Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region
Abstract
:1. Introduction
2. Research Methodology
2.1. High-Rise Building Model
2.2. Climate Characteristics of Hong Kong
2.3. Colored Radiative Cooling Walls
3. Results
3.1. Cooling Wall Thermal Performance
3.2. Energy-Saving Potential
3.3. Economic and Environmental Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, W.; Min, Y.; Ma, X.; Chen, Y.; Yang, H. Performance evaluation of a novel plate-type porous indirect evaporative cooling system: An experimental study. J. Build. Eng. 2022, 48, 103898. [Google Scholar] [CrossRef]
- Shi, W.; Yang, H.; Ma, X.; Liu, X. Performance prediction and optimization of cross-flow indirect evaporative cooler by regression model based on response surface methodology. Energy 2023, 283, 128636. [Google Scholar] [CrossRef]
- Pragati, S.; Priya, R.S.; Pradeepa, C.; Senthil, R. Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate. Sustainability 2023, 15, 2006. [Google Scholar] [CrossRef]
- International Energy Agency. Global Status Report for Buildings and Construction. 2019. Available online: https://www.iea.org/reports/global-status-report-for-buildings-and-construction-2019 (accessed on 3 July 2023).
- Environment Bureau. Hong Kong’s Climate Action Plan 2030+. 2017. Available online: https://www.hkgbc.org.hk/eng/engagement/file/ClimateActionPlanEng.pdf (accessed on 3 July 2023).
- International Energy Agency. GlobalABC Roadmap for Buildings and Construction 2020–2050. 2020. Available online: https://www.iea.org/reports/globalabc-roadmap-for-buildings-and-construction-2020-2050 (accessed on 3 July 2023).
- Tavakoli, R.; Kamgar, R.; Rahgozar, R. The best location of belt truss system in tall buildings using multiple criteria subjected to blast loading. Civ. Eng. J. 2018, 4, 1338–1353. [Google Scholar] [CrossRef]
- Carcassi, O.B.; Minotti, P.; Habert, G.; Paoletti, I.; Claude, S.; Pittau, F. Carbon Footprint Assessment of a Novel Bio-Based Composite for Building Insulation. Sustainability 2022, 14, 1384. [Google Scholar] [CrossRef]
- Yu, S.; Hao, S.; Mu, J.; Tian, D. Optimization of Wall Thickness Based on a Comprehensive Evaluation Index of Thermal Mass and Insulation. Sustainability 2022, 14, 1143. [Google Scholar] [CrossRef]
- Niziurska, M.; Wieczorek, M.; Borkowicz, K. Fire Safety of External Thermal Insulation Systems (ETICS) in the Aspect of Sustainable Use of Natural Resources. Sustainability 2022, 14, 1224. [Google Scholar] [CrossRef]
- Pichlhöfer, A.; Korjenic, A.; Sulejmanovski, A.; Streit, E. Influence of Facade Greening with Ivy on Thermal Performance of Masonry Walls. Sustainability 2023, 15, 9546. [Google Scholar] [CrossRef]
- Chen, J.; Lu, L.; Gong, Q. Techno-economic and environmental evaluation on radiative sky cooling-based novel passive envelope strategies to achieve building sustainability and carbon neutrality. Appl. Energy 2023, 349, 121679. [Google Scholar] [CrossRef]
- Jia, L.; Lu, L.; Chen, J. Exploring the cooling potential maps of a radiative sky cooling radiator-assisted ground source heat pump system in China. Appl. Energy 2023, 349, 121678. [Google Scholar] [CrossRef]
- Gong, Q.; Lu, L.; Chen, J.; Yin Lau, W.; Cheung, K.H. A novel aqueous scalable eco-friendly paint for passive daytime radiative cooling in sub-tropical climates. Sol. Energy 2023, 255, 236–242. [Google Scholar] [CrossRef]
- Khan, A.; Carlosena, L.; Feng, J.; Khorat, S.; Khatun, R.; Doan, Q.-V.; Santamouris, M. Optically Modulated Passive Broadband Daytime Radiative Cooling Materials Can Cool Cities in Summer and Heat Cities in Winter. Sustainability 2022, 14, 1110. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540–544. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.C.; Jia, M.; Sun, K.; Shi, N.N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018, 362, 315–319. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Y.; Shi, L.; Hu, X.; Chen, M.; Wu, L. A structural polymer for highly efficient all-day passive radiative cooling. Nat. Commun. 2021, 12, 365. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Qiu, M.; Li, Y.; Zhang, Q.M.; Li, S.; Yang, Z.; Feng, C.; Zhang, W.; Dai, J.-G.; Lei, D.; et al. Creating an Eco-Friendly Building Coating with Smart Subambient Radiative Cooling. Adv. Mater. 2020, 32, 1906751. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhai, Y.; He, S.; Gan, W.; Wei, Z.; Heidarinejad, M.; Dalgo, D.; Mi, R.; Zhao, X.; Song, J.; et al. A radiative cooling structural material. Science 2019, 364, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Leroy, A.; Bhatia, B.; Kelsall, C.C.; Castillejo-Cuberos, A.; Di Capua, H.M.; Zhao, L.; Zhang, L.; Guzman, A.M.; Wang, E.N. High-performance subambient radiative cooling enabled by optically selective and thermally insulating polyethylene aerogel. Sci. Adv. 2019, 5, eaat9480. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Go, M.; Son, S.; Kim, M.; Badloe, T.; Lee, H.; Kim, J.K.; Rho, J. Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide. Nano Energy 2021, 79, 105426. [Google Scholar] [CrossRef]
- Khan, S.; Kim, J.; Roh, K.; Park, G.; Kim, W. High power density of radiative-cooled compact thermoelectric generator based on body heat harvesting. Nano Energy 2021, 87, 106180. [Google Scholar] [CrossRef]
- Zhao, D.; Yin, X.; Xu, J.; Tan, G.; Yang, R. Radiative sky cooling-assisted thermoelectric cooling system for building applications. Energy 2019, 190, 116322. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Xuan, Q.; Pei, G. Spectrally selective approaches for passive cooling of solar cells: A review. Appl. Energy 2020, 262, 114548. [Google Scholar] [CrossRef]
- Peng, Y.; Fan, L.; Jin, W.; Ye, Y.; Huang, Z.; Zhai, S.; Luo, X.; Ma, Y.; Tang, J.; Zhou, J.; et al. Coloured low-emissivity films for building envelopes for year-round energy savings. Nat. Sustain. 2022, 5, 339–347. [Google Scholar] [CrossRef]
- Dang, S.; Xiang, J.; Yao, H.; Yang, F.; Ye, H. Color-preserving daytime passive radiative cooling based on Fe3+-doped Y2Ce2O7. Energy Build. 2022, 259, 111861. [Google Scholar] [CrossRef]
- Chen, Y.; Mandal, J.; Li, W.; Smith-Washington, A.; Tsai, C.-C.; Huang, W.; Shrestha, S.; Yu, N.; Han, R.P.S.; Cao, A.; et al. Colored and paintable bilayer coatings with high solar-infrared reflectance for efficient cooling. Sci. Adv. 2020, 6, eaaz5413. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Rada, J.; Song, H.; Ooi, B.; Yu, Z.; Gan, Q. Colorful surfaces for radiative cooling. J. Photonics Energy 2021, 11, 042107. [Google Scholar] [CrossRef]
- Yalçın, R.A.; Blandre, E.; Joulain, K.; Drévillon, J. Colored Radiative Cooling Coatings with Nanoparticles. ACS Photonics 2020, 7, 1312–1322. [Google Scholar] [CrossRef]
- Xi, W.; Liu, Y.; Zhao, W.; Hu, R.; Luo, X. Colored radiative cooling: How to balance color display and radiative cooling performance. Int. J. Therm. Sci. 2021, 170, 107172. [Google Scholar] [CrossRef]
- Zhai, H.; Fan, D.; Li, Q. Scalable and paint-format colored coatings for passive radiative cooling. Sol. Energy Mater. Sol. Cells 2022, 245, 111853. [Google Scholar] [CrossRef]
- Chen, M.; Pang, D.; Yan, H. Colored passive daytime radiative cooling coatings based on dielectric and plasmonic spheres. Appl. Therm. Eng. 2022, 216, 119125. [Google Scholar] [CrossRef]
- Zhao, J.; Nan, F.; Zhou, L.; Huang, H.; Zhou, G.; Zhu, Y.-F.; Ou, Q. Free-standing, colored, polymer film with composite opal photonic crystal structure for efficient passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2023, 251, 112136. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Building Energy Codes Program. 2019. Available online: https://www.energycodes.gov/prototype-building-models#90.1 (accessed on 3 May 2023).
- ANSI/ASHRAE/IES Standard 90.1-2019; Energy Standard for Buildings Except Low-Rise Residential Buildings. The American Society of Heating Refrigerating and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2019.
- GB50189; Design Standard for Energy Efficiency of Public Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2015.
- U.S. Department of Energy. EnergyPlus Program. 2023. Available online: https://energyplus.net/ (accessed on 3 May 2023).
- Chen, J.; Lu, L. Comprehensive evaluation of thermal and energy performance of radiative roof cooling in buildings. J. Build. Eng. 2021, 33, 101631. [Google Scholar] [CrossRef]
- Chen, J.; Gong, Q.; Lu, L. Evaluation of passive envelope systems with radiative sky cooling and thermally insulated glazing materials for cooling. J. Clean. Prod. 2023, 398, 136607. [Google Scholar] [CrossRef]
- EnergyPlus. Chinese Standard Weather Data. Available online: https://energyplus.net/weather (accessed on 3 May 2023).
- CLP Power Hong Kong Limited. Tariff and Charges. Available online: https://www.clp.com.hk (accessed on 3 June 2023).
- CLP Power Hong Kong Limited. Sustainability Report. Available online: https://sustainability.clpgroup.com/en/2021/ (accessed on 3 June 2023).
- Mandal, J.; Yang, Y.; Yu, N.; Raman, A.P. Paints as a Scalable and Effective Radiative Cooling Technology for Buildings. Joule 2020, 4, 1350–1356. [Google Scholar] [CrossRef]
Color | Coating Type | Rvis | RNIR | Rsolar | ε |
---|---|---|---|---|---|
Black | Porous bilayer | 0.07 | 0.81 | 0.44 | 0.95 |
TiO2-based bilayer | 0.06 | 0.73 | 0.39 | 0.95 | |
Monolayer | 0.05 | 0.30 | 0.17 | 0.96 | |
Blue | Porous bilayer | 0.17 | 0.63 | 0.40 | 0.95 |
TiO2-based bilayer | 0.17 | 0.58 | 0.37 | 0.95 | |
Monolayer | 0.15 | 0.43 | 0.29 | 0.95 | |
Red | Porous bilayer | 0.39 | 0.84 | 0.61 | 0.95 |
TiO2-based bilayer | 0.38 | 0.79 | 0.58 | 0.95 | |
Monolayer | 0.35 | 0.74 | 0.54 | 0.96 | |
Yellow | Porous bilayer | 0.59 | 0.86 | 0.72 | 0.95 |
TiO2-based bilayer | 0.58 | 0.80 | 0.69 | 0.96 | |
Monolayer | 0.54 | 0.69 | 0.61 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Lu, L.; Jia, L.; Gong, Q. Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region. Sustainability 2023, 15, 12607. https://doi.org/10.3390/su151612607
Chen J, Lu L, Jia L, Gong Q. Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region. Sustainability. 2023; 15(16):12607. https://doi.org/10.3390/su151612607
Chicago/Turabian StyleChen, Jianheng, Lin Lu, Linrui Jia, and Quan Gong. 2023. "Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region" Sustainability 15, no. 16: 12607. https://doi.org/10.3390/su151612607
APA StyleChen, J., Lu, L., Jia, L., & Gong, Q. (2023). Performance Evaluation of High-Rise Buildings Integrated with Colored Radiative Cooling Walls in a Hot and Humid Region. Sustainability, 15(16), 12607. https://doi.org/10.3390/su151612607