Temporal and Spatial Changes of Drought Characteristics in Temperate Steppes in China from 1960 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Calculation of Standardized Precipitation Evapotranspiration Index
2.3.2. Run Length Theory
- (1)
- When the SPEI value is less than X1, the drought event is preliminarily determined in this month.
- (2)
- For a drought event with a duration of 1 month, when its SPEI value is greater than X2, it is considered that there is no drought in this month, and it is eliminated.
- (3)
- When the time interval of two adjacent drought processes is only 1 month and the SPEI value in that month is less than X0, the two adjacent drought processes are combined into one drought event; the drought duration is the sum of the two drought durations plus 1, and the drought intensity is the sum of the intensity of the two drought events; otherwise, it is two independent drought processes.
2.3.3. Inverse Distance-Weighted Interpolation (IDW)
3. Results
3.1. Analysis of Drought Trend in Temperate Steppe
3.1.1. Analysis of Inter-Annual Drought Change Trend
3.1.2. Trend Analysis of Seasonal Drought
3.2. Analysis of Spatial-Temporal Variation of Drought Duration in Temperate Steppe
3.2.1. Analysis of Duration of Interannual Drought
3.2.2. Analysis of Duration of Seasonal Drought
3.3. Spatio-Temporal Variation of Drought Time in Temperate Steppe
3.3.1. Analysis of Interannual Drought Time
3.3.2. Analysis of Seasonal Drought Time
3.4. Spatio-Temporal Variation of Drought Intensity in Temperate Steppe
3.4.1. Analysis of Interannual Drought Intensity
3.4.2. Analysis of Seasonal Drought Intensity
3.5. Spatio-Temporal Variation of Drought Frequency in Temperate Steppe
3.5.1. Analysis of Interannual Drought Frequency
3.5.2. Analysis of Seasonal Drought Frequency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, X.; Wang, Y.M.; Ji, P.; Wu, P.L.; Justin, S.; Jason, A.O. A global transition to flash droughts under climate change. Science 2023, 380, 187–191. [Google Scholar] [CrossRef]
- Yao, N.; Li, Y.; Lei, T.; Peng, L.L. Drought evolution, severity and trends in mainland China over 1961–2013. Sci. Total Environ. 2018, 616–617, 73–89. [Google Scholar] [CrossRef]
- Xu, C.J.; Dou, Y. Analysis of drought characteristics in Xinjiang in recent 60 years based on standardized precipitation evapotranspiration index. Gansu Water Resour. Hydropower Technol. 2023, 59, 22–28. [Google Scholar]
- Huang, J.P.; Ji, M.X.; Xie, Y.K.; Wang, S.S.; He, Y.L.; Ran, J.J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2015, 46, 1131–1150. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, B.C.; Shi, Y.; Han, Z.Y.; Lu, B. Interpretation of the IPCC AR6 on the impacts and risks of climate change. Clim. Chang. Res. 2022, 18, 389–394. [Google Scholar]
- Jiang, D.B.; Wang, X.X. A brief interpretation of drought changes from IPCC Sixth Assessment Report. Trans. Atmos. Sci. 2021, 44, 650–653. [Google Scholar]
- Jiang, T.; Zhai, J.Q.; Luo, Y.; Su, B.D.; Chao, Q.C.; Wang, Y.J.; Wang, G.J.; Huang, J.L.; Xu, R.H.; Gao, M.N.; et al. Understandings of assessment reports on climate change impacts, adaptation and vulnerability: Progress from IPCC AR5 to IPCC AR6. Trans. Atmos. Sci. 2022, 45, 502–511. [Google Scholar]
- Yonca, C.; Hafzullah, A. Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. J. Hydrol. 2020, 584, 124312. [Google Scholar]
- Chen, J.; Zhang, B.; Yao, R.; Zhang, X.; Zhang, Y.; Zhou, J. Dry and Wet Changes and Vegetation Time-Delay Responses in Western China. Atmosphere 2022, 13, 2013. [Google Scholar] [CrossRef]
- Gao, G.; Li, Y.; Chen, Y.X.; Feng, A.Q. The evolution characteristics of drought spatio-temporal law in China in the recent 30 years. China Flood Drought Manag. 2023, 33, 1–8. [Google Scholar]
- Li, S.F.; Ge, W.Y.; Wang, F. Characteristics of Drought Events and Their Impacts on Vegetation in Northern China from 1982 to 2019. Res. Soil Water Conserv. 2023, 30, 251–259. [Google Scholar]
- Xie, N.X.; Xiong, L.H.; Li, J.Y.; Wang, T.Y. On the Spatio-Temporal Characteristics of Meteorological Drought in Yangtze River Basin based on SEPI. Hydropower New Energy 2023, 37, 30–35. [Google Scholar]
- Ge, Y.K.; Zhao, L.L.; Chen, J.S.; Ren, Y.N.; Li, H.Z. Spatio-temporal evolution trend of meteorological drought and identification of drought events in southwest China from 1983 to 2020. Ecol. Environ. Sci. 2023, 32, 920–932. [Google Scholar]
- Hu, Q.; Dong, B.; Pan, X.B.; Jiang, H.F.; Pan, Z.H.; Qiao, Y.; Shao, C.X.; Ding, M.L.; Yin, Z.W.; Hu, L.T. Spatiotemporal variation and causes analysis of dry-wet climate over period of 1961–2014 in China. Trans. Chin. Soc. Agric. Eng. 2017, 33, 124–130. [Google Scholar]
- Chai, R.F.; Chen, H.S.; Sun, S.L. Attribution analysis of dryness/wetness change over China based on SPEI. J. Meteorol. Sci. 2018, 38, 423–431. [Google Scholar]
- Liu, H.; Jiang, L.L.; Liu, B.; Liu, R.; Xiao, Z.L. Characteristics of drought in China and its effect on vegetation change in recent 40 years. Acta Ecol. Sin. 2023, 43, 1–14. [Google Scholar]
- Wang, L.; Xie, X.Q.; Li, Y.S.; Tang, D.Y. Changes of humid index and borderline of wet and dry climate zone in northern China over the past 40 years. Geogr. Res. 2004, 23, 45–54. [Google Scholar]
- Wu, M.J. Spatiotemporal Variability and Driving Mechanisms of Drought Based on Standardized Precipitation Evapotranspiration Index; Northwest Agriculture & Forestry University: Xianyang, China, 2020. [Google Scholar]
- Sun, C.Z.; Tang, S.M.; Wang, Z.; Li, N.; Xu, X.B.; Yuan, F.Q.; Wang, C.J.; Li, Y.H.; Zhang, Y.J.; Li, S.C.; et al. Effects of the Enclosure on Plant Communities in Temperate Grassland. Acta Agrestia Sin. 2023, 31, 1481–1489. [Google Scholar]
- Di, K.; Hu, Z.M.; Hao, G.C.; Cao, R.C.; Liang, M.Q.; Han, D.R.; Wu, G.N. Spatial and temporal variation characteristics of the drought index in China grasslands in the recent 40 years (1982–2018). Natl. Remote Sens. Bull. 2022, 26, 2629–2641. [Google Scholar] [CrossRef]
- Shen, X.J.; Zhou, D.W.; Li, F.; Zhang, H.Y. Vegetation Change and Its Response to Climate Change in Grassland Region of China. Sci. Geogr. Sin. 2015, 35, 622–629. [Google Scholar]
- Tong, S.Q.; Bao, Y.H.; Te, R.; Ma, Q.Y.; Ha, S.; Lusi, A. Analysis of Drought Characteristics in Xilingol Grassland of Northern China Based on SPEI and Its Impact on Vegetation. Math. Probl. Eng. 2017, 2017, 5209173. [Google Scholar] [CrossRef]
- Li, X.; Li, X.B.; Wang, H.; Yu, F.; Yu, H.J.; Yang, H. Impact of Climate Change on Temperate Grassland in Northern China. J. Beijing Norm. Univ. Nat. Sci. 2006, 42, 618–623. [Google Scholar]
- Piao, S.; Mohammat, A.; Fang, J.; Cai, Q.; Feng, J.M. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Ma, M.Y.; Wang, Q.M.; Liu, R.; Zhao, Y.; Zhang, D.Q. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and accumulation effects. Sci. Total Environ. 2023, 860, 160527. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.J.; Liu, B.H.; Li, G.D.; Zhou, D.W. Impact of Climate Change on Temperate and Alpine Grasslands in China during 1982–2006. Adv. Meteorol. 2015, 2015, 180614. [Google Scholar] [CrossRef]
- Te, N.W. Response of Vegetation Productivity to Precipitation Change in Temperate Steppe of Inner Mongolia; Inner Mongolia Agricultural University: Hohhot, China, 2022. [Google Scholar]
- Yuan, Y.M.; Liu, J.Y.; Gao, X.L.; Xue, J.; Wang, R.Z. Root traits of seven Stipa species and their relations with environmental factors in temperate grasslands. Acta Ecol. Sin. 2022, 42, 8784–8794. [Google Scholar]
- Yue, X.Y.; Zuo, X.A.; Chang, X.L.; Xu, C.; Lu, P.; Zhang, J.; Zhao, S.L.; Cheng, Q.P. NDVI of Typical Steppe and Desert Steppe in Inner Mongolia in Response to Meteorological Factors. J. Desert Res. 2019, 39, 25–33. [Google Scholar]
- Ding, Y.; Hou, X.Y.; Leonid, U.; Wu, X.H.; Yi, Y.T.; Li, X.L.; Yun, X.J. An Overview of Climate Change of Temperate Grassland and Its Impacts on Vegetation. Chin. Agric. Sci. Bull. 2012, 28, 310–316. [Google Scholar]
- Guo, X.M.; Tong, S.Q.; Bao, Y.H.; Ren, J.Y. Spatial and Temporal Variation Trend Analysis of Drought in Inner Mongolia in the Past 55 Years Based on SPEI. Geomat. World 2021, 28, 42–79. [Google Scholar]
- Zhao, Z.Z.; Zhang, B.L.; Pan, L.J.; Niu, P.T.; Guo, J.P. Droughts diagnosis and prediction using SPEI in eastern Inner Mongolia. Environ. Ecol. 2023, 5, 39–48. [Google Scholar]
- Ma, R.; Xia, C.L.; Zhang, J.Q.; Shen, X.J. Spatiotemporal variation of vegetation NDVI and its response to climate change in the temperate grassland region of China. Chin. J. Ecol. 2023, 42, 395–405. [Google Scholar]
- Ndayiragije, J.M.; Li, F. Monitoring and Analysis of Drought Characteristics Based on Climate Change in Burundi Using Standardized Precipitation Evapotranspiration Index. Water 2022, 14, 2511. [Google Scholar] [CrossRef]
- Dao, R.N.; Bao, Y.H. Dynamic of the Drought Based on the Ecological Partition in Inner Mongolia During 1980–2015. Res. Soil Water Conserv. 2019, 26, 159–165. [Google Scholar]
- Feng, S.Y.; Chun, P.P.; Yao, X.; Yi, D.J.; Guo, Y. Spatial and Temporal Distribution Characteristics and Cause of Drought in Northwest China Based on SPEI. Pearl River 2021, 42, 38–48. [Google Scholar]
- Lian, H.L.; Han, X.Y.; Liu, Y.L.; Han, Y.Q.; Yang, W.B.; Xiong, W. Study on spatiotemporal characteristics of atmospheric drought from 1981 to 2020 in the Mu Us Sandy Land of China based on SPEI index. J. Desert Res. 2022, 42, 71–80. [Google Scholar]
- Liang, S.Z.; Sui, X.Y.; Wang, M.; Li, X.H.; Dong, H.Y.; Yao, H.M.; Ma, W.D. Multiple Time Scales Analysis of Dryness and Wetness Changes of the Yellow River Basin in the Past 50 Years Based on SPEI Data. Res. Soil Water Conserv. 2022, 29, 231–241. [Google Scholar]
- Liu, Y.W.; Xu, X.H.; Zhang, X.P.; Zhou, X.W.; Lei, S.; Han, H.M. Drought Characteristics and Impact on Crop Affected Area in Jiangxi Province Based on SPEI. Water Resour. Power 2023, 41, 17–21. [Google Scholar]
- Teng, H.Y.; Feng, K.P. Temporal and spatial distribution of drought in northwest China based on SPEI drought index. Agric. Technol. 2021, 41, 87–93. [Google Scholar]
- Wang, X.D.; Zhang, B.; Ma, B.; Huang, H. Spatial and Temporal Evolution of Drought in Northeast China in Recent 58 Years Based on Daily SPEI. Plateau Meteorol. 2021, 16, e0259774. [Google Scholar]
- Xu, D.W. Distribution Change and Analysis of Different Grassland Types in Hulunber Grassland; Chinese Academy of Agricultural Sciences: Beijing, China, 2019. [Google Scholar]
- Ma, R.; Shen, X.J.; Zhang, J.Q.; Xia, C.L.; Liu, Y.W.; Wang, Y.J.; Jiang, M.; Lu, X.G. Variation of vegetation autumn phenology and its climatic drivers in temperate grasslands of China. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103064. [Google Scholar] [CrossRef]
- Bai, Y.F.; Zhao, Y.J.; Wang, Y.; Zhou, K.L. Assessment of Ecosystem Services and Ecological Regionalization of Grasslands Support Establishment of Ecological Security Barriers in Northern China. J. Chin. Acad. Sci. 2020, 35, 675–689. [Google Scholar]
- Yevjevich, V. An objective approach to definitions and investigations of continental hydrologic droughts. J. Hydrol. 1969, 7, 353. [Google Scholar]
- Li, N.; Risu, N.; Zhang, J.Q.; Tong, S.Q.; Shan, Y.; Ying, H.; Li, X.Q.; Bao, Y.L. Vegetation Dynamics and Diverse Responses to Extreme Climate Events in Different Vegetation Types of Inner Mongolia. Atmosphere 2018, 9, 394. [Google Scholar]
- Zhang, Q.; Tang, H.P.; Cui, F.Q.; Dai, L.W. SPEI-based analysis of drought characteristics and trends in Hulun Buir grassland. Acta Ecol. Sin. 2019, 39, 7110–7123. [Google Scholar]
- Jiao, Y.J. Temporal and Spatial Variation of Desert Steppe Vegetation and Its Response to Climate Change—Taking Sonid You qi as an Example; Chinese Academy of Forestry: Beijing, China, 2021. [Google Scholar]
- Luo, W.T.; Muraina, T.O.; Griffin-Nolan, R.J.; Ma, W.; Song, L.; Fu, W.; Yu, Q.; Knapp, A.K.; Wang, Z.W.; Han, X.G.; et al. Responses of a semiarid grassland to recurrent drought are linked to community functional composition. Ecology 2023, 104, e3920. [Google Scholar] [CrossRef]
SPEI Value | Drought Grade |
---|---|
SPEI > 0.5 | No drought |
−1 < SPEI ≤ −0.5 | Light drought |
−1.5 < SPEI ≤ −1 | Moderate drought |
−2 < SPEI ≤ −1.5 | Severe drought |
SPEI ≤ −2 | Extreme drought |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, B.; Zhou, J.; Guo, F. Temporal and Spatial Changes of Drought Characteristics in Temperate Steppes in China from 1960 to 2020. Sustainability 2023, 15, 12909. https://doi.org/10.3390/su151712909
Chen J, Zhang B, Zhou J, Guo F. Temporal and Spatial Changes of Drought Characteristics in Temperate Steppes in China from 1960 to 2020. Sustainability. 2023; 15(17):12909. https://doi.org/10.3390/su151712909
Chicago/Turabian StyleChen, Jie, Bo Zhang, Jing Zhou, and Feng Guo. 2023. "Temporal and Spatial Changes of Drought Characteristics in Temperate Steppes in China from 1960 to 2020" Sustainability 15, no. 17: 12909. https://doi.org/10.3390/su151712909
APA StyleChen, J., Zhang, B., Zhou, J., & Guo, F. (2023). Temporal and Spatial Changes of Drought Characteristics in Temperate Steppes in China from 1960 to 2020. Sustainability, 15(17), 12909. https://doi.org/10.3390/su151712909