Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage
Abstract
:1. Introduction
2. Phenomena under Study: Basics on Heat Transfer
2.1. Thermodynamics and Heat Transfer Theory
2.2. Heat Transfer Mechanisms
Conduction Mechanism
2.3. Phase Change Heat Transfer
- At τ = 0 s, the composite is in liquid form heated at the melting temperature: (T0 = Tmelt);
- At x = 0 m, the temperature is set to T0 and remains constant.
3. Methods
3.1. Model Development Concept
3.2. Data Collection Module
3.3. Data-Driven Objects
3.4. Heat Transfer Performance Module
4. Heat Transfer Performance Model
4.1. Physical Problem Description
4.2. Basic Sumulation Setup, Geometry and Grid
4.3. Transient Heat Transfer
4.3.1. Conduction in Plane Walls
Alpha = dτ∙k/(ρ∙cp∙ds2)
4.3.2. Heat Transfer through Phase Change
5. Results
5.1. Data Collection
5.2. Data-Driven Objects
5.3. Heat Transfer Performance Module
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yannick, T.; Grillet, F.; Beatens, R.; Alderwireldt, J. Structural Thermal Energy Storage in Heavy Weight Buildings-Analysis and Recommendations to Provide Flexibility to the Electricity Grid; 3E: Brussels, Belgium, 2016. [Google Scholar]
- Acinas, V.; Alberdi, A.; Alcantara, A.R.; Alonso, M.C.; Artelt, C.; Bien, T.; Bermejo, A.A.; Bessey, E.; Bignozzi, M.; Bonilla, F.J.; et al. Materials 2030 Roadmap; AMI2030; 2022; Available online: https://www.ami2030.eu/roadmap/ (accessed on 5 July 2023).
- Rao, V.V.; Parameshwaran, R.; Ram, V.V. PCM-Mortar Based Construction Materials for Energy Efficient Buildings: A Review on Research Trends. Energy Build. 2018, 158, 95–122. [Google Scholar] [CrossRef]
- Peppas, A.; Politi, C. Development of High Added Value Products from Industrial Minerals for Hybrid Energy Storage. In Proceedings of the International Conference on Raw Materials and Circular Economy, Athens, Greece, 5–9 September 2021; MDPI: Basel, Switzerland, 2021; Volume 5, p. 31. [Google Scholar]
- Verma, S.; Singh, H. Predicting the Conductive Heat Transfer through Evacuated Perlite Based Vacuum Insulation Panels. Int. J. Therm. Sci. 2022, 171, 107245. [Google Scholar] [CrossRef]
- Angelopoulos, P.M.; Gerogiorgis, D.I.; Paspaliaris, I. Model-Based Sensitivity Analysis and Experimental Investigation of Perlite Grain Expansion in a Vertical Electrical Furnace. Ind. Eng. Chem. Res. 2013, 52, 17953–17975. [Google Scholar] [CrossRef]
- Karalis, T.; Taxiarchou, M. Current Applications and Future Trends of Perlite Worldwide. In Proceedings of the Conference: 2nd International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, (AMIREG 2006), Chania, Greece, 25 September 2006. [Google Scholar]
- Halimov, A.; Lauster, M.; Müller, D. Development and Validation of PCM Models Integrated into the High-Order Building Model of Modelica Library—AixLib. In Proceedings of the Building Simulation Conference Proceedings: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; International Building Performance Simulation Association: Rome, Italy, 2019; Volume 7, pp. 4698–4705. [Google Scholar]
- Kraiem, M.; Karkri, M.; Nasrallah, S.B.; Sobolciak, P.; Fois, M.; Alnuaimi, N.A. Thermophysical Characterization and Numerical Investigation of Three Paraffin Waxes as Latent Heat Storage Materials. Preprints 2019, 2019030034. [Google Scholar] [CrossRef]
- Madad, A.; Mouhib, T.; Mouhsen, A. Phase Change Materials for Building Applications: A Thorough Review and New Perspectives. Buildings 2018, 8, 63. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, R.; Liu, Y.; Huang, D. Semi-Theoretical Correlations of Melting Process Driven by Rayleigh–Bénard Convection Suitable for Low Melting Point Metal. Case Stud. Therm. Eng. 2021, 28, 101511. [Google Scholar] [CrossRef]
- Ehms, J.H.N.; Oliveski, R.D.C.; Rocha, L.A.O.; Biserni, C.; Garai, M. Phase Change Materials (PCM) for Building Envelope Applications: A Review of Numerical Models. AIP Conf. Proc. 2019, 2191, 020120. [Google Scholar] [CrossRef]
- Yang, X.H.; Liu, J. A Novel Method for Determining the Melting Point, Fusion Latent Heat, Specific Heat Capacity and Thermal Conductivity of Phase Change Materials. Int. J. Heat Mass. Transf. 2018, 127, 457–468. [Google Scholar] [CrossRef]
- Gao, Z.; Wu, H.; Yao, Y. Two-Stage Heat Transfer Characteristics of Constrained Melting inside an Isothermally Heated Horizontal Cylinder. Int. J. Therm. Sci. 2019, 144, 107–118. [Google Scholar] [CrossRef]
- De Oliveira, A.G.; Jandorno, J.C.; da Rocha, E.B.D.; de Sousa, A.M.F.; da Silva, A.L.N. Evaluation of Expanded Perlite Behavior in PS/Perlite Composites. Appl. Clay Sci. 2019, 181, 105223. [Google Scholar] [CrossRef]
- Sun, G.; Chen, D.; Zhu, G.; Li, Q. Lightweight Hybrid Materials and Structures for Energy Absorption: A State-of-the-Art Review and Outlook. Thin-Walled Struct. 2022, 172, 108760. [Google Scholar] [CrossRef]
- Fatahi, H.; Claverie, J.; Poncet, S. Thermal Characterization of Phase Change Materials by Differential Scanning Calorimetry: A Review. Appl. Sci. 2022, 12, 12019. [Google Scholar] [CrossRef]
- Lovelyn, T.; Velraj, R. Thermophysical Characterization and Comparison of PCMs Using DSC and T-History Experimental Setup. Mater. Res. Express 2019, 6, 125527. [Google Scholar] [CrossRef]
- Barbi, S.; Barbieri, F.; Marinelli, S.; Rimini, B.; Merchiori, S.; Bottarelli, M.; Montorsi, M. Phase Change Material Evolution in Thermal Energy Storage Systems for the Building Sector, with a Focus on Ground-Coupled Heat Pumps. Polymers 2022, 14, 620. [Google Scholar] [CrossRef]
- Senobar, H.; Aramesh, M.; Shabani, B. Nanoparticles and Metal Foams for Heat Transfer Enhancement of Phase Change Materials: A Comparative Experimental Study. J. Energy Storage 2020, 32, 101911. [Google Scholar] [CrossRef]
- Aflaki, A.; Esfandiari, M.; Mohammadi, S. A Review of Numerical Simulation as a Precedence Method for Prediction and Evaluation of Building Ventilation Performance. Sustainability 2021, 13, 12721. [Google Scholar] [CrossRef]
- Cofré-Toledo, J.; Roa-Cossio, D.; Vasco, D.A.; Cabeza, L.F.; Rouault, F. Numerical Simulation of the Melting and Solidification Processes of Two Organic Phase Change Materials in Spherical Enclosures for Cold Thermal Energy Storage Applications. J. Energy Storage 2022, 51, 104337. [Google Scholar] [CrossRef]
- Ghani, F.; Waser, R.; O’Donovan, T.S.; Schuetz, P.; Zaglio, M.; Wortischek, J. Non-Linear System Identification of a Latent Heat Thermal Energy Storage System. Appl. Therm. Eng. 2018, 134, 585–593. [Google Scholar] [CrossRef]
- Günther, E.; Mehling, H.; Hiebler, S. Modeling of Subcooling and Solidification of Phase Change Materials. Model Simul. Mat. Sci. Eng. 2007, 15, 879–892. [Google Scholar] [CrossRef]
- Cengel, Y.A. Heat Transfer: A Practical Approach, 2nd ed.; McGraw-Hill: New York, NY, USA, 2008; ISBN 0073380172. [Google Scholar]
- Sciuto, G. Innovative Latent Heat Thermal Storage Elements Design Based on Nanotechnologies. Ph.D. Thesis, Università degli Studi di Trieste, Trieste, Italy, 2012. [Google Scholar]
- Ibrahim, N.I.; Al-Sulaiman, F.A.; Rahman, S.; Yilbas, B.S.; Sahin, A.Z. Heat Transfer Enhancement of Phase Change Materials for Thermal Energy Storage Applications: A Critical Review. Renew. Sustain. Energy Rev. 2017, 74, 26–50. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F. Modeling of Phase Change Materials for Applications in Whole Building Simulation. Renew. Sustain. Energy Rev. 2012, 16, 5355–5362. [Google Scholar] [CrossRef]
- Dutil, Y.; Rousse, D.R.; Salah, N.B.; Lassue, S.; Zalewski, L. A Review on Phase-Change Materials: Mathematical Modeling and Simulations. Renew. Sustain. Energy Rev. 2011, 15, 112–130. [Google Scholar] [CrossRef]
- Verma, P.; Varun; Singal, S.K. Review of Mathematical Modeling on Latent Heat Thermal Energy Storage Systems Using Phase-Change Material. Renew. Sustain. Energy Rev. 2008, 12, 999–1031. [Google Scholar] [CrossRef]
- Jiro Doke GRABIT MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/7173-grabit (accessed on 6 July 2023).
- McGarrity, S.; Sifounakis, A. Introduction to Object-Oriented Programming in MATLAB. MATLAB Technical Articles and Newsletters. 2020. Available online: https://www.mathworks.com/company/newsletters/articles/introduction-to-object-oriented-programming-in-matlab.html (accessed on 5 July 2023).
- Mehling, H.; Ebert, H.-P.; Schossig, P.; Humbland, A. Development of Standards for Materials Testing and Quality Control of PCM. In Proceedings of the 7th Conference on Phase-Change Materials and Slurries, Dinan, France, 13–15 September 2006. [Google Scholar]
- Medved, I.; Trník, A.; Vozár, L. Modeling of Heat Capacity Peaks and Enthalpy Jumps of Phase-Change Materials Used for Thermal Energy Storage. Int. J. Heat Mass Transf. 2017, 107, 123–132. [Google Scholar] [CrossRef]
- Losada-Pérez, P.; Tripathi, C.S.P.; Leys, J.; Cordoyiannis, G.; Glorieux, C.; Thoen, J. Measurements of Heat Capacity and Enthalpy of Phase Change Materials by Adiabatic Scanning Calorimetry. Int. J. Thermophys. 2011, 32, 913–924. [Google Scholar] [CrossRef]
- Ferrer, G.; Gschwander, S.; Solé, A.; Barreneche, C.; Fernández, A.I.; Schossig, P.; Cabeza, L.F. Empirical Equation to Estimate Viscosity of Paraffin. J. Energy Storage 2017, 11, 154–161. [Google Scholar] [CrossRef]
- Kraiem, M.; Karkri, M.; Fois, M.; Sobolciak, P. Thermophysical Characterization of Paraffins versus Temperature for Thermal Energy Storage. Buildings 2023, 13, 877. [Google Scholar] [CrossRef]
- Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Swaminathan, C.R.; Voller, V.R. On the Enthalpy Method. Int. J. Numer. Methods Heat Fluid Flow 1993, 3, 233–244. [Google Scholar] [CrossRef]
- Al-Saadi, S.N. Modeling and Simulation of PMC-Enhanced Façade Systems. Ph.D. Thesis, University of Colorado Boulder, Civil, Environmental and Architectural Engineering,, Boulder, CO, USA, 2014. Available online: https://scholar.colorado.edu/concern/parent/ms35t883r/file_sets/j9602086q (accessed on 5 July 2023).
- Engineers Edge LLC. Insulating Materials Thermal Properties. Available online: https://www.engineersedge.com/heat_transfer/insulating_materials_13858.htm (accessed on 22 July 2023).
- Polystyrene—Density—Strength—Melting Point—Thermal Conductivity. Available online: https://material-properties.org/polystyrene-density-strength-melting-point-thermal-conductivity/ (accessed on 22 July 2023).
- GreenSpec Thermal Mass. Available online: https://www.greenspec.co.uk/building-design/thermal-mass/ (accessed on 22 July 2023).
- Schirén, W. Finite Element Method for 1D Transient Convective Heat Transfer Problems. Bachelor’s Thesis, Linnaeus University, Faculty of Technology, Växjö, Sweden, 2018. [Google Scholar]
- Mishra, A.K.; Loomans, M.G.L.C.; Hensen, J.L.M. Thermal Comfort of Heterogeneous and Dynamic Indoor Conditions—An Overview. Build. Environ. 2016, 109, 82–100. [Google Scholar] [CrossRef]
- Irsyad, M.; Pasek, A.D.; Indartono, Y.S.; Pratomo, A.W. Heat Transfer Characteristics of Building Walls Using Phase Change Material. IOP Conf. Ser. Earth Environ. Sci. 2017, 60, 012028. [Google Scholar] [CrossRef]
- Gupta, M.K.; Rathore, P.K.S.; Singh, A.K. Experimental Investigation of Clay Brick with Sensible, Latent, and Hybrid Thermal Energy Storage in Buildings. Mater. Today Proc. 2022, 69, 112–118. [Google Scholar] [CrossRef]
Function | Description |
---|---|
selectData | The callback is executed for selecting the data points from the image. When the variable is clicked, it enables the verification of the selected points by plotting the data in a Preview area. It also ensures that the variable in the base workspace is the same copy as the variable stored in the tool’s workspace. |
loadImage | This function loads an image file and draws the image to the display window. It also initializes image data. |
adjustImage | The function performs calibration of the image by prompting the user to select points for where the X and Y axes are located and set values for X limits min and max and Y limits min and max. It is also makes sure the axis fills the whole axes extent. |
extractPoints | This function is used to extract data points by prompting the user to select by clicking points on the image. |
interpValues | This function is used for interpreting the calibration values of the selected points based on the axes’ ranges. |
Properties | Plaster | Brick | Expanded Perlite | Insulation |
---|---|---|---|---|
Layer Thickness [m] | 0.02 | 0.16 | 0.10 | 0.02 |
Density [kg/m3] | 1300 | 1700 | 49 (32–66) | 1050 |
Specific heat capacity [J/kg·K] | 1000 | 800 | 1090 | 1100 |
Thermal conductivity [W/m·K] | 0.50 | 0.73 | 0.04 (0.039–0.046) | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politi, C.; Peppas, A.; Taxiarchou, M. Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage. Sustainability 2023, 15, 12863. https://doi.org/10.3390/su151712863
Politi C, Peppas A, Taxiarchou M. Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage. Sustainability. 2023; 15(17):12863. https://doi.org/10.3390/su151712863
Chicago/Turabian StylePoliti, Chrysa, Antonis Peppas, and Maria Taxiarchou. 2023. "Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage" Sustainability 15, no. 17: 12863. https://doi.org/10.3390/su151712863
APA StylePoliti, C., Peppas, A., & Taxiarchou, M. (2023). Data-Driven Integrated Decision Model for Analysing Energetic Behaviour of Innovative Construction Materials Capable of Hybrid Energy Storage. Sustainability, 15(17), 12863. https://doi.org/10.3390/su151712863