Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Region
2.2. LUMIP Models
2.3. Data Sources
2.4. Overall Methodology
3. Results
3.1. Evaluation of LUMIP Model Outputs
3.2. Temporal Pattern of LULCC
3.3. Temporal Analysis of Precipitation Effects
3.4. Temporal Analysis of Temperature Effects
3.5. Relative Contribution of Different Types of LULCC
3.6. Mann–Kendall and ANOVA Significance Tests
3.7. Spatial Changes in Precipitation, Temperature, and Land Use
4. Discussion
4.1. Trends in Precipitation Variation
4.2. Trends in Temperature Variation
4.3. Correlation between Vegetation Cover and Precipitation and Temperature
4.4. Influence of LULCC on Spatial Variation in Precipitation
4.5. Influence of LULCC on Spatial Variation in Temperature
4.6. Summary of Discussion
5. Conclusions
- We evaluated the simulation performance of four LUMIP models and found them to be capable of adequately simulating precipitation and temperature.
- Our analysis of temporal changes in land use revealed a decrease in forestland and an increase in grassland and cropland proportions from 1850 to 2014. Precipitation showed a decreasing trend, with summer contributing the most to annual precipitation. Temperature exhibited a slight increase over the study period, with a more significant increase observed from 1951 to 2014.
- LULCC’s effects on the climate were revealed by comparing the results of the four LUMIP models between the historical and hist-noLu experiments. The analysis showed that for precipitation, the annual simulated hist-noLu precipitation decrease (208.27 mm/1000 a) was relatively slow in comparison with the simulated historical decrease (340.50 mm/1000 a). Similarly, for temperature, the annual simulated hist-noLu temperature decrease (3.26 °C/(1000 a)) was relatively gentle in comparison with the simulated historical decrease (5.96 °C/(1000 a)) during 1850–2014.
- The relationship between LULCC and the differences in historical and hist-noLu simulations provided important insights. LULCC affected precipitation and temperature through changes in surface properties such as albedo, roughness, net radiation, and latent heat. Forestland generally exhibited higher precipitation compared to grassland and cropland, while only in Northern China did forestland show higher temperatures. The rankings of the relative contributions of different vegetation covers to precipitation and temperature differences were identified. Cropland, grassland, and forestland emerged as the main influencing factors.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gao, C.J.; Zhou, P.; Jia, P.; Liu, Z.Y.; Wei, L.; Tian, H.L. Spatial driving forces of dominant land use/land cover transformations in the Dongjiang River watershed, Southern China. Environ. Monit. Assess. 2016, 188, 84. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Li, S.Y.; Yu, S.X. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China. Environ. Monit. Assess. 2016, 188, 54. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.S. Rice to shrimp: Land use land cover changes and soil degradation in Southwestern Bangladesh. Land Use Policy 2006, 23, 421–435. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, C. Impacts of afforestation, deforestation, and reforestation on forest cover in China from 1949 to 2003. J. For. 2006, 104, 383–387. [Google Scholar]
- Lopez, E.; Bocco, G.; Mendoza, M.; Duhau, E. Predicting land-cover and land-use change in the urban fringe—A case in Morelia city, Mexico. Landsc. Urban Plan 2001, 55, 271–285. [Google Scholar] [CrossRef]
- Swanwick, C.; Dunnett, N.; Woolley, H. Nature, role and value of green space in towns and cities: An overview. Built Environ. 2003, 29, 94–106. [Google Scholar] [CrossRef]
- Kong, F.H.; Nakagoshi, N. Spatial-temporal gradient analysis of urban green spaces in Jinan, China. Landsc. Urban Plan 2006, 78, 147–164. [Google Scholar] [CrossRef]
- Yang, H.F.; Zhong, X.N.; Deng, S.Q.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Zhu, Z.P.; Wang, G.Y.; Dong, J.W. Correlation analysis between land use/cover change and air pollutants-a case study in Wuyishan City. Energies 2019, 12, 2545. [Google Scholar] [CrossRef] [Green Version]
- Paeth, H.; Born, K.; Girmes, R.; Podzun, R.; Jacob, D. Regional climate change in Tropical and Northern Africa due to greenhouse forcing and land use changes. J. Clim. 2009, 22, 114–132. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Riley, W.J.; Zhu, Q.; Tang, J.; Zeng, Z.; Bisht, G.; Randerson, J.T. Improving representation of deforestation effects on evapotranspiration in the E3SM land model. J. Adv. Model. Earth Syst. 2019, 11, 2412–2427. [Google Scholar] [CrossRef] [Green Version]
- Pitman, A.J.; Zhao, M. The relative impact of observed change in land cover and carbon dioxide as simulated by a climate model. Geophys. Res. Lett. 2000, 27, 1267–1270. [Google Scholar] [CrossRef]
- Pielke, R.; Beven, K.; Brasseur, G.; Calvert, J.; Chahine, M.; Dickerson, R.R.; Entekhabi, D.; Foufoula-Georgiou, E.; Gupta, H.; Gupta, V.; et al. Climate change: The need to consider human forcings besides greenhouse gases. Eos Trans. Am. Geophys. Union 2009, 90, 413. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Ewane, E.B.; Lee, H.H. Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon. J. Mt. Sci. 2020, 17, 50–67. [Google Scholar] [CrossRef]
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.G.; Bai, X.M.; Briggs, J.M. Global change and the ecology of cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; He, S.W.; Cui, J.X. A multi-level and multi-dimensional measuring on urban sprawl: A case study in Wuhan Metropolitan Area, Central China. Sustainability 2014, 6, 3571–3598. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.X.; Chen, J.L.; Cheng, W.Y.; Sun, C.; Zhao, S.S.; Pu, Y.X. Spatiotemporal dynamics of the urban sprawl in a typical urban agglomeration: A case study on Southern Jiangsu, China (1983–2007). Front. Earth Sci. 2014, 8, 490–504. [Google Scholar] [CrossRef]
- Guneralp, B.; Perlstein, A.S.; Seto, K.C. Balancing urban growth and ecological conservation: A challenge for planning and governance in China. Ambio 2015, 44, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.S.; Tao, F.L.; Liu, J.Y.; Zhang, S.; Xiao, D.P.; Wang, M.; Zhang, H.; Bai, H.Z. Effects of land use/cover change on land surface energy partitioning and climate in Northeast China. Theor. Appl. Climatol. 2016, 123, 141–150. [Google Scholar] [CrossRef]
- Trail, M.; Tsimpidi, A.P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Stone, B.; Russell, A.G. Potential impact of land use change on future regional climate in the Southeastern U.S.: Reforestation and crop land conversion. J. Geophys. Res. Atmos. 2013, 118, 11577–11588. [Google Scholar] [CrossRef]
- Liu, J.Y.; Shao, Q.Q.; Yan, X.D.; Fan, J.W.; Zhan, J.Y.; Deng, X.Z.; Kuang, W.H.; Huang, L. The climatic impacts of land use and land cover change compared among countries. J. Geogr. Sci. 2016, 26, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, W.J.; Liu, Z.; Wang, L.; Zhang, W.; Zou, Y.; Jiang, M. Combined effects of multi-land use decisions and climate change on water-related ecosystem services in Northeast China. J. Environ. Manag. 2022, 315, 115131. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Zheng, Z.; Liu, Y.; Wang, Z.; Cong, N.; Zu, J.; Tang, Z.; Zhao, G.; Gao, J.; et al. Converted vegetation type regulates the vegetation greening effects on land surface albedo in arid regions of China. Agric. For. Meteorol. 2022, 324, 109119. [Google Scholar] [CrossRef]
- Cai, P.; Hamdi, R.; Luo, G.; He, H.; Zhang, M.; Termonia, P.; De Maeyer, P. Agriculture intensification increases summer precipitation in Tianshan Mountains, China. Atmos. Res. 2019, 227, 140–146. [Google Scholar] [CrossRef]
- Qi, W.; Li, H.; Zhang, Q.; Zhang, K. Forest restoration efforts drive changes in land-use/land-cover and water-related ecosystem services in China’s Han River basin. Ecol. Eng. 2019, 126, 64–73. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Liu, M.L.; Tian, H.Q.; Chen, G.S.; Ren, W.; Zhang, C.; Liu, J.Y. Effects of land-use and land-cover change on evapotranspiration and water yield in China during 1900–2000. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1193–1207. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using remote sensing and GIS to detect and monitor land use and land cover change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Leng, G. Global effects of different types of land use and land cover changes on near-surface air temperature. Agric. For. Meteorol. 2022, 327, 109232. [Google Scholar] [CrossRef]
- Li, X.; Fang, G.; Wen, X.; Xu, M.; Zhang, Y. Characteristics analysis of drought at multiple spatiotemporal scale and assessment of CMIP6 performance over the Huaihe River Basin. J. Hydrol. Reg. Stud. 2022, 41, 101103. [Google Scholar] [CrossRef]
- Liang, Y.; Xu, X.Y.; Jia, G.S. Deforestation drives desiccation in Global Monsoon Region. Earths Future 2022, 10, e2022EF002863. [Google Scholar] [CrossRef]
- Gu, Y.; Li, D. A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Clim. 2018, 24, 982–993. [Google Scholar] [CrossRef]
- Huang, L.; Zhai, J.; Liu, J.; Sun, C. The moderating or amplifying biophysical effects of afforestation on CO2-induced cooling depend on the local background climate regimes in China. Agric. For. Meteorol. 2018, 260–261, 193–203. [Google Scholar] [CrossRef]
- Sohl, T.L.; Wimberly, M.C.; Radeloff, V.C.; Theobald, D.M.; Sleeter, B.M. Divergent projections of future land use in the United States arising from different models and scenarios. Ecol. Model. 2016, 337, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Hurtt, G.C.; Arneth, A.; Brovkin, V.; Calvin, K.V.; Jones, A.D.; Jones, C.D.; Lawrence, P.J.; de Noblet-Ducoudre, N.; Pongratz, J.; et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev. 2016, 9, 2973–2998. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.H.; Miao, Y.; Shi, X.L. Overview and review of CMIP6 land use model comparison program (LUMIP). Adv. Clim. Chang. Res. 2021, 17, 367–373. [Google Scholar]
- Hurtt, G.C.; Chini, L.; Sahajpal, R.; Frolking, S.; Bodirsky, B.L.; Calvin, K.; Doelman, J.C.; Fisk, J.; Fujimori, S.; Goldewijk, K.K.; et al. Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6. Geosci. Model Dev. 2020, 13, 5425–5464. [Google Scholar] [CrossRef]
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef] [Green Version]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; Van Oost, K.; Casanova Pinto, M.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Zagal Venegas, E. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Hicks Pries, C.E. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Oster, E. Unobservable selection and coefficient stability: Theory and evidence. J. Bus. Econ. Stat. 2019, 37, 187–204. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar] [CrossRef]
- Su, Y.F.; Zhao, C.F.; Wang, Y.; Ma, Z.S. Spatiotemporal variations of precipitation in China using surface gauge observations from 1961 to 2016. Atmosphere 2020, 11, 303. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.H.; Xu, M.; Henderson, M.; Qi, Y. Observed trends of precipitation amount, frequency, and intensity in China, 1960-2000. J. Geophys. Res. Atmos. 2005, 110, D08103. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, C.Y.; Zhang, Z.; Chen, Y.D.; Liu, C.L. Spatial and temporal variability of precipitation over China, 1951–2005. Theor. Appl. Climatol. 2009, 95, 53–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, Y.; Ren, G.; Wang, G. Precipitation trends over Mainland China from 1961–2016 after removal of measurement biases. J. Geophys. Res. Atmos. 2020, 125, e2019JD031728. [Google Scholar] [CrossRef]
- Mao, Y.N.; Wu, G.C.; Xu, G.Z.; Wang, K.C. Reduction in precipitation seasonality in China from 1960 to 2018. J. Clim. 2022, 35, 227–248. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Moradian, S.; Izadi, A.; Aghakouchak, A. Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmos. Res. 2021, 250, 105369. [Google Scholar] [CrossRef]
- Li, Y.F.; Leung, L.R. Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China. J. Clim. 2013, 26, 899–917. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, S.; He, J.; Li, J.; Liang, J. Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China. Meteorol. Atmos. Phys. 2008, 100, 101–119. [Google Scholar] [CrossRef]
- Ju, J.H.; Lu, J.M.; Cao, J.; Ren, J.Z. Possible impacts of the Arctic oscillation on the interdecadal variation of summer monsoon rainfall in East Asia. Adv. Atmos. Sci. 2005, 22, 39–48. [Google Scholar]
- Cao, L.J.; Yan, Z.W.; Zhao, P.; Zhu, Y.N.; Yu, Y.; Tang, G.L.; Jones, P. Climatic warming in China during 1901-2015 based on an extended dataset of instrumental temperature records. Environ. Res. Lett. 2017, 12, 064005. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Sun, Y. Anthropogenic influence on temperature change in China over the period 1901–2018. J. Clim. 2023, 36, 2131–2146. [Google Scholar] [CrossRef]
- Argiriou, A.A.; Li, Z.; Armaos, V.; Mamara, A.; Shi, Y.; Yan, Z. Homogenised monthly and daily temperature and precipitation time series in China and Greece since 1960. Adv. Atmos. Sci. 2023, 40, 1326–1336. [Google Scholar] [CrossRef]
- Cao, F.; Dan, L.; Ma, Z.; Gao, T. The impact of land use and land cover change on regional climate over East Asia during 1980–2010 using a coupled model. Theor. Appl. Climatol. 2021, 145, 549–565. [Google Scholar] [CrossRef]
- Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. Effects of land cover conversion on surface climate. Clim. Chang. 2002, 52, 29–64. [Google Scholar] [CrossRef]
- Brovkin, V.; Ganopolski, A.; Claussen, M.; Kubatzki, C.; Petoukhov, V. Modelling climate response to historical land cover change. Glob. Ecol. Biogeogr. 1999, 8, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Betts, A.K.; Ball, J.H. Albedo over the boreal forest. J. Geophys. Res. Atmos. 1997, 102, 28901–28909. [Google Scholar] [CrossRef] [Green Version]
- Javed, T.; Yao, N.; Chen, X.G.; Suon, S.; Li, Y. Drought evolution indicated by meteorological and remote-sensing drought indices under different land cover types in China. Environ. Sci. Pollut. Res. 2020, 27, 4258–4274. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Liu, Y.; Baig, M.H.A. Biophysical effect of conversion from croplands to grasslands in water-limited temperate regions of China. Sci. Total Environ. 2019, 648, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhang, D.; Chen, Z.; Pal, J.S.; Giorgi, F. Land use effects on climate in China as simulated by a regional climate model. Sci. China Ser. D Earth Sci. 2007, 50, 620–628. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, X.; Tang, J.; Yang, L.; Wang, J.; Xu, Y. Climate feedbacks associated with land-use and land-cover change on hydrological extremes over the Yangtze River Delta Region, China. J. Hydrol. 2023, 623, 129855. [Google Scholar] [CrossRef]
- Pielke Sr, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.Z.; Wang, D.S.; Yang, L.; Wu, J.; Ziegler, A.D.; Liu, M.F.; Ciais, P.; Searchinger, T.D.; Yang, Z.L.; Chen, D.L.; et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 2021, 14, 23–29. [Google Scholar] [CrossRef]
- Wang, M.; Xiong, Z.; Yan, X. Modeling the climatic effects of the land use/cover change in eastern China. Phys. Chem. Earth Parts A/B/C 2015, 87–88, 97–107. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ouyang, Z.; Tam, C.; Chen, X. Ecological and socioeconomic effects of China’s policies for ecosystem services. Proc. Natl. Acad. Sci. USA 2008, 105, 9477–9482. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.X.J.; Zhu, Q.; Zheng, S.Y.; Zhao, L.; Chen, M.; Riley, W.J.; Cai, X.T.; Ma, H.X.; Li, F.; Wu, H.Y.; et al. Deforestation reshapes land-surface energy-flux partitioning. Environ. Res. Lett. 2021, 16, 024014. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.L.; Chen, A.P.; Ciais, P.; Li, L.Z.X. Local and teleconnected temperature effects of afforestation and vegetation greening in China. Natl. Sci. Rev. 2020, 7, 897–912. [Google Scholar] [CrossRef] [PubMed]
Model | Affiliation | Spatial Resolution (Latitude × Longitude) | Atmosphere Vertical Layers | Atmospheric Model | Ocean Model |
---|---|---|---|---|---|
BCC-CSM2-MR | BCC (China) | 1.12° × 1.125° | 40 | BCC_AGCM3_MR | MOM4 |
CESM2 | NCAR (USA) | 0.9° × 1.25° | 33 | CAM6 | POP2 |
IPSL-CM6A-LR | IPSL (France) | 1.27° × 2.5° | 75 | LMDZ | NEMO-OPA |
UKESM1 | MOHC (England) | 1.25° × 1.875° | 75 | MetUM-HadGEM3-GA7.1 | NEMO-HadGEM3-GO6.0 |
Variable | k Value | Model p Value | Vegetation Cover Change | Variable p Value | Variance Inflation Factor |
---|---|---|---|---|---|
pr | 0.135 | 0.020 | forestland | 0.041 | 0.299 |
shrub land | 0.349 | 1.152 | |||
grassland | 0.024 | 0.953 | |||
cropland | 0.003 | 0.582 | |||
tas | 0.030 | 0.000 | forestland | 0.018 | 1.130 |
shrub land | 0.393 | 4.459 | |||
grassland | 0.047 | 1.599 | |||
cropland | 0.226 | 2.173 |
Variable | Group | Count | Mean Value | Standard Deviation |
---|---|---|---|---|
pr | 1 | 34 | 822.3 | 18.445 |
2 | 34 | 805.128 | 19.07 | |
Pooling | 68 | 813.714 | 18.7601 | |
Bartlett statistic | 0.0361 | |||
Degrees of freedom | 1 | |||
p value | 0.84932 | |||
tas | 1 | 34 | 5.67178 | 0.46258 |
2 | 34 | 5.45358 | 0.44967 | |
Pooling | 68 | 5.56268 | 0.45617 | |
Bartlett statistic | 0.02607 | |||
Degrees of freedom | 1 | |||
p value | 0.87173 |
Variable | Source | Sums of Squares | Degrees of Freedom | Mean Square | F | p Value (F) |
---|---|---|---|---|---|---|
pr | Column | 5013 | 1 | 5012.98 | 14.24 | 0.0003 |
Error | 23,228.1 | 66 | 351.94 | |||
Total | 28,241.1 | 67 | ||||
tas | Column | 0.8094 | 1 | 0.80942 | 3.89 | 0.0528 |
Error | 13.734 | 66 | 0.20809 | |||
Total | 14.5434 | 67 |
Section | Finding | Explanation |
---|---|---|
Trend analysis of precipitation and temperature variation | Relatively modest decreased trend in precipitation | A longer time series and more precise data may lead to more reliable results, but the error in CMIP6 also indicates the further confirmation. |
The highest decrease contribution was in summer | ||
Relatively modest increased trend in temperature | ||
Highlights of trend analysis | Abnormal precipitation patterns in the 1970s | High-index polarity of the Arctic Oscillation affecting the East Asian Summer Monsoon. |
Obvious interdecadal variations in temperature, which is consistent with LULCC | LULCC might have impacts on the interdecadal variation. | |
Correlation between Vegetation Cover and Precipitation and Temperature | Significant role of the conversion from forestland to grassland and cropland in the decrease in precipitation | The RC of forestland, grassland change, and cropland change to the precipitation and temperature differences was statistically significant, while the properties of these land covers are quite different. |
Significant impacts of cropland and grassland change on temperature variations | ||
Highlights of correlation analysis | Relatively modest decreased trend in precipitation in some areas | The higher evaporation capacity and more water input reversed the decrease resulting from the conversion from forestlands to grasslands. |
Relatively modest difference between historical and hist-noLu temperatures in some areas | The more important evaporation effects in low elevation offset the albedo influence and helped to maintain the temperature. | |
Precipitation and temperature differences beyond areas directly impacted by LULCC | Land–atmosphere interactions and China’s monsoon climate characteristics led to these far-reaching effects of LULCC. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, P.; Jian, B.; Li, J.; Cai, X.; Wei, J.; Zhang, G. Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models. Sustainability 2023, 15, 12191. https://doi.org/10.3390/su151612191
Tian P, Jian B, Li J, Cai X, Wei J, Zhang G. Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models. Sustainability. 2023; 15(16):12191. https://doi.org/10.3390/su151612191
Chicago/Turabian StyleTian, Peizhi, Binyang Jian, Jianrui Li, Xitian Cai, Jiangfeng Wei, and Guo Zhang. 2023. "Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models" Sustainability 15, no. 16: 12191. https://doi.org/10.3390/su151612191
APA StyleTian, P., Jian, B., Li, J., Cai, X., Wei, J., & Zhang, G. (2023). Land-Use-Change-Induced Cooling and Precipitation Reduction in China: Insights from CMIP6 Models. Sustainability, 15(16), 12191. https://doi.org/10.3390/su151612191