P.; Jia, C. Forecasting Fine Particulate Matter Concentrations by In-Depth Learning Model According to Random Forest and Bilateral Long- and Short-Term Memory Neural Networks. Sustainability 2022, 14, 9430. [Google Scholar] [CrossRef]
- Lim, S.; Chi, S. XGboost Application on Bridge Management Systems for Proactive Damage Estimation. Adv. Eng. Inform. 2019, 41, 100922. [Google Scholar] [CrossRef]
- Rad, A.K.; Shamshiri, R.R.; Naghipour, A.; Razmi, S.; Shariati, M.; Golkar, F.; Balasundram, S.K. Machine Learning for Determining Interactions between Air Pollutants and Environmental Parameters in Three Cities of Iran. Sustainability 2022, 14, 8027. [Google Scholar] [CrossRef]
- Chen, C.A.; Zhang, Q.A.; Ma, Q.A.; Yu, B.A.Y.Q. LightGBM-PPI: Predicting Protein-Protein Interactions through LightGBM with Multi-Information Fusion. Chemom. Intell. Lab. 2019, 191, 54–64. [Google Scholar] [CrossRef]
- Sun, X.; Liu, M.; Sima, Z. A Novel Cryptocurrency Price Trend Forecasting Model Based on LightGBM. Financ. Res. Lett. 2020, 32, 101084. [Google Scholar] [CrossRef]
- Harishkumar, K.S.; Yogesh, K.M.; Gad, I. Forecasting Air Pollution Particulate Matter (PM2.5) Using Machine Learning Regression Models. Procedia Comput. Sci. 2020, 171, 2057–2066. [Google Scholar]
- Ma, J.; Cheng, J.C.P.; Xu, Z.; Chen, K.; Lin, C.; Jiang, F. Identification of the most influential areas for air pollution control using XGBoost and Grid Importance Rank. J. Clean. Prod. 2020, 274, 122835. [Google Scholar] [CrossRef]
- Xiong, Z.; Cui, Y.; Liu, Z.; Zhao, Y.; Hu, M.; Hu, J. Evaluating Explorative Prediction Power of Machine Learning Algorithms for Materials Discovery Using K-Fold Forward Cross-Validation. Comput. Mater. Sci. 2020, 171, 109203. [Google Scholar] [CrossRef]
- Wan, M.; Hu, W.; Qu, M.; Li, W.; Zhang, C.; Kang, J.; Huang, B. Rapid Estimation of Soil Cation Exchange Capacity through Sensor Data Fusion of Portable XRF Spectrometry and Vis-NIR spectroscopy. Geoderma 2020, 363, 114163. [Google Scholar] [CrossRef]
- Hu, S.; Liu, P.F.; Qiao, Y.X.; Wang, Q.; Zhang, Y.; Yang, Y. PM2.5 concentration prediction based on WD-SA-LSTM-BP model: A case study of Nanjing city. Environ. Sci. Pollut. Res. 2022, 29, 70323–70339. [Google Scholar] [CrossRef] [PubMed]
- Chu, W.; Zhang, C.; Zhao, Y.; Li, R.; Wu, P. Spatiotemporally Continuous Reconstruction of Retrieved PM2.5 Data Using an Autogeoi-Stacking Model in the Beijing-Tianjin-Hebei Region, China. Remote Sens. 2022, 14, 4432. [Google Scholar] [CrossRef]
- Xiao, L.; Dong, Y.X.; Dong, Y. An Improved Combination Approach Based on ADABOOST Algorithm for Wind Speed Time Series Forecasting. Energy Convers. Manag. 2018, 160, 273–288. [Google Scholar] [CrossRef]
- Liu, D.L.D.; Li, L.L.L. Application Study of Comprehensive Forecasting Model Based on Entropy Weighting Method on Trend of PM2.5 Concentration in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 7085–7099. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Zhang, Q.; Sornette, D.; Jiang, L. Cascading Logistic Regression onto Gradient Boosted Decision Trees for Forecasting and Trading Stock Indices. Appl. Soft Comput. 2019, 84, 105747. [Google Scholar] [CrossRef]
- Shcherbakov, M.; Kamaev, V.; Shcherbakova, N. Automated Electric Energy Consumption Forecasting System Based on Decision Tree Approach. IFAC Proc. 2013, 46, 1027–1032. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, F.; Xuan, X. Impacts of Industrial Restructuring and Technological Progress on PM2.5 Pollution: Evidence from Prefecture-Level Cities in China. Int. J. Environ. Res. Public Health 2021, 18, 5283. [Google Scholar] [CrossRef]
- Wang, P.W.P.; Zhang, H.Z.H.; Qin, Z.Q.Z.; Zhang, G.Z.G. A Novel Hybrid-Garch Model Based on ARIMA and SVM for PM2.5 Concentrations Forecasting. Atmos. Pollut. Res. 2017, 8, 850–860. [Google Scholar] [CrossRef]
- Gounaridis, D.G.; Koukoulas, S. Urban Land Cover Thematic Disaggregation, Employing Datasets from Multiple Sources and Random Forests Modeling. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 1–10. [Google Scholar]
- Gao, X.G.X.; Luo, H.L.H.; Wang, Q.W.Q.; Zhao, F.Z.F.; Ye, L.Y.L.; Zhang, Y.Z.Y. A Human Activity Recognition Algorithm Based on Stacking Denoising Autoencoder and LightGBM. Sensors 2019, 19, 947. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.J.Y.; Sun, G.S.G.; Chen, Q.C.Q.; Zhang, M.Z.M.; Zhu, H.Z.H.; Rehman, M.R.M.U. A Model Combining Convolutional Neural Network and LightGBM Algorithm for Ultra-Short-Term Wind Power Forecasting. IEEE Access 2019, 7, 28309–28318. [Google Scholar] [CrossRef]
- Huang, L.; Kang, J.; Wan, M.; Fang, L.; Zhang, C.; Zeng, Z. Solar Radiation Prediction Using Different Machine Learning Algorithms and Implications for Extreme Climate Events. Front. Earth Sci. 2021, 9, 596860. [Google Scholar] [CrossRef]
- Divina, F.; Gilson, A.; Goméz-Vela, F.; García Torres, M.; Torres, J.F. Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting. Energies 2018, 11, 949. [Google Scholar] [CrossRef] [Green Version]
Variables | Unit | Description |
---|---|---|
LON | ° | Longitude |
LAT | ° | Latitude |
DOY | Day of the year | |
Hour | h | Hour |
PRS | % | Average pressure |
TEM | °C | Average temperature |
RHU | % | Relative humidity |
GST | °C | Average surface temperature |
WIN_S | m/s | Average wind speed |
PM2.5 | μg/m3 | PM2.5 concentration |
Data | Train Set | Test Set | All Datasets |
---|---|---|---|
Meteorological factors estimating PM2.5 concentration dataset (hourly) | 377,232 | 41,915 | 419,147 |
Meteorological factors estimating PM2.5 concentration dataset (daily) | 16,200 | 1801 | 18,001 |
Future 1 h PM2.5 concentration prediction | 372,746 | 41,417 | 414,163 |
Future 2 h PM2.5 concentration prediction | 371,790 | 41,311 | 413,101 |
Future 3 h PM2.5 concentration prediction | 370,890 | 41,211 | 412,101 |
Future 4 h PM2.5 concentration prediction | 370,137 | 41,127 | 411,264 |
Future 5 h PM2.5 concentration prediction | 369,666 | 41,075 | 410,741 |
Future 6 h PM2.5 concentration prediction | 369,398 | 41,045 | 410,443 |
Future 1-day PM2.5 concentration prediction | 16,004 | 1779 | 17,783 |
Future 2-day PM2.5 concentration prediction | 15,912 | 1768 | 17,680 |
Future 3-day PM2.5 concentration prediction | 15,847 | 1761 | 17,608 |
Future 4-day PM2.5 concentration prediction | 15,780 | 1754 | 17,534 |
Future 5-day PM2.5 concentration prediction | 15,718 | 1747 | 17,465 |
Future 6-day PM2.5 concentration prediction | 15,651 | 1740 | 17,391 |
Current Hourly PM2.5 Concentration | Current Daily PM2.5 Concentration | |||||
---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |
XGBoost | 0.87 | 10.49 | 6.74 | 0.78 | 12.11 | 8.75 |
LightGBM | 0.87 | 10.74 | 6.73 | 0.76 | 12.66 | 8.95 |
RF | 0.88 | 10.39 | 6.03 | 0.73 | 13.49 | 9.55 |
Stacking | 0.88 | 10.18 | 5.97 | 0.78 | 12.25 | 8.75 |
Average | 0.87 | 10.45 | 6.37 | 0.76 | 12.63 | 9.00 |
Meteorological Dataset | Combined Dataset | ||||||
---|---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | ||
Hourly | +1 | 0.89 | 9.49 | 6.10 | 0.97 | 4.99 | 2.91 |
+2 | 0.89 | 9.58 | 6.07 | 0.95 | 6.37 | 3.97 | |
+3 | 0.89 | 9.52 | 6.15 | 0.94 | 7.19 | 4.56 | |
+4 | 0.88 | 9.87 | 6.14 | 0.93 | 7.77 | 4.86 | |
+5 | 0.89 | 9.79 | 6.17 | 0.92 | 8.18 | 5.09 | |
+6 | 0.89 | 9.32 | 6.12 | 0.92 | 7.94 | 5.14 | |
Average | 0.89 | 9.60 | 6.13 | 0.94 | 7.07 | 4.42 | |
Daily | +1 | 0.77 | 12.99 | 9.09 | 0.82 | 11.48 | 7.92 |
+2 | 0.69 | 13.77 | 9.60 | 0.72 | 13.13 | 8.95 | |
+3 | 0.68 | 14.10 | 10.01 | 0.73 | 12.95 | 9.26 | |
+4 | 0.69 | 13.05 | 9.63 | 0.71 | 12.61 | 9.16 | |
+5 | 0.71 | 13.58 | 9.65 | 0.73 | 13.19 | 9.14 | |
+6 | 0.70 | 12.59 | 9.31 | 0.72 | 12.25 | 8.87 | |
Average | 0.71 | 13.35 | 9.55 | 0.74 | 12.60 | 8.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Zou, X.; Tan, J.; Li, J.; Karimian, H. Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data. Sustainability 2023, 15, 11408. https://doi.org/10.3390/su151411408
Kang J, Zou X, Tan J, Li J, Karimian H. Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data. Sustainability. 2023; 15(14):11408. https://doi.org/10.3390/su151411408
Chicago/Turabian StyleKang, Junfeng, Xinyi Zou, Jianlin Tan, Jun Li, and Hamed Karimian. 2023. "Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data" Sustainability 15, no. 14: 11408. https://doi.org/10.3390/su151411408
APA StyleKang, J., Zou, X., Tan, J., Li, J., & Karimian, H. (2023). Short-Term PM2.5 Concentration Changes Prediction: A Comparison of Meteorological and Historical Data. Sustainability, 15(14), 11408. https://doi.org/10.3390/su151411408