Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives
Abstract
:1. Introduction
2. Methodology
2.1. Study Design
2.2. Bibliometric Data Collection
2.3. Analysis
2.4. Visualization
2.5. Interpretation
3. Results and Discussion
3.1. Main Information
3.2. Registered Documents by Year and Average Citation Rate
3.3. Registered Documents by Country and Their Total Citations
3.4. Most Relevant Sources
3.5. Most Relevant Documents
3.6. Industry Sectors Impacted by AI
3.7. Recommended Topics for Future Research
- Power quality (PQ) studies focus on the use of artificial intelligence to detect power disturbances, analyze voltage, and current variation, regulate power quality, and find technical solutions to improve power quality [96].
- Energy storage system (ESS) research focuses on the use of artificial intelligence to evaluate the efficiency and cost-effectiveness of different energy storage technologies as well as to identify specific applications for these systems [28].
- Hydrogen fuel cell (HFC) studies refer to the use of artificial intelligence to evaluate the efficiency and cost-effectiveness of hydrogen fuel cells in distinct types of technologies as well as to identify specific applications [105].
4. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gavurova, B.; Jencova, S.; Bacik, R.; Miskufova, M.; Letkovsky, S. Artificial intelligence in predicting the bankruptcy of non-financial corporations. Oeconomia Copernic. 2022, 13, 1215–1251. [Google Scholar] [CrossRef]
- Yasar, O.; Korkusuz Polat, T. A Fuzzy-Based Application for Marketing 4.0 Brand Perception in the COVID-19 Process. Sustainability 2022, 14, 16407. [Google Scholar] [CrossRef]
- Lombardo, G.; Pellegrino, M.; Adosoglou, G.; Cagnoni, S.; Pardalos, P.M.; Poggi, A. Machine Learning for Bankruptcy Prediction in the American Stock Market: Dataset and Benchmarks. Future Internet 2022, 14, 244. [Google Scholar] [CrossRef]
- Chen, H.; Voigt, S.; Fu, X. Data-driven analysis on inter-city commuting decisions in germany. Sustainability 2021, 13, 6320. [Google Scholar] [CrossRef]
- Chen, T.; Keng, B.; Moreno, J. Multivariate arrival times with recurrent neural networks for personalized demand forecasting. In Proceedings of the IEEE International Conference on Data Mining Workshops, ICDMW, Singapore, 17–20 November 2018; pp. 810–819. [Google Scholar]
- Giang, N.H.; Nguyen, T.T.; Tay, C.C.; Phuong, L.A.; Dang, T.T. Towards Predictive Vietnamese Human Resource Migration by Machine Learning: A Case Study in Northeast Asian Countries. Axioms 2022, 11, 151. [Google Scholar] [CrossRef]
- Molina-Cabanillas, M.A.; Jiménez-Navarro, M.J.; Arjona, R.; Martínez-Álvarez, F.; Asencio-Cortés, G. DIAFAN-TL: An instance weighting-based transfer learning algorithm with application to phenology forecasting. Knowl. Based Syst. 2022, 254, 109644. [Google Scholar] [CrossRef]
- Siddique, M.; Ahmed, T.; Husain, M.S. An Empirical Approach to Monitor the Flood-Prone Regions of North India Using Sentinel-1 Images. Ann. Emerg. Technol. Comput. 2022, 6, 1. [Google Scholar] [CrossRef]
- Mishra, R.K.; Raj, H.; Urolagin, S.; Jothi, J.A.A.; Nawaz, N. Cluster-Based Knowledge Graph and Entity-Relation Representation on Tourism Economical Sentiments. Appl. Sci. 2022, 12, 8105. [Google Scholar] [CrossRef]
- Biswas, B.; Sengupta, P.; Kumar, A.; Delen, D.; Gupta, S. A critical assessment of consumer reviews: A hybrid NLP-based methodology. Decis. Support Syst. 2022, 159, 113799. [Google Scholar] [CrossRef]
- Jain, A.; Sharma, N. Accelerated AI Inference at CNN Based Machine Vision in ASICs: A Design Approach. ECS Trans. 2022, 107, 5165–5174. [Google Scholar] [CrossRef]
- Boursalie, O.; Samavi, R.; Doyle, T.E. Evaluation methodology for deep learning imputation models. Exp. Biol. Med. 2022, 247, 1972–1987. [Google Scholar] [CrossRef] [PubMed]
- Van Hai, V.; Nhung, H.L.T.K.; Prokopova, Z.; Silhavy, R.; Silhavy, P. Toward Improving the Efficiency of Software Development Effort Estimation via Clustering Analysis. IEEE Access 2022, 10, 83249–83264. [Google Scholar] [CrossRef]
- McKinsey & Company. The State of AI in 2022 and the Balance of Half a Decade. 2022. Available online: https://www.mckinsey.com/featured-insights/destacados/el-estado-de-la-ia-en-2022-y-el-balance-de-media-decada/es (accessed on 2 April 2023).
- Çankaya, S.; Pekey, B. Assessing environmental hotspots of tire curing press: A life cycle perspective. Sigma J. Eng. Nat. Sci. 2020, 38, 1825–1836. [Google Scholar]
- Takayanagi, H. Expectation for AI (Artificial Intelligence) on elderly medical care. Jpn. J. Geriatr. 2019, 56, 254–259. [Google Scholar] [CrossRef]
- Bhowmik, A.; Sannigrahi, M.; Chowdhury, D.; Dwivedi, A.D.; Rao Mukkamala, R. DBNex: Deep Belief Network and Explainable AI based Financial Fraud Detection. In Proceedings of the 2022 IEEE International Conference on Big Data, Big Data 2022, Osaka, Japan, 17–20 December 2022; pp. 3033–3042. [Google Scholar]
- Bigman, Y.E.; Yam, K.C.; Marciano, D.; Reynolds, S.J.; Gray, K. Threat of racial and economic inequality increases preference for algorithm decision-making. Comput. Hum. Behav. 2021, 122, 106859. [Google Scholar] [CrossRef]
- Grech, A.; Mehnen, J.; Wodehouse, A. An Extended AI-Experience: Industry 5.0 in Creative Product Innovation. Sensors 2023, 23, 3009. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.H.; Li, J.Z. Enhanced Patient-Centricity: How the Biopharmaceutical Industry Is Optimizing Patient Care through AI/ML/DL. Healthcare 2022, 10, 1997. [Google Scholar] [CrossRef]
- Anagnostou, M.; Karvounidou, O.; Katritzidaki, C.; Kechagia, C.; Melidou, K.; Mpeza, E.; Konstantinidis, I.; Kapantai, E.; Berberidis, C.; Magnisalis, I.; et al. Characteristics and challenges in the industries towards responsible AI: A systematic literature review. Ethics Inf. Technol. 2022, 24, 37. [Google Scholar] [CrossRef]
- Emaminejad, N.; Akhavian, R. Trustworthy AI and robotics: Implications for the AEC industry. Autom. Constr. 2022, 139, 104298. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric Methods in Management and Organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Bouzembrak, Y.; Marvin, H.J.P. Impact of drivers of change, including climatic factors, on the occurrence of chemical food safety hazards in fruits and vegetables: A Bayesian Network approach. Food Control 2019, 97, 67–76. [Google Scholar] [CrossRef]
- Taherei Ghazvinei, P.; Darvishi, H.H.; Mosavi, A.; Bin Wan Yusof, K.; Alizamir, M.; Shamshirband, S.; Chau, K.W. Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 2018, 12, 738–749. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Crosby, H.; Purser, D.; Javis, S.; Guo, W. Twitter usage across industry: A spatiotemporal analysis. In Proceedings of the IEEE 4th International Conference on Big Data Computing Service and Applications, BigDataService 2018, Bamberg, Germany, 26–29 March 2018; pp. 64–71. [Google Scholar]
- Kim, H.; Jung, T.Y. Independent solar photovoltaic with Energy Storage Systems (ESS) for rural electrification in Myanmar. Renew. Sustain. Energy Rev. 2018, 82, 1187–1194. [Google Scholar] [CrossRef]
- Pham, Q.-C.; Madhavan, R.; Righetti, L.; Smart, W.; Chatila, R. The Impact of Robotics and Automation on Working Conditions and Employment. IEEE Robot. Autom. Mag. 2018, 25, 126–128. [Google Scholar] [CrossRef]
- Silva, J.; Gaitán Angulo, M.; Romero Borré, J.; Lozano Ayarza, L.P.; Pineda Lezama, O.B.; del Carmen Martínez Galán, Z.; Navarro Beltran, J. An Early Warning Method for Agricultural Products Price Spike Based on Artificial Neural Networks Prediction. In Proceedings of the 19th International Conference, Faro, Portugal, 12–14 June 2019; pp. 622–632. [Google Scholar] [CrossRef]
- Banchs, A.; Gutierrez-Estevez, D.M.; Fuentes, M.; Boldi, M.; Provvedi, S. A 5G Mobile Network Architecture to Support Vertical Industries. IEEE Commun. Mag. 2019, 57, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Shoja, B.M.; Tabrizi, N. Customer Reviews Analysis with Deep Neural Networks for E-Commerce Recommender Systems. IEEE Access 2019, 7, 119121–119130. [Google Scholar] [CrossRef]
- Ding, P. Application of Big Data in Sports Science and Reflections. J. Phys. Conf. Ser. 2019, 1302, 042048. [Google Scholar] [CrossRef]
- Langley, D.J.; van Doorn, J.; Ng, I.C.L.; Stieglitz, S.; Lazovik, A.; Boonstra, A. The Internet of Everything: Smart things and their impact on business models. J. Bus. Res. 2021, 122, 853–863. [Google Scholar] [CrossRef]
- Kerzel, U. Enterprise AI Canvas Integrating Artificial Intelligence into Business. Appl. Artif. Intell. 2021, 35, 1–12. [Google Scholar] [CrossRef]
- Hassan, O. Artificial Intelligence, Neom and Saudi Arabia’s Economic Diversification from Oil and Gas. Polit. Q. 2020, 91, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.; De Bruyn, A. LSTM Response Models for Direct Marketing Analytics: Replacing Feature Engineering with Deep Learning. J. Interact. Mark. 2021, 53, 80–95. [Google Scholar] [CrossRef]
- Kononenko, K.; Demidov, D. Use of artificial neural networks to predict greenhouse gases emissions. Eng. Rural. Dev. 2020, 19, 892–896. [Google Scholar]
- Hansen, E.B.; Iftikhar, N.; Bogh, S. Concept of easy-to-use versatile artificial intelligence in industrial small & medium-sized enterprises. Procedia Manuf. 2020, 51, 1146–1152. [Google Scholar]
- Jellenz, M.; Bobek, V.; Horvat, T. Impact of education on sustainable economic development in emerging markets—The case of Namibia’s tertiary education system and its economy. Sustainability 2020, 12, 8814. [Google Scholar] [CrossRef]
- Gochhait, S.; Butt, S.A.; De-La-Hoz-Franco, E.; Shaheen, Q.; Luis, D.M.J.; Piñeres-Espitia, G.; Mercado-Polo, D. A Machine Learning Solution for Bed Occupancy Issue for Smart Healthcare Sector. Autom. Control Comput. Sci. 2021, 55, 546–556. [Google Scholar] [CrossRef]
- Liu, L.; Yang, K.; Fujii, H.; Liu, J. Artificial intelligence and energy intensity in China’s industrial sector: Effect and transmission channel. Econ. Anal. Policy 2021, 70, 276–293. [Google Scholar] [CrossRef]
- Niu, H.; Zhao, Y. Crude oil prices and volatility prediction by a hybrid model based on kernel extreme learning machine. Math. Biosci. Eng. 2021, 18, 8096–8122. [Google Scholar] [CrossRef]
- Chiles, R.M.; Broad, G.; Gagnon, M.; Negowetti, N.; Glenna, L.; Griffin, M.A.M.; Tami-Barrera, L.; Baker, S.; Beck, K. Democratizing ownership and participation in the 4th Industrial Revolution: Challenges and opportunities in cellular agriculture. Agric. Hum. Values 2021, 38, 943–961. [Google Scholar] [CrossRef]
- Setyawan, N.; Putri, T.S.N.P.; Al Fikih, M.; Kasan, N. Comparative Study of CNN and YOLOv3 in Public Health Face Mask Detection. In Proceedings of the 2021 8th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Semarang, Indonesia, 20–21 October 2021; pp. 354–358. [Google Scholar]
- Rodrigues, A.; Silva, F.J.G.; Sousa, V.F.C.; Pinto, A.G.; Ferreira, L.P.; Pereira, T. Using an Artificial Neural Network Approach to Predict Machining Time. Metals 2022, 12, 1709. [Google Scholar] [CrossRef]
- Mirmozaffari, M.; Yazdani, R.; Shadkam, E.; Khalili, S.M.; Mahjoob, M.; Boskabadi, A. An integrated artificial intelligence model for efficiency assessment in pharmaceutical companies during the COVID-19 pandemic. Sustain. Oper. Comput. 2022, 3, 156–167. [Google Scholar] [CrossRef]
- Massaro, A. Advanced Control Systems in Industry 5.0 Enabling Process Mining. Sensors 2022, 22, 8677. [Google Scholar] [CrossRef]
- Aldakkhelallah, A.A.A.; Shiwakoti, N.; Dabic, T.; Lu, J.; Yii, W.; Simic, M. Public Opinion Survey on the Development of an Intelligent Transport System: A Case Study in Saudi Arabia. AIP Conf. Proc. 2022, 2681, 020089. [Google Scholar]
- Meesters, M.; Heck, P.; Serebrenik, A. What Is an AI Engineer? An Empirical Analysis of Job Ads in the Netherlands. In Proceedings of the 1st International Conference on AI Engineering: Software Engineering for AI, CAIN 2022, Pittsburgh, PA, USA, 16–24 May 2022; pp. 136–144. [Google Scholar]
- Wu, Y.; Dai, H.N.; Tang, H. Graph Neural Networks for Anomaly Detection in Industrial Internet of Things. IEEE Internet Things J. 2022, 9, 9214–9231. [Google Scholar] [CrossRef]
- Mkrtchyan, G.V.; Abdelmohsen, K.; Andreux, P.; Bagdonaite, I.; Barzilai, N.; Brunak, S.; Cabreiro, F.; Cabo, R.D.; Campisi, J.; Cuervo, A.M.; et al. ARDD 2020: From aging mechanisms to interventions. Aging 2020, 12, 24486–24503. [Google Scholar] [CrossRef]
- Liu, H.; Huang, Y.; Wang, Z.; Liu, K.; Hu, X.; Wang, W. Personality or value: A comparative study of psychographic segmentation based on an online review enhanced recommender system. Appl. Sci. 2019, 9, 1992. [Google Scholar] [CrossRef] [Green Version]
- Zhan, X.; Wu, Y.; Dong, X.; Wei, Y.; Lu, M.; Zhang, Y.; Xu, H.; Liang, X. Product1M: Towards Weakly Supervised Instance-Level Product Retrieval via Cross-Modal Pretraining. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 11762–11771. [Google Scholar]
- Zheng, C.; Liu, S.; Huang, Y.; Yang, L. Hybrid Policy Learning for Energy-Latency Tradeoff in MEC-Assisted VR Video Service. IEEE Trans. Veh. Technol. 2021, 70, 9006–9021. [Google Scholar] [CrossRef]
- Saura, J.R.; Reyes-Menendez, A.; Alvarez-Alonso, C. Do online comments affect environmental management? Identifying factors related to environmental management and sustainability of hotels. Sustainability 2018, 10, 3016. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Abhishek, V.; Li, B. Examining the impact of keyword ambiguity on search advertising performance: A topic model approach. MIS Q. Manag. Inf. Syst. 2018, 42, 805–829. [Google Scholar] [CrossRef]
- Wu, W.; Flokas, L.; Wu, E.; Wang, J. Complaint-driven Training Data Debugging for Query 2.0. In Proceedings of the ACM SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 1317–1334. [Google Scholar]
- Alantari, H.J.; Currim, I.S.; Deng, Y.; Singh, S. An empirical comparison of machine learning methods for text-based sentiment analysis of online consumer reviews. Int. J. Res. Mark. 2022, 39, 1–19. [Google Scholar] [CrossRef]
- Jadhav, S.; He, H.; Jenkins, K. Information gain directed genetic algorithm wrapper feature selection for credit rating. Appl. Soft Comput. J. 2018, 69, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.J.; Rahim, M.S.M.; Nobanee, H.; Yasin, A.; Khalaf, O.I.; Ishfaq, U. A big data approach to black Friday sales. Intell. Autom. Soft Comput. 2021, 27, 785–797. [Google Scholar] [CrossRef]
- Cleland, B.; Wallace, J.; Bond, R.; Black, M.; Mulvenna, M.; Rankin, D.; Tanney, A. Insights into Antidepressant Prescribing Using Open Health Data. Big Data Res. 2018, 12, 41–48. [Google Scholar] [CrossRef]
- Ren, X.; Chen, Y. How Can Artificial Intelligence Help with Space Missions—A Case Study: Computational Intelligence-Assisted Design of Space Tether for Payload Orbital Transfer under Uncertainties. IEEE Access 2019, 7, 161449–161458. [Google Scholar] [CrossRef]
- Mayr, A.; Kißkalt, D.; Meiners, M.; Lutz, B.; Schäfer, F.; Seidel, R.; Selmaier, A.; Fuchs, J.; Metzner, M.; Blank, A.; et al. Machine learning in production—Potentials, challenges and exemplary applications. Procedia CIRP 2020, 86, 49–54. [Google Scholar] [CrossRef]
- Probst, W.N. How emerging data technologies can increase trust and transparency in fisheries. ICES J. Mar. Sci. 2020, 77, 1286–1294. [Google Scholar] [CrossRef]
- Banerjee, D.; Dhakad, L.; Maheshwari, H.; Chelliah, M.; Ganguly, N.; Bhattacharya, A. Recommendation of Compatible Outfits Conditioned on Style. In Advances in Information Retrieval, Proceedings of the 44th European Conference on IR Research, ECIR 2022, Stavanger, Norway, 10–14 April 2022; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2022; Volume 13185, pp. 35–50. [Google Scholar]
- Schmid, S.; Riebe, T.; Reuter, C. Dual-Use and Trustworthy? A Mixed Methods Analysis of AI Diffusion Between Civilian and Defense R&D. Sci. Eng. Ethics 2022, 28, 12. [Google Scholar] [CrossRef]
- Muhammad, L.J.; Algehyne, E.A.; Usman, S.S.; Ahmad, A.; Chakraborty, C.; Mohammed, I.A. Supervised Machine Learning Models for Prediction of COVID-19 Infection using Epidemiology Dataset. SN Comput. Sci. 2021, 2, 11. [Google Scholar] [CrossRef]
- Kar, S.; Kar, A.K.; Gupta, M.P. Industrial Internet of Things and Emerging Digital Technologies-Modeling Professionals’ Learning Behavior. IEEE Access 2021, 9, 30017–30034. [Google Scholar] [CrossRef]
- Ahmed, A.; Boopathy, P.; Sudhagara Rajan, S. Artificial intelligence for the novel corona virus (COVID-19) pandemic: Opportunities, challenges, and future directions. Int. J. E-Health Med. Commun. 2022, 13, 21. [Google Scholar] [CrossRef]
- Suhasini, B.; Santhosh Kumar, N. Emerging trends and future perspective of human resource reskilling in higher education. Int. J. Recent Technol. Eng. 2019, 8, 351–353. [Google Scholar] [CrossRef]
- Udias, A.; Pastori, M.; Dondeynaz, C.; Carmona Moreno, C.; Ali, A.; Cattaneo, L.; Cano, J. A decision support tool to enhance agricultural growth in the Mékrou river basin (West Africa). Comput. Electron. Agric. 2018, 154, 467–481. [Google Scholar] [CrossRef]
- Tonioni, A.; Di Stefano, L. Domain invariant hierarchical embedding for grocery products recognition. Comput. Vis. Image Underst. 2019, 182, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Troia, S.; Sapienza, F.; Vare, L.; Maier, G. On Deep Reinforcement Learning for Traffic Engineering in SD-WAN. IEEE J. Sel. Areas Commun. 2021, 39, 2198–2212. [Google Scholar] [CrossRef]
- Di Carlo, F.; Mazzuto, G.; Bevilacqua, M.; Ciarapica, F.E. Retrofitting a process plant in an industry 4.0 perspective for improving safety and maintenance performance. Sustainability 2021, 13, 646. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Nicolau, J.M.; Vicente, E.; Moreno-de las Heras, M. Assessing vegetation recovery in reclaimed opencast mines of the Teruel coalfield (Spain) using Landsat time series and boosted regression trees. Sci. Total Environ. 2020, 717, 137250. [Google Scholar] [CrossRef]
- Hadjout, D.; Torres, J.F.; Troncoso, A.; Sebaa, A.; Martínez-Álvarez, F. Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. Energy 2022, 243, 123060. [Google Scholar] [CrossRef]
- Rutter, R.N.; Barnes, S.J.; Roper, S.; Nadeau, J.; Lettice, F. Social media influencers, product placement and network engagement: Using AI image analysis to empirically test relationships. Ind. Manag. Data Syst. 2021, 121, 2387–2410. [Google Scholar] [CrossRef]
- Berawi, M.A.; Suwartha, N.; Asvial, M.; Harwahyu, R.; Suryanegara, M.; Setiawan, E.A.; Surjandari, I.; Zagloel, T.Y.M.; Maknun, I.J. Digital Innovation: Creating Competitive Advantages. Int. J. Technol. 2020, 11, 1076–1080. [Google Scholar] [CrossRef]
- Pahlawan, M.R.; Riksakomara, E.; Tyasnurita, R.; Muklason, A.; Mahananto, F.; Vinarti, R.A. Stock price forecast of macro-economic factor using recurrent neural network. IAES Int. J. Artif. Intell. 2021, 10, 74–83. [Google Scholar] [CrossRef]
- Rahman, A.; Winarko, E.; Mustofa, K. Product image retrieval using category-aware siamese convolutional neural network feature. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 2680–2687. [Google Scholar] [CrossRef]
- Nilashi, M.; Ahani, A.; Esfahani, M.D.; Yadegaridehkordi, E.; Samad, S.; Ibrahim, O.; Sharef, N.M.; Akbari, E. Preference learning for eco-friendly hotels recommendation: A multi-criteria collaborative filtering approach. J. Clean. Prod. 2019, 215, 767–783. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Agdas, D.; Degirmenci, K. Artificial intelligence in local governments: Perceptions of city managers on prospects, constraints and choices. AI Soc. 2022, 38, 1135–1150. [Google Scholar] [CrossRef]
- Habib, S.; Hamadneh, N.N. Impact of perceived risk on consumers technology acceptance in online grocery adoption amid COVID-19 pandemic. Sustainability 2021, 13, 10221. [Google Scholar] [CrossRef]
- Harker, C.; Hassall, M.; Lant, P.; Rybak, N.; Dargusch, P. What Can Machine Learning Teach Us about Australian Climate Risk Disclosures? Sustainability 2022, 14, 10000. [Google Scholar] [CrossRef]
- Satinet, C.; Fouss, F. A Supervised Machine Learning Classification Framework for Clothing Products’ Sustainability. Sustainability 2022, 14, 1334. [Google Scholar] [CrossRef]
- Hoc, H.T.; Silhavy, R.; Prokopova, Z.; Silhavy, P. Comparing Multiple Linear Regression, Deep Learning and Multiple Perceptron for Functional Points Estimation. IEEE Access 2022, 10, 112187–112198. [Google Scholar] [CrossRef]
- Rizinski, M.; Peshov, H.; Mishev, K.; Chitkushev, L.T.; Vodenska, I.; Trajanov, D. Ethically Responsible Machine Learning in Fintech. IEEE Access 2022, 10, 97531–97554. [Google Scholar] [CrossRef]
- Ferro-Diez, L.E.; Villegas, N.M.; Diaz-Cely, J.; Acosta, S.G. Geo-Spatial Market Segmentation Characterization Exploiting User Generated Text through Transformers Density-Based Clustering. IEEE Access 2021, 9, 55698–55713. [Google Scholar] [CrossRef]
- Wen, J.; Abe, T.; Suganuma, T. A Customer Behavior Recognition Method for Flexibly Adapting to Target Changes in Retail Stores. Sensors 2022, 22, 6740. [Google Scholar] [CrossRef]
- Pérez, S.N.C.; Borz, S.A. Improving the event-based classification accuracy in pit-drilling operations: An application by neural networks and median filtering of the acceleration input signal data. Sensors 2021, 21, 6288. [Google Scholar] [CrossRef]
- Bocean, C.G.; Puiu, S.; Vărzaru, A.A. Paradigm shifting—The use of mobile communications at work and the subsequent effects. Electronics 2021, 10, 2747. [Google Scholar] [CrossRef]
- Petroșanu, D.-M.; Pîrjan, A.; Căruţaşu, G.; Tăbușcă, A.; Zirra, D.-L.; Perju-Mitran, A. E-Commerce Sales Revenues Forecasting by Means of Dynamically Designing, Developing and Validating a Directed Acyclic Graph (DAG) Network for Deep Learning. Electronics 2022, 11, 2940. [Google Scholar] [CrossRef]
- Baraniuk, R.; Drossel, W.G. Smart modulation for control systems with high regulation capabilities for cooling systems optimisation and carbon footprint reduction in industry. Energies 2021, 14, 8578. [Google Scholar] [CrossRef]
- Khaleel, M.M.; Adzman, M.R.; Zali, S.M. An integrated of hydrogen fuel cell to distribution network system: Challenging and opportunity for D-STATCOM. Energies 2021, 14, 7073. [Google Scholar] [CrossRef]
- Hajek, P.; Barushka, A.; Munk, M. Fake consumer review detection using deep neural networks integrating word embeddings and emotion mining. Neural Comput. Appl. 2020, 32, 17259–17274. [Google Scholar] [CrossRef]
- Ogorodnyk, O.; Martinsen, K. Monitoring and Control for Thermoplastics Injection Molding A Review. Procedia CIRP 2018, 67, 380–385. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, C.; Wu, X.; Zhao, J.; Yin, D.; Zhang, X.; Chawla, N.V. Online purchase prediction via multi-scale modeling of behavior dynamics. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2613–2622. [Google Scholar]
- Bajic, B.; Suzic, N.; Simeunovic, N.; Moraca, S.; Rikalovic, A. Real-time Data Analytics Edge Computing Application for Industry 4.0: The Mahalanobis-Taguchi Approach. Int. J. Ind. Eng. Manag. 2020, 11, 146–156. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Ahmed, M.Y.; Owusu, P.A. Ambient air pollution and meteorological factors escalate electricity consumption. Sci. Total Environ. 2021, 795, 148841. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Hajderanj, L.; Fiske, J. Towards automated cost analysis, benchmarking and estimating in construction: A machine learning approach. In Proceedings of the Multi Conference on Computer Science and Information Systems, MCCSIS 2019—Proceedings of the International Conferences on Big Data Analytics, Data Mining and Computational Intelligence 2019 and Theory and Practice in Modern Computing 2019, Porto, Portugal, 16–19 July 2019; pp. 85–91. [Google Scholar]
- Thwe, Y.; Jongsawat, N.; Tungkasthan, A. A Semi-Supervised Learning Approach for Automatic Detection and Fashion Product Category Prediction with Small Training Dataset Using FC-YOLOv4. Appl. Sci. 2022, 12, 8068. [Google Scholar] [CrossRef]
- Wang, G.; Mang, S.L.; Riehl, B.; Huang, J.; Wang, G.; Xu, L.; Huang, K.; Innes, J. Climate change impacts and forest adaptation in the Asia–Pacific region: From regional experts’ perspectives. J. For. Res. 2019, 30, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Pal, P.; Mukherjee, V.; Kumar, P.; Elizabeth Makhatha, M. Viability analysis of direct current (DC) standalone hybrid photovoltaic (PV)/ hydrogen fuel cell (HFC) energy system: A techno-economic approach. Mater. Today Proc. 2020, 39, 1807–1812. [Google Scholar] [CrossRef]
Description | Results |
---|---|
“Timespan” | 2018:2022 |
“Sources” | 125 |
“Documents” | 164 |
“Annual Growth Rate %” | 47.35 |
“Document Average Age” | 2.23 |
“Average citations per doc” | 10.65 |
“References” | 7746 |
“Keywords Plus (ID)” | 1219 |
“Author’s Keywords (DE)” | 657 |
“Authors” | 722 |
“International co-authorships %” | 29.27 |
“Article” | 124 |
“Conference Paper” | 40 |
Relevant Sources | Docs | h_index | TCs | PY_start |
---|---|---|---|---|
“Sustainability (Switzerland)” | 8 | 4 | 100 | 2018 |
“IEEE Access” | 7 | 3 | 44 | 2019 |
“Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)” | 6 | 2 | 9 | 2019 |
“Applied Sciences (Switzerland)” | 4 | 3 | 26 | 2019 |
“Journal Of Physics: Conference Series” | 4 | 2 | 12 | 2018 |
“Procedia CIRP” | 3 | 2 | 85 | 2018 |
“Sensors” | 3 | 1 | 6 | 2021 |
“AIP Conference Proceedings” | 2 | 0 | 0 | 2021 |
“Electronics (Switzerland)” | 2 | 1 | 3 | 2021 |
“Energies” | 2 | 1 | 2 | 2021 |
Document Prepared by | DOI | Total Citations |
---|---|---|
Jadhav S, 2018 [60] | 10.1016/j.asoc.2018.04.033 | 160 |
Muhammad L J, 2021 [68] | 10.1007/s42979-020-00394-7 | 129 |
Langley D J, 2021 [34] | 10.1016/j.jbusres.2019.12.035 | 105 |
Taherei Ghazvinei P, 2018 [26] | 10.1080/19942060.2018.1526119 | 88 |
Nilashi M, 2019 [82] | 10.1016/j.jclepro.2019.01.012 | 73 |
Hajek P, 2020 [97] | 10.1007/s00521-020-04757-2 | 61 |
Awan M J, 2021 [61] | 10.32604/iasc.2021.014216 | 53 |
Saura J R, 2018 [56] | 10.3390/su10093016 | 48 |
Ogorodnyk O, 2018 [98] | 10.1016/j.procir.2017.12.229 | 46 |
Huang C, 2019 [99] | 10.1145/3292500.3330790 | 45 |
Label/Term | Weight (Occurrences) | Score (Avg. Pub. Year) | Industry Sector |
---|---|---|---|
artificial wolf-pack algorithm | 1 | 2018.00 | Technological |
business leadership | 1 | 2018.00 | Business |
digital agriculture | 1 | 2018.00 | Agriculture |
environmental factors | 1 | 2018.00 | Environmental |
environmental management | 1 | 2018.00 | Environmental |
eWOM | 1 | 2018.00 | Business |
evolutionary pathway | 1 | 2018.50 | Investigation |
commercial content | 1 | 2019.00 | Business |
data analytics | 2 | 2019.00 | Technological |
digital capability | 1 | 2019.00 | Technological |
food and agricultural ethics | 1 | 2019.00 | Agriculture |
generative adversarial networks | 2 | 2019.50 | Technological |
big data | 4 | 2019.75 | Technological |
prediction | 6 | 2019.83 | Technological |
accuracy | 1 | 2020.00 | Technological |
advanced manufacturing | 1 | 2020.00 | Manufacturing |
applications | 1 | 2020.00 | Technological |
assembly | 1 | 2020.00 | Manufacturing |
CIO | 1 | 2020.00 | Business |
clustering | 1 | 2020.00 | Technological |
data management | 1 | 2020.00 | Technological |
digital migration | 1 | 2020.00 | Public services |
exploratory projection pursuit | 1 | 2020.00 | Finance |
GDP | 3 | 2020.00 | Finance |
genetic algorithm in wrapper | 1 | 2020.00 | Technological |
human capital | 1 | 2020.00 | Business |
industrial big data | 1 | 2020.00 | Manufacturing |
industrial internet of things | 1 | 2020.00 | Manufacturing |
object recognition | 2 | 2020.00 | Technological |
e-commerce | 3 | 2020.33 | Business |
hydrogen fuel cell (HFC) | 1 | 2020.50 | Energy |
personalization | 2 | 2020.50 | Business |
sentiment analysis | 3 | 2020.67 | Technological |
industry 4.0 | 5 | 2020.80 | Manufacturing |
machine learning | 33 | 2020.88 | Technological |
acceleration signal | 1 | 2021.00 | Education |
air purifier development | 1 | 2021.00 | Health |
black Friday sales | 1 | 2021.00 | Business |
cellular agriculture | 1 | 2021.00 | Agriculture |
cloud | 1 | 2021.00 | Technological |
co-creation | 1 | 2021.00 | Business |
commuting | 1 | 2021.00 | Transportation |
content automation | 1 | 2021.00 | Business |
control techniques | 1 | 2021.00 | Education |
correlation and regression analysis | 1 | 2021.00 | Technological |
deep learning | 11 | 2021.00 | Technological |
democracy | 1 | 2021.00 | Public services |
digital specialists | 1 | 2021.00 | Business |
forestry | 1 | 2021.00 | Forestry |
gaming | 1 | 2021.00 | Entertainment |
higher vocational education | 1 | 2021.00 | Education |
housing price | 1 | 2021.00 | Business |
latent Dirichlet allocation | 2 | 2021.00 | Technological |
neural networks | 3 | 2021.00 | Technological |
pandemic | 2 | 2021.00 | Health |
social media | 3 | 2021.00 | Technological |
natural language processing | 7 | 2021.14 | Technological |
data mining | 3 | 2021.33 | Technological |
artificial neural networks | 4 | 2021.50 | Technological |
consumer demand | 2 | 2021.50 | Business |
information gain | 1 | 2021.50 | Technological |
time series forecasting | 2 | 2021.50 | Finance |
COVID-19 | 7 | 2021.57 | Health |
online reviews | 3 | 2021.67 | Business |
ability to learn | 1 | 2022.00 | Education |
AI adoption challenges | 1 | 2022.00 | Business |
AI opportunities | 1 | 2022.00 | Business |
AI-based systems | 1 | 2022.00 | Technological |
anthropomorphism | 1 | 2022.00 | Investigation |
bankruptcy prediction | 2 | 2022.00 | Finance |
c45 | 1 | 2022.00 | Technological |
c89 | 1 | 2022.00 | Public services |
challenges of distribution network system (DNS) | 1 | 2022.00 | Technological |
city manager | 1 | 2022.00 | Public services |
construction ecosystem | 1 | 2022.00 | Construction |
construction technology | 1 | 2022.00 | Construction |
consumer response | 1 | 2022.00 | Business |
COVID-19 response | 1 | 2022.00 | Health |
credit scoring | 1 | 2022.00 | Finance |
d12 | 1 | 2022.00 | Entertainment |
diagnosis | 1 | 2022.00 | Health |
distribution static synchronous compensator (d-statcom) | 1 | 2022.00 | Energy |
energy storages system (ESS) | 1 | 2022.00 | Energy |
energy-related Co2 emissions | 1 | 2022.00 | Environmental |
function point analysis | 2 | 2022.00 | Technological |
Heroku | 1 | 2022.00 | Technological |
information trustworthiness | 1 | 2022.00 | Technological |
local government | 2 | 2022.00 | Public services |
LSTM | 2 | 2022.00 | Technological |
software effort estimation | 2 | 2022.00 | Technological |
technology adoption | 2 | 2022.00 | Technological |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espina-Romero, L.; Noroño Sánchez, J.G.; Gutiérrez Hurtado, H.; Dworaczek Conde, H.; Solier Castro, Y.; Cervera Cajo, L.E.; Rio Corredoira, J. Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives. Sustainability 2023, 15, 12176. https://doi.org/10.3390/su151612176
Espina-Romero L, Noroño Sánchez JG, Gutiérrez Hurtado H, Dworaczek Conde H, Solier Castro Y, Cervera Cajo LE, Rio Corredoira J. Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives. Sustainability. 2023; 15(16):12176. https://doi.org/10.3390/su151612176
Chicago/Turabian StyleEspina-Romero, Lorena, José Gregorio Noroño Sánchez, Humberto Gutiérrez Hurtado, Helga Dworaczek Conde, Yessenia Solier Castro, Luz Emérita Cervera Cajo, and Jose Rio Corredoira. 2023. "Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives" Sustainability 15, no. 16: 12176. https://doi.org/10.3390/su151612176
APA StyleEspina-Romero, L., Noroño Sánchez, J. G., Gutiérrez Hurtado, H., Dworaczek Conde, H., Solier Castro, Y., Cervera Cajo, L. E., & Rio Corredoira, J. (2023). Which Industrial Sectors Are Affected by Artificial Intelligence? A Bibliometric Analysis of Trends and Perspectives. Sustainability, 15(16), 12176. https://doi.org/10.3390/su151612176