Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. IMD Data
3.2. CMIP6 Model Data
3.3. Streamflow Data
3.4. Data Processing
3.5. SVR
3.6. RF
3.7. MLP
3.8. M5P
3.9. LR
3.10. Model Evaluation Metrics
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Z.P.; Li, Y.P.; Huang, G.H.; Wang, S.G.; Liu, Y.R. A multi-scenario ensemble streamflow forecast method for Amu Darya River Basin under considering climate and land-use changes. J. Hydrol. 2021, 598, 126276. [Google Scholar] [CrossRef]
- Brunner, M.I.; Slater, L.; Tallaksen, L.M.; Clark, M. Challenges in modeling and predicting floods and droughts: A review. Wiley Interdiscip. Rev. Water 2021, 8, e1520. [Google Scholar] [CrossRef]
- Abdulkadir, T.S.; Salami, A.W.; Anwar, A.R.; Kareem, A.G. Modelling of hydropower reservoir variables for energy generation: Neural network approach. Ethiop. J. Environ. Stud. Manag. 2013, 6, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Nazmi, N.; Rahman, M.A.A.; Yamamoto, S.-I.; Ahmad, S.A. Walking gait event detection based on electromyography signals using artificial neural network. Biomed. Signal Process. Control 2019, 47, 334–343. [Google Scholar] [CrossRef]
- Ali, S.; Shahbaz, M. Streamflow forecasting by modeling the rainfall–streamflow relationship using artificial neural networks. Model. Earth Syst. Environ. 2020, 6, 1645–1656. [Google Scholar] [CrossRef]
- Bayram, A.; Kankal, M.; Tayfur, G.; Önsoy, H. Prediction of suspended sediment concentration from water quality variables. Neural Comput. Appl. 2014, 24, 1079–1087. [Google Scholar] [CrossRef] [Green Version]
- Sanikhani, H.; Kisi, O. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour. Manag. 2012, 26, 1715–1729. [Google Scholar] [CrossRef]
- Minns, A.W.; Hall, M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41, 399–417. [Google Scholar] [CrossRef]
- Kote, A.S.; Jothiprakash, V. Reservoir inflow prediction using time lagged recurrent neural networks. In Proceedings of the 2008 First International Conference on Emerging Trends in Engineering and Technology (IEEE), Nagpur, India, 16–18 July 2008; pp. 618–623. [Google Scholar]
- Cancelliere, A.; Giuliano, G.; Ancarani, A.; Rossi, G. A neural networks approach for deriving irrigation reservoir operating rules. Water Resour. Manag. 2002, 16, 71–88. [Google Scholar] [CrossRef]
- Uzlu, E.; Akpınar, A.; Kömürcü, M.İ. Restructuring of Turkey’s electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin. Renew. Energy 2011, 36, 676–688. [Google Scholar] [CrossRef]
- Kişi, Ö. Neural networks and wavelet conjunction model for intermittent streamflow forecasting. J. Hydrol. Eng. 2009, 14, 773–782. [Google Scholar] [CrossRef]
- Shiri, J.; Kisi, O. Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol. 2010, 394, 486–493. [Google Scholar] [CrossRef]
- Imrie, C.E.; Durucan, S.; Korre, A. River flow prediction using artificial neural networks: Generalisation beyond the calibration range. J. Hydrol. 2000, 233, 138–153. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230, 244–257. [Google Scholar] [CrossRef]
- Hadi, S.J.; Tombul, M. Forecasting Daily Streamflow for Basins with Different Physical Characteristics through Data-Driven Methods. Water Resour. Manag. 2018, 32, 3405–3422. [Google Scholar] [CrossRef]
- Latifoğlu, L. A novel approach for prediction of daily streamflow discharge data using correlation based feature selection and random forest method. Int. Adv. Res. Eng. J. 2022, 6, 1–7. [Google Scholar] [CrossRef]
- Huang, S.; Chang, J.; Huang, Q.; Chen, Y. Monthly streamflow prediction using modified EMD-based support vector machine. J. Hydrol. 2014, 511, 764–775. [Google Scholar] [CrossRef]
- Sedighi, F.; Vafakhah, M.; Javadi, M.R. Rainfall–runoff modeling using support vector machine in snow-affected watershed. Arab. J. Sci. Eng. 2016, 41, 4065–4076. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Zadeh, H.A.; Isazadeh, M.; Terzi, O. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ. Earth Sci. 2016, 75, 476. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Karimi, V.; Yaseen, Z.M.; Zounemat-Kermani, M. Learning from multiple models using artificial intelligence to improve model prediction accuracies: Application to river flows. Water Resour. Manag. 2018, 32, 4201–4215. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Deo, R.C.; Karimi, V.; Yaseen, Z.M.; Terzi, O. Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch. Environ. Res. Risk Assess. 2018, 32, 1683–1697. [Google Scholar] [CrossRef]
- Alizadeh, F.; Gharamaleki, A.F.; Jalilzadeh, M.; Akhoundzadeh, A. Prediction of river stage-discharge process based on a conceptual model using EEMD-WT-LSSVM approach. Water Resour. 2020, 47, 41–53. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; Goel, A.; FazeliFard, M.H.; Azani, A. Modeling river discharge time series using support vector machine and artificial neural networks. Environ. Earth Sci. 2016, 75, 685. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Cheng, C.-T.; Chau, K.-W. Using support vector machines for long-term discharge prediction. Hydrol. Sci. J. 2006, 51, 599–612. [Google Scholar] [CrossRef]
- Seyam, M.; Othman, F.; El-Shafie, A. Prediction of stream flow in humid tropical rivers by support vector machines. MATEC Web Conf. 2017, 111, 1007. [Google Scholar] [CrossRef]
- Li, X.; Sha, J.; Wang, Z.-L. Comparison of daily streamflow forecasts using extreme learning machines and the random forest method. Hydrol. Sci. J. 2019, 64, 1857–1866. [Google Scholar] [CrossRef]
- Papacharalampous, G.A.; Tyralis, H. Evaluation of random forests and Prophet for daily~streamflow~forecasting. Adv. Geosci. 2018, 45, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Sammen, S.S.; Ehteram, M.; Abba, S.I.; Abdulkadir, R.A.; Ahmed, A.N.; El-Shafie, A. A new soft computing model for daily streamflow forecasting. Stoch. Environ. Res. Risk Assess. 2021, 35, 2479–2491. [Google Scholar] [CrossRef]
- Mohammadi, B.; Ahmadi, F.; Mehdizadeh, S.; Guan, Y.; Pham, Q.B.; Linh, N.T.T.; Tri, D.Q. Developing Novel Robust Models to Improve the Accuracy of Daily Streamflow Modeling. Water Resour. Manag. 2020, 34, 3387–3409. [Google Scholar] [CrossRef]
- Kambalimath S, S.; Deka, P.C. Performance enhancement of SVM model using discrete wavelet transform for daily streamflow forecasting. Environ. Earth Sci. 2021, 80, 101. [Google Scholar] [CrossRef]
- Bajirao, T.S.; Elbeltagi, A.; Kumar, M.; Pham, Q.B. Applicability of machine learning techniques for multi-time step ahead runoff forecasting. Acta Geophys. 2022, 7, 757–776. [Google Scholar] [CrossRef]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Jozaghi, A.; Shen, H.; Ghazvinian, M.; Seo, D.-J.; Zhang, Y.; Welles, E.; Reed, S. Multi-model streamflow prediction using conditional bias-penalized multiple linear regression. Stoch. Environ. Res. Risk Assess. 2021, 35, 2355–2373. [Google Scholar] [CrossRef]
- Brown, J.D.; Wu, L.; He, M.; Regonda, S.; Lee, H.; Seo, D.-J. Verification of temperature, precipitation, and streamflow forecasts from the NOAA/NWS Hydrologic Ensemble Forecast Service (HEFS): 1. Experimental design and forcing verification. J. Hydrol. 2014, 519, 2869–2889. [Google Scholar] [CrossRef]
- Fahimi, F.; Yaseen, Z.M.; El-shafie, A. Application of soft computing based hybrid models in hydrological variables modeling: A comprehensive review. Theor. Appl. Climatol. 2017, 128, 875–903. [Google Scholar] [CrossRef]
- Quinlan, J.R.; Adams, A.; Sterling, L. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Bhattacharya, B.; Solomatine, D.P. Neural networks and M5 model trees in modelling water level–discharge relationship. Neurocomputing 2005, 63, 381–396. [Google Scholar] [CrossRef]
- Onyari, E.K.; Ilunga, F.M. Application of MLP neural network and M5P model tree in predicting streamflow: A case study of Luvuvhu catchment, South Africa. Int. J. Innov. Manag. Technol. 2013, 4, 11. [Google Scholar]
- Sihag, P.; Sadikhani, M.R.; Vambol, V.; Vambol, S.; Prabhakar, A.K.; Sharma, N. Comparative study for deriving stagedischarge–sediment concentration relationships using soft computing techniques. J. Achiev. Mater. Manuf. Eng. 2021, 104, 57–76. [Google Scholar] [CrossRef]
- Reddy, B.S.N.; Pramada, S.K.; Roshni, T. Monthly surface runoff prediction using artificial intelligence: A study from a tropical climate river basin. J. Earth Syst. Sci. 2021, 130, 35. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.; Jena, P.P.; Chatterjee, C.; Mishra, A. Identification of the best multi-model combination for simulating river discharge. J. Hydrol. 2015, 525, 313–325. [Google Scholar] [CrossRef]
- Vojtek, M.; Vojteková, J.; Costache, R.; Pham, Q.B.; Lee, S.; Arshad, A.; Sahoo, S.; Linh, N.T.T.; Anh, D.T. Comparison of multi-criteria-analytical hierarchy process and machine learning-boosted tree models for regional flood susceptibility mapping: A case study from Slovakia. Geomatics, Nat. Hazards Risk 2021, 12, 1153–1180. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. Climate change 2022: Impacts, adaptation and vulnerability. In IPCC Sixth Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022. [Google Scholar]
- Chinasho, A.; Yaya, D.; Tessema, S. The adaptation and mitigation strategies for climate change in pastoral communities of Ethiopia. Am. J. Environ. Prot. 2017, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Stouffer, R.J.; Eyring, V.; Meehl, G.A.; Bony, S.; Senior, C.; Stevens, B.; Taylor, K.E. CMIP5 Scientific Gaps and Recommendations for CMIP6. Bull. Am. Meteorol. Soc. 2017, 98, 95–105. [Google Scholar] [CrossRef]
- Sashidharan, K.; Mohanty, A.K.; Gupta, A. A note on diamond incidence in Wairagarh area, Garhchiroli district, Maharashtra. Geol. Soc. India 2002, 59, 265–268. [Google Scholar]
- Roy, P.S.; Meiyappan, P.; Joshi, P.K.; Kale, M.P.; Srivastav, V.K.; Srivasatava, S.K.; Behera, M.D.; Roy, A.; Sharma, Y.; Ramachandran, R.M.; et al. Decadal Land Use and Land Cover Classifications across India, 1985, 1995, 2005; ORNL DAAC: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Merufinia, E.; Sharafati, A.; Abghari, H.; Hassanzadeh, Y. On the simulation of streamflow using hybrid tree-based machine learning models: A case study of Kurkursar basin, Iran. Arab. J. Geosci. 2022, 16, 28. [Google Scholar] [CrossRef]
- Pai, D.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Reddy, N.M.; Saravanan, S. Evaluation of the accuracy of seven gridded satellite precipitation products over the Godavari River basin, India. Int. J. Environ. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Ismail, M.; Ehsan, M.A.; Islam, M.N.; Abid, M.A.; O’Brien, E.; Kamil, S.; Rashid, I.U.; et al. Projected Changes in Climate Extremes Using CMIP6 Simulations Over SREX Regions. Earth Syst. Environ. 2021, 5, 481–497. [Google Scholar] [CrossRef]
- Reddy, N.M.; Saravanan, S. Extreme precipitation indices over India using CMIP6: A special emphasis on the SSP585 scenario. Environ. Sci. Pollut. Res. 2023, 30, 47119–47143. [Google Scholar] [CrossRef]
- Reddy, N.M.; Saravanan, S.; Abijith, D. Streamflow simulation using conceptual and neural network models in the Hemavathi sub-watershed, India. Geosyst. Geoenviron. 2023, 2, 100153. [Google Scholar] [CrossRef]
- Schulzweida, U.; Kronblueh, L.; Budich, R.G. CDO: Climate Data Operators: Version 1.8.1. 2019. Available online: https://code.mpimet.mpg.de/news/369 (accessed on 25 June 2023).
- Bandyopadhyay, A.; Nengzouzam, G.; Singh, W.R.; Hangsing, N.; Bhadra, A. Comparison of various re-analyses gridded data with observed data from meteorological stations over India. Epic Ser. Eng. 2018, 3, 190–198. [Google Scholar]
- Smitha, P.S.; Narasimhan, B.; Sudheer, K.P.; Annamalai, H. An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment. J. Hydrol. 2018, 556, 100–118. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Chaumont, D.; Braun, M. Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res. 2013, 49, 4187–4205. [Google Scholar] [CrossRef]
- Ravansalar, M.; Rajaee, T. Evaluation of wavelet performance via an ANN-based electrical conductivity prediction model. Environ. Monit. Assess. 2015, 187, 366. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Networks 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Pinthong, S.; Ditthakit, P.; Salaeh, N.; Hasan, M.A.; Son, C.T.; Linh, N.T.T.; Islam, S.; Yadav, K.K. Imputation of missing monthly rainfall data using machine learning and spatial interpolation approaches in Thale Sap Songkhla River Basin, Thailand. Environ. Sci. Pollut. Res. 2022; Online ahead of print. [Google Scholar]
- Xu, C.; Dai, F.; Xu, X.; Lee, Y.H. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 2012, 145, 70–80. [Google Scholar] [CrossRef]
- Li, Y.H.; Xu, J.Y.; Tao, L.; Li, X.F.; Li, S.; Zeng, X.; Chen, S.Y.; Zhang, P.; Qin, C.; Zhang, C. SVM-Prot 2016: A web-server for machine learning prediction of protein functional families from sequence irrespective of similarity. PLoS ONE 2016, 11, e0155290. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Nanduri, U.V. Assessment and evaluation of potential climate change impact on monsoon flows using machine learning technique over Wainganga River basin, India. Hydrol. Sci. J. 2018, 63, 1020–1046. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Boehmke, B.; Greenwell, B. Hands-On Machine Learning with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Shiau, J.-T.; Hsu, H.-T. Suitability of ANN-based daily streamflow extension models: A case study of Gaoping River basin, Taiwan. Water Resour. Manag. 2016, 30, 1499–1513. [Google Scholar] [CrossRef]
- Poonia, V.; Tiwari, H.L. Rainfall-runoff modeling for the Hoshangabad Basin of Narmada River using artificial neural network. Arab. J. Geosci. 2020, 13, 944. [Google Scholar] [CrossRef]
- Bajirao, T.S.; Kumar, P.; Kumar, M.; Elbeltagi, A.; Kuriqi, A. Potential of hybrid wavelet-coupled data-driven-based algorithms for daily runoff prediction in complex river basins. Theor. Appl. Climatol. 2021, 145, 1207–1231. [Google Scholar] [CrossRef]
- Sharma, P.; Machiwal, D. Streamflow forecasting: Overview of advances in data-driven techniques. Adv. Streamflow Forecast. 2021, 1–50. [Google Scholar] [CrossRef]
- Sharma, P.; Madane, D.; Bhakar, S.R. Monthly streamflow forecasting using artificial intelligence approach: A case study in a semi-arid region of India. Arab. J. Geosci. 2021, 14, 2440. [Google Scholar] [CrossRef]
- Tabari, H.; Sabziparvar, A.-A.; Ahmadi, M. Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 2011, 110, 135–142. [Google Scholar] [CrossRef]
- Özbayoğlu, G.; Evren Özbayoğlu, M. A new approach for the prediction of ash fusion temperatures: A case study using Turkish lignites. Fuel 2006, 85, 545–552. [Google Scholar] [CrossRef]
- Khazaee Poul, A.; Shourian, M.; Ebrahimi, H. A Comparative Study of MLR, KNN, ANN and ANFIS Models with Wavelet Transform in Monthly Stream Flow Prediction. Water Resour. Manag. 2019, 33, 2907–2923. [Google Scholar] [CrossRef]
- Li, P.-H.; Kwon, H.-H.; Sun, L.; Lall, U.; Kao, J.-J. A modified support vector machine based prediction model on streamflow at the Shihmen Reservoir, Taiwan. Int. J. Climatol. 2010, 30, 1256–1268. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Faizollahzadeh Ardabili, S.; Najafi, B.; Alizamir, M.; Mosavi, A.; Shamshirband, S.; Rabczuk, T. Using SVM-RSM and ELM-RSM Approaches for Optimizing the Production Process of Methyl and Ethyl Esters. Energies 2018, 11, 2889. [Google Scholar] [CrossRef] [Green Version]
- Hussain, D.; Khan, A.A. Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan. Earth Sci. Inform. 2020, 13, 939–949. [Google Scholar] [CrossRef]
- Almazroui, M.; Ashfaq, M.; Islam, M.N.; Rashid, I.U.; Kamil, S.; Abid, M.A.; O’Brien, E.; Ismail, M.; Reboita, M.S.; Sörensson, A.A.; et al. Assessment of CMIP6 Performance and Projected Temperature and Precipitation Changes Over South America. Earth Syst. Environ. 2021, 5, 155–183. [Google Scholar] [CrossRef]
- Mutlu, E.; Chaubey, I.; Hexmoor, H.; Bajwa, S.G. Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol. Process. Int. J. 2008, 22, 5097–5106. [Google Scholar] [CrossRef]
- Kumar, M.; Elbeltagi, A.; Pande, C.B.; Ahmed, A.N.; Chow, M.F.; Pham, Q.B.; Kumari, A.; Kumar, D. Applications of Data-driven Models for Daily Discharge Estimation Based on Different Input Combinations. Water Resour. Manag. 2022, 36, 2201–2221. [Google Scholar] [CrossRef]
- Essam, Y.; Huang, Y.F.; Ng, J.L.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. Sci. Rep. 2022, 12, 3883. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, P.S.; Parveen, S.; Bin, S.A.; Balraj, S.; Bao, P.Q. Time-Series Prediction of Streamflows of Malaysian Rivers Using Data-Driven Techniques. J. Irrig. Drain. Eng. 2020, 146, 4020013. [Google Scholar]
- Vesuviano, G.; Griffin, A.; Stewart, E. Flood Frequency Estimation in Data-Sparse Wainganga Basin, India, Using Continuous Simulation. Water 2022, 14, 2887. [Google Scholar] [CrossRef]
- Tofiq, Y.M.; Latif, S.D.; Ahmed, A.N.; Kumar, P.; El-Shafie, A. Optimized Model Inputs Selections for Enhancing River Streamflow Forecasting Accuracy Using Different Artificial Intelligence Techniques. Water Resour. Manag. 2022, 36, 5999–6016. [Google Scholar] [CrossRef]
- Contreras, P.; Orellana-Alvear, J.; Muñoz, P.; Bendix, J.; Célleri, R. Influence of Random Forest Hyperparameterization on Short-Term Runoff Forecasting in an Andean Mountain Catchment. Atmosphere 2021, 12, 238. [Google Scholar] [CrossRef]
- Peng, F.; Wen, J.; Zhang, Y.; Jin, J. Monthly streamflow prediction based on random forest algorithm and phase space reconstruction theory. J. Phys. Conf. Ser. 2020, 1637, 12091. [Google Scholar] [CrossRef]
- Pham, Q.B.; Pal, S.C.; Chakrabortty, R.; Norouzi, A.; Golshan, M.; Ogunrinde, A.T.; Janizadeh, S.; Khedher, K.M.; Anh, D.T. Evaluation of various boosting ensemble algorithms for predicting flood hazard susceptibility areas. Geomat. Nat. Hazards Risk 2021, 12, 2607–2628. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, P.; Ali, R.; Al-Ansari, N.; Vishwakarma, D.K.; Kushwaha, K.S.; Panda, K.C.; Sagar, A.; Mirzania, E.; Elbeltagi, A.; et al. An Integrated Statistical-Machine Learning Approach for Runoff Prediction. Sustainability 2022, 14, 8209. [Google Scholar] [CrossRef]
- Shijun, C.; Qin, W.; Yanmei, Z.; Guangwen, M.; Xiaoyan, H.; Liang, W. Medium- and long-term runoff forecasting based on a random forest regression model. Water Supply 2020, 20, 3658–3664. [Google Scholar] [CrossRef]
- Behrouz, M.S.; Yazdi, M.N.; Sample, D.J. Using Random Forest, a machine learning approach to predict nitrogen, phosphorus, and sediment event mean concentrations in urban runoff. J. Environ. Manag. 2022, 317, 115412. [Google Scholar] [CrossRef] [PubMed]
Model | Atmospheric Resolution | Institution |
---|---|---|
EC-Earth3 | 0.7° × 0.7° | EC-EARTH consortium |
EC-Earth3-Veg | 0.7° × 0.7° | EC-EARTH consortium |
GFDL-ESM4 | 1.3° × 1° | Geophysical Fluid Dynamics Laboratory |
MIROC6 | 1.41° × 1.41° | JAMSTEC, AORI, NIES, and R-CCS |
MRI-ESM2-0 | 1.1° × 1.1° | Meteorological Research Institute |
Correlation Attribute Evaluation | Pairwise Correlation Attribute Evaluation | ||
---|---|---|---|
Parameter | Score | Parameter | Score |
Pt | 0.678 | St-1 | 9.6452 |
Pt-1 | 0.615 | P | 8.8522 |
St-1 | 0.611 | Pt-1 | 8.3758 |
St-2 | 0.391 | Pt-2 | 6.8578 |
Pt-2 | 0.371 | St-2 | 6.8182 |
St-5 | 0.341 | Pt-7 | 6.3642 |
St-4 | 0.34 | Pt-4 | 6.3135 |
St-3 | 0.325 | Pt-3 | 6.3092 |
St-6 | 0.323 | Pt-6 | 6.3069 |
St-7 | 0.321 | Pt-5 | 6.2276 |
Parameter | Value |
---|---|
batchSize | 100 |
C | 1.0 |
filterType | Normalize training data |
kernel | PolyKernel |
numDecimalPlaces | 2 |
cacheSize | 250,007 |
exponent | 1.0 |
regOptimizer | RegSMOImproved |
epsilon | 1 × 10−12 |
epsilonParameter | 0.001 |
seed | 1 |
tolerance | 0.001 |
Parameter | Value |
---|---|
bagSizePercent | 100 |
batchSize | 100 |
maxDepth | 0 |
numDecimalPlaces | 2 |
numExecutionSlots | 1 |
numFeatures | 0 |
numiterations | 100 |
seed | 1 |
Parameter | Value |
---|---|
batchSize | 100 |
hiddenLayers | 5 |
learningRate | 0.3 |
momentum | 0.2 |
numDecimalPlaces | 2 |
seed | 0 |
trainingTime | 500 |
validationSetSize | 0 |
validationThreshold | 20 |
Parameter | Value |
---|---|
batchSize | 100 |
minNumInstances | 4.0 |
numDecimalPlaces | 4 |
Parameter | Expression | Range | Performance |
---|---|---|---|
Nash–Sutcliffe efficiency | 0.75 < NSE ≤ 1.00 0.65 < NSE ≤ 0.75 0.50 < NSE ≤ 0.65 0.4 <NSE ≤ 0.50 NSE ≤ 0.4 | Very good Good Satisfactory Acceptable Unsatisfactory | |
Pearson correlation | −1 to 1 | - | |
Root means square error | 0 to ∞ | - | |
Coefficient of determination | 0.7 < R2 ≤ 1 0.6 ≤ R2 < 0.7 0.5≤ R2 < 0.6 0.0≤ R2 < 0.5 | Very good Good Satisfactory Unsatisfactory |
Statistic | Streamflow (m3/s) | IMD (mm) | Tmin (°C) | Tmax (°C) | EC-Earth3 (mm) | EC-Earth3-Veg (mm) | MIROC6 (mm) | MRI-ESM2-0 (mm) | GFDL-ESM4 (mm) |
---|---|---|---|---|---|---|---|---|---|
Training | |||||||||
Mean | 40.91 | 4.15 | 20.57 | 33.12 | 3.67 | 3.68 | 3.88 | 2.91 | 2.73 |
Median | 0.31 | 0.00 | 22.45 | 31.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Minimum | 0.00 | 0.00 | 6.58 | 21.70 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Maximum | 2732.00 | 312.60 | 32.89 | 46.57 | 147.38 | 121.56 | 221.50 | 481.70 | 261.80 |
Standard Deviation | 138.74 | 13.22 | 5.16 | 4.77 | 11.04 | 11.06 | 12.42 | 13.74 | 12.33 |
Skew | 8.31 | 7.51 | −0.46 | 0.76 | 4.79 | 4.42 | 5.70 | 13.43 | 9.28 |
Testing | |||||||||
Mean | 24.56 | 4.06 | 21.27 | 33.29 | 3.43 | 3.86 | 3.16 | 2.53 | 2.83 |
Median | 0.46 | 0.00 | 22.94 | 31.90 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Minimum | 0.00 | 0.00 | 7.66 | 20.66 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Maximum | 1405.00 | 305.15 | 32.14 | 46.24 | 81.10 | 118.40 | 166.06 | 157.75 | 155.64 |
Standard Deviation | 73.06 | 12.74 | 5.01 | 4.94 | 10.07 | 11.40 | 10.31 | 9.50 | 11.93 |
Skew | 7.38 | 9.45 | −0.48 | 0.73 | 3.94 | 4.26 | 5.89 | 5.74 | 7.21 |
EC-Earth3 | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Method | NSE | R | R2 | RMSE | NSE | R | R2 | RMSE |
SVR | 0.356 | 0.604 | 0.365 | 111.327 | 0.539 | 0.749 | 0.562 | 49.572 |
RF | 0.916 | 0.969 | 0.938 | 40.192 | 0.496 | 0.777 | 0.604 | 53.878 |
MLP | 0.467 | 0.686 | 0.470 | 101.306 | 0.500 | 0.751 | 0.563 | 51.669 |
M5P | 0.452 | 0.673 | 0.452 | 102.646 | 0.502 | 0.756 | 0.572 | 51.556 |
LR | 0.400 | 0.633 | 0.400 | 107.426 | 0.484 | 0.722 | 0.521 | 52.478 |
EC-Earth3-Veg | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Method | NSE | R | R2 | RMSE | NSE | R | R2 | RMSE |
SVR | 0.357 | 0.605 | 0.366 | 111.228 | 0.543 | 0.751 | 0.564 | 49.398 |
RF | 0.917 | 0.967 | 0.936 | 39.988 | 0.406 | 0.748 | 0.560 | 56.278 |
MLP | 0.405 | 0.698 | 0.488 | 107.021 | 0.108 | 0.783 | 0.612 | 69.001 |
M5P | 0.453 | 0.673 | 0.453 | 102.604 | 0.493 | 0.754 | 0.568 | 52.019 |
LR | 0.403 | 0.634 | 0.403 | 107.224 | 0.482 | 0.722 | 0.522 | 52.599 |
GFDL-ESM4 | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Method | NSE | R | R2 | RMSE | NSE | R | R2 | RMSE |
SVR | 0.354 | 0.602 | 0.362 | 111.529 | 0.539 | 0.747 | 0.558 | 49.571 |
RF | 0.917 | 0.970 | 0.940 | 39.859 | 0.441 | 0.754 | 0.568 | 54.594 |
MLP | 0.470 | 0.693 | 0.481 | 100.943 | 0.579 | 0.779 | 0.607 | 47.390 |
M5P | 0.452 | 0.672 | 0.452 | 102.698 | 0.493 | 0.752 | 0.565 | 51.991 |
LR | 0.400 | 0.632 | 0.400 | 107.466 | 0.479 | 0.719 | 0.517 | 52.724 |
IMD | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Method | NSE | R | R2 | RMSE | NSE | R | R2 | RMSE |
SVR | 0.604 | 0.787 | 0.619 | 87.321 | 0.796 | 0.892 | 0.796 | 33.027 |
RF | 0.951 | 0.979 | 0.959 | 30.805 | 0.681 | 0.910 | 0.829 | 41.238 |
MLP | 0.716 | 0.850 | 0.723 | 73.972 | 0.652 | 0.862 | 0.743 | 52.514 |
M5P | 0.748 | 0.865 | 0.748 | 69.597 | 0.483 | 0.882 | 0.778 | 52.542 |
LR | 0.692 | 0.832 | 0.692 | 76.938 | 0.491 | 0.851 | 0.725 | 52.098 |
MIROC6 | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Method | NSE | R | R2 | RMSE | NSE | R | R2 | RMSE |
SVR | 0.354 | 0.602 | 0.363 | 111.484 | 0.539 | 0.747 | 0.559 | 49.603 |
RF | 0.917 | 0.968 | 0.938 | 39.931 | 0.512 | 0.766 | 0.586 | 51.975 |
MLP | 0.419 | 0.700 | 0.490 | 105.693 | 0.202 | 0.788 | 0.622 | 65.235 |
M5P | 0.451 | 0.672 | 0.451 | 102.775 | 0.496 | 0.753 | 0.567 | 51.839 |
LR | 0.399 | 0.632 | 0.399 | 107.528 | 0.480 | 0.720 | 0.518 | 52.674 |
MRI-ESM2-0 | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
Method | NSE | R | R2 | RMSE | NSE | R | R2 | RMSE |
SVR | 0.353 | 0.602 | 0.362 | 111.547 | 0.539 | 0.747 | 0.558 | 49.603 |
RF | 0.918 | 0.969 | 0.939 | 39.693 | 0.430 | 0.755 | 0.569 | 55.144 |
MLP | 0.385 | 0.701 | 0.491 | 108.814 | 0.137 | 0.768 | 0.589 | 67.874 |
M5P | 0.581 | 0.764 | 0.584 | 89.746 | 0.467 | 0.755 | 0.570 | 53.323 |
LR | 0.399 | 0.632 | 0.399 | 107.503 | 0.482 | 0.720 | 0.519 | 52.567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanan, S.; Reddy, N.M.; Pham, Q.B.; Alodah, A.; Abdo, H.G.; Almohamad, H.; Al Dughairi, A.A. Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset. Sustainability 2023, 15, 12295. https://doi.org/10.3390/su151612295
Saravanan S, Reddy NM, Pham QB, Alodah A, Abdo HG, Almohamad H, Al Dughairi AA. Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset. Sustainability. 2023; 15(16):12295. https://doi.org/10.3390/su151612295
Chicago/Turabian StyleSaravanan, Subbarayan, Nagireddy Masthan Reddy, Quoc Bao Pham, Abdullah Alodah, Hazem Ghassan Abdo, Hussein Almohamad, and Ahmed Abdullah Al Dughairi. 2023. "Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset" Sustainability 15, no. 16: 12295. https://doi.org/10.3390/su151612295
APA StyleSaravanan, S., Reddy, N. M., Pham, Q. B., Alodah, A., Abdo, H. G., Almohamad, H., & Al Dughairi, A. A. (2023). Machine Learning Approaches for Streamflow Modeling in the Godavari Basin with CMIP6 Dataset. Sustainability, 15(16), 12295. https://doi.org/10.3390/su151612295