Assessing the Efficiency of Green Absorbent in Treating Nutrients and Heavy Metal in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Pellet Formation
2.2. Batch Sorption Experiments
2.3. Pellet Optimization Process
2.4. Removal Efficiencies Analysis
- C0 = Initial concentration of sorbate in solution (mg/L);
- Ce = Equilibrium concentration of sorbate (mg/L).
- C0 = Initial concentrations of aqueous solution for N and P (mg/L);
- Ce = Equilibrium concentration of aqueous solution for N and P (mg/L);
- m = Sorbent mass (g);
- V = Aqueous solution volume (L).
3. Results and Discussion
3.1. Preliminary Batch Adsorption Results
3.2. Performance of Optimized Pellet
3.2.1. Pellet Size
3.2.2. Pre-Treatment with Calcium Hydroxide (Hydrated Lime)
3.2.3. Removal Performance of Heavy Metals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaseen, Z.M.; Ehteram, M.; Hossain, S.; Fai, C.M.; Koting, S.B.; Mohd, N.S.; Jaafar, W.Z.B.; Afan, H.A.; Hin, L.S.; Zaini, N.; et al. A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems. Sustainability 2019, 11, 1953. [Google Scholar] [CrossRef] [Green Version]
- Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Teo, F.Y.; Ebrahimi, M.; Fai, C.M.; Huang, Y.F.; El-Shafie, A. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm. Environ. Sci. Pollut. Res. 2020, 27, 38094–38116. [Google Scholar] [CrossRef]
- Alizamir, M.; Kisi, O.; Ahmed, A.N.; Mert, C.; Fai, C.M.; Kim, S.; Kim, N.W.; El-Shafie, A. Advanced machine learning model for better prediction accuracy of soil temperature at different depths. PLoS ONE 2020, 15, e0231055. [Google Scholar] [CrossRef] [Green Version]
- Chow, M.F.; Abu Bakar, M.F.; Sidek, L.M.; Basri, H. Effects of substrate types on runoff retention performance within the extensive green roofs. J. Eng. Appl. Sci. 2017, 12, 5379–5383. [Google Scholar]
- Razali, A.; Ismail, S.N.S.; Awang, S.; Praveena, S.M.; Abidin, E.Z. Land use change in highland area and its impact on river water quality: A review of case studies in Malaysia. Ecol. Process 2018, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Camara, M.; Jamil, N.R.; Bin Abdullah, A.F. Impact of land uses on water quality in Malaysia: A review. Ecol. Process 2019, 8, 10. [Google Scholar] [CrossRef]
- Costache, R.; Pham, Q.B.; Corodescu-Roșca, E.; Cîmpianu, C.; Hong, H.; Linh, N.T.T.; Fai, C.M.; Ahmed, A.N.; Vojtek, M.; Pandhiani, S.M.; et al. Using GIS, Remote Sensing, and Machine Learning to Highlight the Correlation between the Land-Use/Land-Cover Changes and Flash-Flood Potential. Remote Sens. 2020, 12, 1422. [Google Scholar] [CrossRef]
- Chow, M.F.; Lai, C.-C.; Kuo, H.-Y.; Lin, C.-H.; Chen, T.-Y.; Shiah, F.-K. Long Term Trends and Dynamics of Dissolved Organic Carbon (DOC) in a Subtropical Reservoir Basin. Water 2017, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Jurczak, T.; Wojtal-Frankiewicz, A.; Frankiewicz, P.; Kaczkowski, Z.; Oleksińska, Z.; Bednarek, A.; Zalewski, M. Comprehensive approach to restoring urban recreational reservoirs. Part 2–Use of zooplankton as indicators for the ecological quality assessment. Sci. Total Environ. 2019, 653, 1623–1640. [Google Scholar]
- Mansor, M. Noxious floating weeds of Malaysia. Hydrobiologia 1996, 340, 121–125. [Google Scholar] [CrossRef]
- Nur, T.; Loganathan, P.; Ahmed, M.B.; Johir, M.; Kandasamy, J.; Vigneswaran, S. Struvite production using membrane-bioreactor wastewater effluent and seawater. Desalination 2018, 444, 1–5. [Google Scholar] [CrossRef]
- Perera, M.K.; Englehardt, J.D.; Dvorak, A.C. Technologies for Recovering Nutrients from Wastewater: A Critical Review. Environ. Eng. Sci. 2019, 36, 511–529. [Google Scholar] [CrossRef]
- Prot, T.; Nguyen, V.; Wilfert, P.; Dugulan, A.; Goubitz, K.; De Ridder, D.; Korving, L.; Rem, P.; Bouderbala, A.; Witkamp, G.-J.; et al. Magnetic separation and characterization of vivianite from digested sewage sludge. Sep. Purif. Technol. 2019, 224, 564–579. [Google Scholar] [CrossRef]
- Venkiteshwaran, K.; McNamara, P.J.; Mayer, B.K. Meta-analysis of non-reactive phosphorus in water, wastewater, and sludge, and strategies to convert it for enhanced phosphorus removal and recovery. Sci. Total Environ. 2018, 644, 661–674. [Google Scholar] [CrossRef]
- Carrillo, V.; Fuentes, B.; Gómez, G.; Vidal, G. Characterization and recovery of phosphorus from wastewater by combined technologies. Rev. Environ. Sci. Bio/Technol. 2020, 19, 389–418. [Google Scholar] [CrossRef]
- Solayman, H.; Hossen, A.; Aziz, A.A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.-D. Performance evaluation of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Godil, D.I.; Yu, Z.; Abbas, F.; Shamim, M.A. Adoption of renewable energy sources, low-carbon initiatives, and advanced logistical infrastructure—An step toward integrated global progress. Sustain. Dev. 2021, 30, 275–288. [Google Scholar]
- Nguyen, N.T.H.; Tran, G.T.; Nguyen, N.T.T.; Nguyen, T.T.T.; Nguyen, D.T.C.; Van Tran, T. A critical review on the biosynthesis, properties, applications and future outlook of green MnO2 nanoparticles. Environ. Res. 2023, 231, 116262. [Google Scholar] [CrossRef]
- Khan, S.A.R.; Ponce, P.; Yu, Z.; Golpîra, H.; Mathew, M. Environmental technology and wastewater treatment: Strategies to achieve environmental sustainability. Chemosphere 2021, 286, 131532. [Google Scholar] [CrossRef]
- Rahman, M.A.; Haque, S.; Athikesavan, M.M.; Kamaludeen, M.B. A review of environmental friendly green composites: Production methods, current progresses, and challenges. Environ. Sci. Pollut. Res. 2023, 30, 16905–16929. [Google Scholar] [CrossRef]
- Jagaba, A.; Kutty, S.; Hayder, G.; Baloo, L.; Ghaleb, A.; Lawal, I.; Abubakar, S.; Al-Dhawi, B.; Almahbashi, N.; Umaru, I. Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Eng. J. 2021, 12, 57–64. [Google Scholar] [CrossRef]
- Siuki, A.K.; Shahidi, A.; Taherian, P.; Zeraatkar, Z. Comparing natural and mineral adsorbents in removing chromium from aquatic environment. Ain Shams Eng. J. 2021, 12, 2593–2601. [Google Scholar] [CrossRef]
- Salimi, A.H.; Shamshiri, A.; Jaberi, E.; Bonakdari, H.; Akhbari, A.; Delatolla, R.; Hassanvand, M.R.; Agharazi, M.; Huang, Y.F.; Ahmed, A.N.; et al. Total iron removal from aqueous solution by using modified clinoptilolite. Ain Shams Eng. J. 2021, 13, 101495. [Google Scholar] [CrossRef]
- Saeed, A.A.H.; Harun, N.Y.; Nasef, M.M.; Al-Fakih, A.; Ghaleb, A.A.S.; Afolabi, H.K. Removal of cadmium from aqueous solution by optimized rice husk biochar using response surface methodology. Ain Shams Eng. J. 2021, 13, 101516. [Google Scholar] [CrossRef]
- Sulyman, M.; Namiesnik, J.; Gierak, A. Low-cost Adsorbents Derived from Agricultural By-products/Wastes for Enhancing Contaminant Uptakes from Wastewater: A Review. Pol. J. Environ. Stud. 2017, 26, 479–510. [Google Scholar] [CrossRef]
- Maafa, I.M.; Bakather, O.Y. Preparation and application of Poly (N-formylpiperidine) in the adsorption of Pb(II) from liquid phase. Ain Shams Eng. J. 2020, 11, 1367–1375. [Google Scholar] [CrossRef]
- Vera, I.; Araya, F.; Andrés, E.; Sáez, K.; Vidal, G. Enhanced phosphorus removal from sewage in mesocosm-scale constructed wetland using zeolite as medium and artificial aeration. Environ. Technol. 2014, 35, 1639–1649. [Google Scholar] [CrossRef]
- Wan, C.; Ding, S.; Zhang, C.; Tan, X.; Zou, W.; Liu, X.; Yang, X. Simultaneous recovery of nitrogen and phosphorus from sludge fermentation liquid by zeolite adsorption: Mechanism and application. Sep. Purif. Technol. 2017, 180, 1–12. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017. [Google Scholar]
- Amanda, L.A. On-Site Phosphorus Removal from Wastewater. Master’s Thesis, Ryerson University, Toronto, ON, Canada, 2012. [Google Scholar]
- Razali, M.; Zhao, Y.; Bruen, M. Effectiveness of a drinking-water treatment sludge in removing different phosphorus species from aqueous solution. Sep. Purif. Technol. 2007, 55, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Carlson, A.C.; Ingraham, J.L. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 1983, 45, 1247–1253. [Google Scholar] [CrossRef]
- Jayaweera, M.; Kasturiarachchi, J. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms). Water Sci. Technol. 2004, 50, 217–225. [Google Scholar] [CrossRef]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Sprynskyy, M.; Buszewski, B.; Terzyk, A.P.; Namieśnik, J. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J. Colloid Interface Sci. 2006, 304, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Inglezakis, V.J.; Loizidou, M.M.; Grigoropoulou, H.P. Ion exchange studies on natural and modified zeolites and the concept of exchange site accessibility. J. Colloid Interface Sci. 2004, 275, 570–576. [Google Scholar] [CrossRef]
- Mukhopadhyay, M.; Noronha, S.; Suraishkumar, G. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass. Bioresour. Technol. 2007, 98, 1781–1787. [Google Scholar] [CrossRef]
- Mohammad, M.M.R.; Parisa, R.; Atefeh, A.; Ali, R.K. Kinetics and equilibrium studies on biosorption of cadmium, lead and nickel ions from aqueous solutions by intact and chemically modified brown algae. J. Hazard. Mater. 2011, 185, 401–407. [Google Scholar]
- SenthilKumar, P.; Ramalingam, S.; Sathyaselvabala, V.; Kirupha, S.D.; Sivanesan, S. Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination 2011, 266, 63–71. [Google Scholar] [CrossRef]
- Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics. J. Hazard. Mater. 2010, 184, 126–134. [Google Scholar] [CrossRef]
Parameter | Qmax (mg/g) | Removal Percentage (%) for Wastewater Concentration | |
---|---|---|---|
5 mg/L | 35 mg/L | ||
PO4 | 0.112 | 90 | 65.7 |
TP | 0.083 | 86 | 60.9 |
NO3 | 0.171 | 94 | 78.6 |
TN | 0.151 | 90 | 71.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, M.F.; Bahruddin, A.S.; Chua, K.H. Assessing the Efficiency of Green Absorbent in Treating Nutrients and Heavy Metal in Wastewater. Sustainability 2023, 15, 12257. https://doi.org/10.3390/su151612257
Chow MF, Bahruddin AS, Chua KH. Assessing the Efficiency of Green Absorbent in Treating Nutrients and Heavy Metal in Wastewater. Sustainability. 2023; 15(16):12257. https://doi.org/10.3390/su151612257
Chicago/Turabian StyleChow, Ming Fai, Ainun Syakirah Bahruddin, and Kok Hua Chua. 2023. "Assessing the Efficiency of Green Absorbent in Treating Nutrients and Heavy Metal in Wastewater" Sustainability 15, no. 16: 12257. https://doi.org/10.3390/su151612257
APA StyleChow, M. F., Bahruddin, A. S., & Chua, K. H. (2023). Assessing the Efficiency of Green Absorbent in Treating Nutrients and Heavy Metal in Wastewater. Sustainability, 15(16), 12257. https://doi.org/10.3390/su151612257