An Application of Ultrasonic Waves in the Pretreatment of Biological Sludge in Urban Sewage and Proposing an Artificial Neural Network Predictive Model of Concentration
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Solubilization of Organic Solids under the Influence of Ultrasonic Waves
3.2. Stability of Organic Solids under the Impact of Ultrasonic Waves
3.3. The Effect of Ultrasonic Waves on Sludge-Specific Resistance and Capillary Suction Time
3.4. Investigating the Effectiveness of Ultrasonic Waves in Changing the Appearance and Structure of Sludge
4. Discussion
4.1. Examining How Well Ultrasonic Vibrations Function in the Hydrolysis of Organic Solids
4.2. Investigating the Effectiveness of Ultrasonic Waves in Improving the Dewatering Properties of Sludge
4.3. Artificial Neural Network
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Zhao, Z.; Yin, X.-A.; Zhu, Y. Impacts of biochars on bacterial community shifts and biodegradation of antibiotics in an agricultural soil during short-term incubation. Sci. Total Environ. 2021, 771, 144751. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Dai, Z.; Ma, Z.; Zhang, X.; Chen, J.; Ershadnia, R.; Luan, X.; Soltanian, M.R. An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media. J. Hydrol. 2022, 614, 128541. [Google Scholar] [CrossRef]
- Lin, X.; Lu, K.; Hardison, A.K.; Liu, Z.; Xu, X.; Gao, D.; Gong, J.; Gardner, W.S. Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments. Ecol. Indic. 2021, 126, 107639. [Google Scholar] [CrossRef]
- Dubey, M.; Mohapatra, S.; Tyagi, V.K.; Suthar, S.; Kazmi, A.A. Occurrence, fate, and persistence of emerging micropollutants in sewage sludge treatment. Environ. Pollut. 2021, 273, 116515. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, H.; Xv, W.; Zhang, D.; Wang, Z.; Li, H.; Qin, Y.; Li, S.; Lai, J.; Wang, L. Noble metal aerogels rapidly synthesized by ultrasound for electrocatalytic reaction. Chin. Chem. Lett. 2022, 33, 2021–2025. [Google Scholar] [CrossRef]
- Liu, W.; Huang, F.; Liao, Y.; Zhang, J.; Ren, G.; Zhuang, Z.; Zhen, J.; Lin, Z.; Wang, C. Treatment of CrVI-containing Mg (OH) 2 nanowaste. Angew. Chem. 2008, 120, 5701–5704. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Q.; Cui, Q.; Ni, S.Q. Nitrogen recovery through fermentative dissimilatory nitrate reduction to am-monium (DNRA): Carbon source comparison and metabolic pathway. Chem. Eng. J. 2022, 441, 135938. [Google Scholar] [CrossRef]
- Fu, W.; Sun, L.; Cao, H.; Chen, L.; Zhou, M.; Shen, S.; Zhu, Y.; Zhuang, S. Qualitative and Quantitative Recognition of Volatile Organic Compounds in Their Liquid Phase Based on Terahertz Microfluidic EIT Meta-Sensors. IEEE Sens. J. 2023, 23, 12775–12784. [Google Scholar] [CrossRef]
- Wei, S.; Chen, T.; Hou, H.; Xu, Y. Recent advances in electrochemical sterilization. J. Electroanal. Chem. 2023, 937, 117419. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, D.; Sheng, H.; Xia, J.; Kan, P.; Yao, Z.; Chen, H.; Li, G.; Zhu, D.Z.; Liu, H. Constructed wetlands as hotspots of antibiotic resistance genes and pathogens: Evidence from metagenomic analysis in Chinese rural areas. J. Hazard. Mater. 2023, 447, 130778. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Liu, Y. Biological Sludge Minimization and Biomaterials/Bioenergy Recovery Technologie; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Hu, J.; Zhao, L.; Luo, J.; Gong, H.; Zhu, N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. J. Hazard. Mater. 2022, 438, 129437. [Google Scholar] [CrossRef]
- Dong, Y.; Yuan, H.; Ge, D.; Zhu, N. A novel conditioning approach for amelioration of sludge dewaterability using activated carbon strengthening electrochemical oxidation and realized mechanism. Water Res. 2022, 220, 118704. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Hu, L.; Zhao, M.; Dai, L.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Bamboo charcoal fused with polyurethane foam for efficiently removing organic solvents from wastewater: Experimental and simulation. Biochar 2022, 4, 28. [Google Scholar] [CrossRef]
- Hatinoğlu, M.D.; Sanin, F.D. Sewage sludge as a source of microplastics in the environment: A review of occurrence and fate during sludge treatment. J. Environ. Manag. 2021, 295, 113028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Reimus, P.; Ma, F.; Soltanian, M.R.; Xing, B.; Zang, J.; Wang, Y.; Dai, Z. Plutonium reactive transport in fractured granite: Multi-species experiments and simulations. Water Res. 2022, 224, 119068. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, F.; Dai, Z.; Wang, J.; Chen, L.; Ling, H.; Soltanian, M.R. Radionuclide transport in multi-scale fractured rocks: A review. J. Hazard. Mater. 2022, 424, 127550. [Google Scholar] [CrossRef]
- Sun, S.; Liu, H.; Zhang, J.; Wang, W.; Xu, P.; Zhu, X.; Wang, Y.; Wan, S. Application of a novel coagulant in reservoir water treatment in Qingdao. Desalination Water Treat 2023, 284, 49–60. [Google Scholar] [CrossRef]
- Wang, C.; Huang, R.; Sun, R.; Yang, J.; Dionysiou, D.D. Microplastics separation and subsequent carbonization: Synthesis, characterization, and catalytic performance of iron/carbon nanocomposite. J. Clean. Prod. 2022, 330, 129901. [Google Scholar] [CrossRef]
- Hu, X.; Kuang, Q.; Cai, Q.; Xue, Y.; Zhou, W.; Li, Y. A Coherent Pattern Mining Algorithm Based on All Contiguous Column Bicluster. J. Artif. Intell. Technol. 2022, 2, 80–92. [Google Scholar] [CrossRef]
- Danjuma, M.U.; Yusuf, B.; Yusuf, I. Reliability, availability, maintainability, and dependability analysis of cold standby series-parallel system. J. Comput. Cogn. Eng. 2022, 1, 193–200. [Google Scholar] [CrossRef]
- Huong, A.; Tay, K.; Gan, K.; Ngu, X. A hierarchical optimisation framework for pigmented lesion diagnosis. CAAI Trans. Intell. Technol. 2022, 7, 34–45. [Google Scholar] [CrossRef]
- Di Fraia, S.; Macaluso, A.; Massarotti, N.; Vanoli, L. Energy, exergy and economic analysis of a novel geothermal energy system for wastewater and sludge treatment. Energy Convers. Manag. 2019, 195, 533–547. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, H. The Impact of Green Finance on the Ecologicalization of Urban Industrial Structure—Based on GMM Model of Dynamic Panel System. J. Artif. Intell. Technol. 2022, 2, 123–129. [Google Scholar] [CrossRef]
- Serra-Compte, A.; González, S.; Arnaldos, M.; Berlendis, S.; Courtois, S.; Loret, J.F.; Schlosser, O.; Yáñez, A.M.; Soria-Soria, E.; Fittipaldi, M.; et al. Elimination of SARS-CoV-2 along wastewater and sludge treatment processes. Water Res. 2021, 202, 117435. [Google Scholar] [CrossRef]
- Shakeel, N.; Shakeel, S. Context-Free Word Importance Scores for Attacking Neural Networks. J. Comput. Tional Cogn. Eng. 2022, 1, 187–192. [Google Scholar] [CrossRef]
- Kargar, M.; Mahvi, A.H. Effect of Ultrasound in Improving Dewatering and Stabilization of Anaerobic Digested Sludge. 2012. Available online: https://www.researchgate.net/publication/282722257_Effect_of_Ultrasound_in_improving_dewatering_and_stabilization_of_anaerobic_digested_sludge (accessed on 1 May 2023).
- Liu, H.; Yuan, P.; Yang, B.; Yang, G.; Chen, Y. Head-related transfer function–reserved time-frequency masking for robust binaural sound source localization. CAAI Trans. Intell. Technol. 2022, 7, 26–33. [Google Scholar] [CrossRef]
- Buonocore, E.; Mellino, S.; De Angelis, G.; Liu, G.; Ulgiati, S. Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol. Indic. 2018, 94, 13–23. [Google Scholar] [CrossRef]
- Oslund, S.; Washington, C.; So, A.; Chen, T.; Ji, H. Multiview Robust Adversarial Stickers for Arbitrary Objects in the Physical World. J. Comput. Cogn. Eng. 2022, 1, 152–158. [Google Scholar] [CrossRef]
- Houghton, J.J.; Quarmby, J.; Stephenson, T. Municipal wastewater sludge dewaterability and the presence of microbial extracellular polymer. Water Sci. Technol. 2001, 44, 373–379. [Google Scholar] [CrossRef]
- Zhang, Z.; De Luca, G.; Archambault, B.; Chavez, J.; Rice, B. Traffic Dataset for Dynamic Routing Algorithm in Traffic Simulation. J. Artif. Intell. Technol. 2022, 2, 111–122. [Google Scholar] [CrossRef]
- Gasparin, A.; Lukovic, S.; Alippi, C. Deep learning for time series forecasting: The electric load case. arXiv 2019, arXiv:1907.09207. [Google Scholar] [CrossRef]
- Jákói, Z.; Lemmer, B.; Hodúr, C.; Beszédes, S. Microwave and Ultrasound Based Methods in Sludge Treatment: A Review. Appl. Sci. 2021, 11, 7067. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Hamdaoui, O.; Vasseghian, Y.; Momotko, M.; Boczkaj, G.; Kyzas, G.Z.; Wang, C. Bibliometric analysis and literature review of ultrasound-assisted degradation of organic pollutants. Sci. Total Environ. 2023, 876, 162551. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, P.; Wang, H.; Ye, J. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability. Ultrason. Sonochem. 2018, 40, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Lambert, N.; Van Aken, P.; Smets, I.; Appels, L.; Dewil, R. Performance assessment of ultrasonic sludge disintegration in activated sludge wastewater treatment plants under nutrient-deficient conditions. Chem. Eng. J. 2022, 431, 133979. [Google Scholar] [CrossRef]
- Heidari, A.; Nabizadeh, R.; Alimohammadi, M.; Gholami, M.; Mahvi, A.H. Evaluation of changes in extracellular polymeric substances quantity within sludge dewatering using continues ultrasonic-electrocoagulation reactor. Iran. J. Health Environ. 2015, 8, 23–30. [Google Scholar]
- Mehrdadi, N.; Kootenaei, F.G. An investigation on effect of ultrasound waves on sludge treatment. Energy Procedia 2018, 153, 325–329. [Google Scholar] [CrossRef]
- Xu, Z.; Sun, S.; Gao, M.; Zheng, R.; Mu, H.; Qiu, L.; Ma, J. Degradation of tetracyclines via calcium peroxide activation by ultrasonic: Roles of reactive species, oxidation mechanism and toxicity evaluation. Chemosphere 2023, 334, 139033. [Google Scholar] [CrossRef]
- Wang, F.; Lu, S.; Ji, M. Components of released liquid from ultrasonic waste activated sludge disintegration. Ultrason. Sonochem. 2006, 13, 334–338. [Google Scholar] [CrossRef]
- Ruiz-Hernando, M.; Vinardell, S.; Labanda, J.; Llorens, J. Effect of ultrasonication on waste activated sludge rheo-logical properties and process economics. Water Res. 2022, 208, 117855. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, H.; Wang, H.; Show, P.L.; Ivanets, A.; Luo, D.; Wang, C. MXenes as heterogeneous Fenton-like catalysts for removal of organic pollutants: A review. J. Environ. Chem. Eng. 2022, 10, 108954. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, Y.; Roy, K.; Gao, C.; Huang, L. The Application of Machine Learning: Controlling the Preparation of Environmental Materials and Carbon Neutrality. Int. J. Environ. Res. Public Health 2023, 20, 1871. [Google Scholar] [CrossRef]
- Eskandari, E.; Alimoradi, H.; Pourbagian, M.; Shams, M. Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube. Korean J. Chem. Eng. 2022, 39, 3227–3245. [Google Scholar] [CrossRef]
- Cruz, I.A.; Chuenchart, W.; Long, F.; Surendra, K.; Andrade, L.R.S.; Bilal, M.; Liu, H.; Figueiredo, R.T.; Khanal, S.K.; Ferreira, L.F.R. Application of machine learning in anaerobic digestion: Perspectives and challenges. Bioresour. Technol. 2022, 345, 126433. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Waterand Wastewater; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Azimi, A.; Golrizan, F. Comparison of Chemical Sludge Conditioning Methods in Ghods Wastewater Treatment Plant. 2005. Available online: https://www.researchgate.net/publication/291432423_Comparison_of_chemical_sludge_conditioning_methods_in_GHODS_wastewater_treatment_plant (accessed on 1 May 2023).
- Lin, H.; Xie, K.; Mahendran, B.; Bagley, D.; Leung, K.; Liss, S.; Liao, B. Sludge properties and their effects on membrane fouling in submerged anaerobic membrane bioreactors (SAnMBRs). Water Res. 2009, 43, 3827–3837. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Yang, J.; Wang, C. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes. J. Clean. Prod. 2022, 375, 134118. [Google Scholar] [CrossRef]
- Cui, Y.; Su, H.; Chen, Y.; Chen, Y.; Peng, Y. Mechanism of Activated Sludge Floc Disintegration Induced by Excess Addition of NaCl. CLEAN Soil Air Water 2015, 43, 1197–1206. [Google Scholar] [CrossRef]
- Zhang, G.; He, J.; Zhang, P.; Zhang, J. Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment. J. Hazard. Mater. 2009, 164, 1105–1109. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Qin, S.; Lai, W.; Yang, X.; Xu, S.; Lichtfouse, E. Comprehensive role of thermal combined ultrasonic pre-treatment in sewage sludge disposal. Sci. Total Environ. 2021, 789, 147862. [Google Scholar] [CrossRef]
- Yang, S.-S.; Guo, W.-Q.; Meng, Z.-H.; Zhou, X.-J.; Feng, X.-C.; Zheng, H.-S.; Liu, B.; Ren, N.-Q.; Cui, Y.-S. Characterizing the fluorescent products of waste activated sludge in dissolved organic matter following ultrasound assisted ozone pretreatments. Bioresour. Technol. 2013, 131, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, B.; Hernandez, R.; Fortela, D.L.B.; Sharp, W.; Chistoserdov, A.; Gang, D.; Revellame, E.; Holmes, W.; Zappi, M.E. A Review of Pretreatment Methods to Enhance Solids Reduction during Anaerobic Digestion of Municipal Wastewater Sludges and the Resulting Digester Performance: Implications to Future Urban Biorefineries. Appl. Sci. 2020, 10, 9141. [Google Scholar] [CrossRef]
- Ince, N.H.; Tezcanli, G.; Belen, R.K.; Apikyan, İ.G. Ultrasound as a catalyzer of aqueous reaction systems: The state of the art and environmental applications. Appl. Catal. B Environ. 2001, 29, 167–176. [Google Scholar] [CrossRef]
- Gallipoli, A.; Braguglia, C.M. High-frequency ultrasound treatment of sludge: Combined effect of surfactants re-moval and floc disintegration. Ultrason. Sonochem. 2012, 19, 864–871. [Google Scholar] [CrossRef]
- Gallipoli, A.; Gianico, A.; Gagliano, M.; Braguglia, C. Potential of high-frequency ultrasounds to improve sludge anaerobic conversion and surfactants removal at different food/inoculum ratio. Bioresour. Technol. 2014, 159, 207–214. [Google Scholar] [CrossRef]
- Braguglia, C.; Gagliano, M.; Rossetti, S. High frequency ultrasound pretreatment for sludge anaerobic digestion: Effect on floc structure and microbial population. Bioresour. Technol. 2012, 110, 43–49. [Google Scholar] [CrossRef]
- Bien, J.B.; Kempa, E.S.; Bien, J.D. Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process. Water Sci. Technol. 1997, 36, 287–291. [Google Scholar] [CrossRef]
- Onyeche, T.; Schläfer, O.; Bormann, H.; Schröder, C.; Sievers, M. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion. Ultrasonics 2002, 40, 31–35. [Google Scholar] [CrossRef]
- Tiehm, A.; Nickel, K.; Zellhorn, M.; Neis, U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res. 2001, 35, 2003–2009. [Google Scholar] [CrossRef]
- Mason, T.J.; Joyce, E.; Phull, S.S.; Lorimer, J.P. Potential uses of ultrasound in the biological decontamination of water. Ultrason. Sonochem. 2003, 10, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Bougrier, C.; Carrère, H.; Delgenès, J.P. Solubilisation of waste-activated sludge by ultrasonic treatment. Chem. Eng. J. 2005, 106, 163–169. [Google Scholar] [CrossRef]
- Nickel, K.; Neis, U. Ultrasonic disintegration of biosolids for improved biodegradation. Ultrason. Sonochem. 2007, 14, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Kargar, M.; Mahvi, A.H. The Compare Improvement of Ultrasonic Treatment to Dewatering and Digestion in Aerobic and Anaerobic Stabilization. Iran. J. Health Environ. 2012, 5, 91–99. [Google Scholar]
- Liu, Y.; Tay, J.-H. Strategy for minimization of excess sludge production from the activated sludge process. Biotechnol. Adv. 2001, 19, 97–107. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, G.; Wang, W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation. Bioresour. Technol. 2007, 98, 207–210. [Google Scholar] [CrossRef]
- Mahvi, A.H. Application of ultrasonic technology for water and wastewater treatment. Iran. J. Public Health 2009, 38, 1–17. [Google Scholar]
- Ghafarzadeh, M.; Abedini, R.; Rajabi, R. Optimization of ultrasonic waves application in municipal wastewater sludge treatment using response surface method. J. Clean. Prod. 2017, 150, 361–370. [Google Scholar] [CrossRef]
- Mobaraki, M.; Semken, R.S.; Mikkola, A.; Pyrhönen, J. Enhanced sludge dewatering based on the application of high-power ultrasonic vibration. Ultrasonics 2018, 84, 438–445. [Google Scholar] [CrossRef]
- Huang, J.; Liang, J.; Yang, X.; Zhou, J.; Liao, X.; Li, S.; Zheng, L.; Sun, S. Ultrasonic coupled bioleaching pretreatment for enhancing sewage sludge dewatering: Simultaneously mitigating antibiotic resistant genes and changing microbial communities. Ecotoxicol. Environ. Saf. 2020, 193, 110349. [Google Scholar] [CrossRef]
- Feng, X.; Deng, J.; Lei, H.; Bai, T.; Fan, Q.; Li, Z. Dewaterability of waste activated sludge with ultrasound conditioning. Bioresour. Technol. 2009, 100, 1074–1081. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef] [PubMed]
- Foladori, P.; Andreottola, G.; Ziglio, G. Sludge Reduction Technologies in Wastewater Treatment Plants; IWA Publishing: London, UK, 2010. [Google Scholar]
- Weemaes, M.P.J.; Verstraete, W.H. Evaluation of current wet sludge disintegration techniques. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean. Technol. 1998, 73, 83–92. [Google Scholar] [CrossRef]
- Lifka, J.; Ondruschka, B.; Hofmann, J. Einsatz von Ultraschall zum Schadstoffabbau in Wasser: Aquasonolyse–Eine Über-sicht. Chem. Ing. Tech. 2002, 74, 403–413. [Google Scholar] [CrossRef]
- Bozorgnezhad, A.; Shams, M.; Kanani, H.; Hashemi Nasab, M.R. Experimental study of the effect of inlet flow pa-rameters on the operation of PEMFC. Modares Mech. Eng. 2014, 14, 33–43. [Google Scholar]
- Bozorgnezhad, A.; Shams, M.; Ahmadi, G.; Kanani, H.; Hasheminasab, M. The Experimental Study of Water Accumulation in PEMFC Cathode Channel. Am. Soc. Mech. Eng. 2015, 57212, V001T22A004. [Google Scholar] [CrossRef]
- Esfandiar, M.; Nikan, F.; Shahnazari, M.R. Catalytic pyrolysis of coal particles in a fluidized bed: Experiments and modeling. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 1478–1483. [Google Scholar] [CrossRef]
- Akbari, M.; Asiabaraki, H.R.; Hassanzadeh, E.; Esfandiar, M. Simulation of dissimilar friction stir welding of AA7075 and AA5083 aluminium alloys using Coupled Eulerian–Lagrangian approach. Weld. Int. 2023, 37, 174–184. [Google Scholar] [CrossRef]
- Saadati, S.; Esfandiar, M. Partial and full β-bromination of meso-tetraphenylporphyrin: Effects on the catalytic activity of the manganese and nickel complexes for photo oxidation of styrene in the presence of molecular oxygen and visible light. J. Organomet. Chem. 2020, 924, 121464. [Google Scholar] [CrossRef]
- Shahnazari, M.R.; Esfandiar, M. Capillary Effects on Surface Enhancement in Non-Homogeneous Fibrous Porous Medium. Mech. Adv. Compos. Struct. 2018, 5, 83–90. [Google Scholar] [CrossRef]
- Bordbar, M.; Naderi, N.; Chamgordani, M.A. The relation of entanglement to the number of qubits and interactions between them for different graph states. Indian J. Phys. 2021, 95, 901–909. [Google Scholar] [CrossRef]
- Chamgordani, M.A. The Entanglement Properties of Superposition of Fermionic Coherent States. Int. J. Theor. Phys. 2022, 61, 33. [Google Scholar] [CrossRef]
- El Jery, A.; Aldrdery, M.; Shirode, U.R.; Gavilán, J.C.O.; Elkhaleefa, A.; Sillanpää, M.; Sammen, S.S.; Tizkam, H.H. An Efficient Investigation and Machine Learning-Based Prediction of Decolorization of Wastewater by Using Zeolite Catalyst in Electro-Fenton Reaction. Catalysts 2023, 13, 1085. [Google Scholar] [CrossRef]
- El Jery, A.; Noreen, A.; Isam, M.; Arias-Gonzáles, J.L.; Younas, T.; Al-Ansari, N.; Sammen, S.S. A novel experimental and machine learning model to remove COD in a batch reactor equipped with microalgae. Appl. Water Sci. 2023, 13, 153. [Google Scholar] [CrossRef]
- El Jery, A.; Ramírez-Coronel, A.A.; Gavilán, J.C.O.; Al-Ansari, N.; Sammen, S.S. Proposing empirical correlations and optimization of Nu and Sgen of nanofluids in channels and predicting them using artificial neural network. Case Stud. Therm. Eng. 2023, 45, 102970. [Google Scholar] [CrossRef]
- Alimoradi, H.; Eskandari, E.; Pourbagian, M.; Shams, M. A parametric study of subcooled flow boiling of Al2O3/water nanofluid using numerical simulation and artificial neural networks. Nanoscale Microscale Thermophys. Eng. 2022, 26, 129–159. [Google Scholar] [CrossRef]
Parameter | Values |
---|---|
Model input | SRF, Frequency, Time |
ANN hidden layer structure | (32, 64, 128, 256, 128, 64, 32) |
The activation function of the output layer | ReLU |
Batch size | 4 |
Epochs | 35,000 |
Learning rate | 0.01 |
Output parameter | Concentration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Jery, A.; Kosarirad, H.; Taheri, N.; Bagheri, M.; Aldrdery, M.; Elkhaleefa, A.; Wang, C.; Sammen, S.S. An Application of Ultrasonic Waves in the Pretreatment of Biological Sludge in Urban Sewage and Proposing an Artificial Neural Network Predictive Model of Concentration. Sustainability 2023, 15, 12875. https://doi.org/10.3390/su151712875
El Jery A, Kosarirad H, Taheri N, Bagheri M, Aldrdery M, Elkhaleefa A, Wang C, Sammen SS. An Application of Ultrasonic Waves in the Pretreatment of Biological Sludge in Urban Sewage and Proposing an Artificial Neural Network Predictive Model of Concentration. Sustainability. 2023; 15(17):12875. https://doi.org/10.3390/su151712875
Chicago/Turabian StyleEl Jery, Atef, Houman Kosarirad, Nedasadat Taheri, Maryam Bagheri, Moutaz Aldrdery, Abubakr Elkhaleefa, Chongqing Wang, and Saad Sh. Sammen. 2023. "An Application of Ultrasonic Waves in the Pretreatment of Biological Sludge in Urban Sewage and Proposing an Artificial Neural Network Predictive Model of Concentration" Sustainability 15, no. 17: 12875. https://doi.org/10.3390/su151712875
APA StyleEl Jery, A., Kosarirad, H., Taheri, N., Bagheri, M., Aldrdery, M., Elkhaleefa, A., Wang, C., & Sammen, S. S. (2023). An Application of Ultrasonic Waves in the Pretreatment of Biological Sludge in Urban Sewage and Proposing an Artificial Neural Network Predictive Model of Concentration. Sustainability, 15(17), 12875. https://doi.org/10.3390/su151712875