Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Fusarium oxysporum f. sp. Vasinfectum (FOV)
2.2. Preparation of Organic Waste Biochar (OWB)
2.3. Preparation of Soil Substrate
2.4. Experiment Plan
2.5. Inoculation of Pathogen
2.6. Cotton Plant Analysis
2.6.1. Growth Parameters Assessment
2.6.2. Biochemical Assays
2.6.3. Plant Nutrient (NPK) Contents Determination
2.6.4. Cotton Plant Disease Assessment
2.6.5. Identifying Culturable Microbes
2.6.6. FOV Survival and Root Colonization in Soil
2.6.7. Potting Mixture DNA Extraction
2.6.8. 16S RNA Gene Sequencing
2.6.9. Analysis of Bioinformatics Data and Sequence Processing
2.6.10. Bacterial CLPP
2.6.11. Statistical Analysis
3. Results
3.1. Plant Growth Parameters
3.1.1. Shoot Length
3.1.2. Root Length
3.1.3. Shoot Dry Weight
3.1.4. Root Dry Weight
3.2. Nutritional Contents [Nitrogen (N), Phosphorus (P) and Potassium (K)] of Cotton Plants
3.3. Effect of FOV and Organic Waste Biochar on Chlorophyll Contents of Cotton Plants
3.4. Plant Disease Assessment
3.5. Biochemical Analysis of Cotton Plants
3.6. Biochar Effect on Fusarium in Potting Mixture
3.7. Biochar’s Impact on the Diversity of Culturable Populations of Microbes
3.8. Diversity and Composition of the Rhizosphere’s Bacterial Population Effected by Biochar
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKinstry, R.B., Jr.; Unterberger, G.L.; Mandelbaum, D.G.; Brown, C.B. State Global Climate Change Policy And Business Opportunity. Oil Gas Energy Law 2007, 3, 1–10. [Google Scholar]
- Lackner, K.S. A Guide to CO2 Sequestration. Science 2003, 300, 1677–1678. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; Rosenberg, N.J.; Lal, R. Mitigation of Climatic Change by Soil Carbon Sequestration: Issues of Science, Monitoring, and Degraded Lands. Adv. Agron. 2001, 70, 1–75. [Google Scholar]
- Lehmann, J. Bio-Energy in the Black. Front. Ecol. Environ. 2007, 5, 381–387. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Suman, D.O.; Kuhlbusch, T.A.J.; Lim, B. Marine Sediments: A Reservoir for Black Carbon and Their Use as Spatial and Temporal Records of Combustion. In Sediment Records of Biomass Burning and Global Change; Springer: Berlin/Heidelberg, Germany, 1997; pp. 271–293. [Google Scholar]
- Kuhlbusch, T.A.J. Black Carbon and the Carbon Cycle. Science 1998, 280, 1903–1904. [Google Scholar] [CrossRef]
- Lehmann, J.; Gaunt, J.; Rondon, M. Bio-Char Sequestration in Terrestrial Ecosystems—A Review. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 403–427. [Google Scholar] [CrossRef]
- Elad, Y.; Cytryn, E.; Meller Harel, Y.; Lew, B.; Graber, E.R. The Biochar Effect: Plant Resistance to Biotic Stresses. Phytopathol. Mediterr. 2011, 50, 335–349. [Google Scholar]
- Bonanomi, G.; Ippolito, F.; Scala, F. A “Black” Future for Plant Pathology? Biochar as a New Soil Amendment for Controlling Plant Diseases. J. Plant Pathol. 2015, 97, 223–234. [Google Scholar]
- Chen, Z.; Kamchoom, V.; Chen, R.; Prasittisopin, L. Investigating the Impacts of Biochar Amendment and Soil Compaction on Unsaturated Hydraulic Properties of Silty Sand. Agronomy 2023, 13, 1845. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Subbiah, S.; Ramachandran, S.; Narayanasamy, S.; Bartocci, P.; Fantozzi, F. Natural Draft-Improved Carbonization Retort System for Biocarbon Production from Prosopis Juliflora Biomass. Energy Fuels 2019, 33, 11113–11124. [Google Scholar] [CrossRef]
- Sombroek, W.I.M.; Ruivo, M.D.L.; Fearnside, P.M.; Glaser, B.; Lehmann, J. Amazonian Dark Earths as Carbon Stores and Sinks. In Amazonian Dark Earths: Origin Properties Management; Springer: Dordrecht, The Netherlands, 2003; pp. 125–139. [Google Scholar]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, A. Effects of Biochar from Slow Pyrolysis of Papermill Waste on Agronomic Performance and Soil Fertility. Plant Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Barrow, C.J. Biochar: Potential for Countering Land Degradation and for Improving Agriculture. Appl. Geogr. 2012, 34, 21–28. [Google Scholar] [CrossRef]
- Steiner, C.; Glaser, B.; Teixeira, W.G.; Lehmann, J.; Blum, W.E.H.; Zech, W. Nitrogen Retention and Plant Uptake on a Highly Weathered Central Amazonian Ferralsol Amended with Compost and Charcoal. J. Plant Nutr. Soil Sci. 2008, 171, 893–899. [Google Scholar] [CrossRef]
- Abiven, S.; Hund, A.; Martinsen, V.; Cornelissen, G. Biochar Amendment Increases Maize Root Surface Areas and Branching: A Shovelomics Study in Zambia. Plant Soil 2015, 395, 45–55. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bird, M.I.; Nelson, P.N.; Bass, A.M. The Ameliorating Effects of Biochar and Compost on Soil Quality and Plant Growth on a Ferralsol. Soil Res. 2015, 53, 1–12. [Google Scholar] [CrossRef]
- Ozyigit, I.I.; Dogan, I.; Kaya, Y.; Bajrovic, K.; Gozukirmizi, N. Cotton Biotechnology: An Efficient Gene Transfer Protocol via Agrobacterium Tumefaciens for a Greater Transgenic Recovery. J. Nat. Fibers 2022, 19, 11582–11596. [Google Scholar] [CrossRef]
- Ahmad, S.; Abbas, Q.; Abbas, G.; Fatima, Z.; Atique-Ur-rehman; Naz, S.; Younis, H.; Khan, R.J.; Nasim, W.; Rehman, M.H.U.; et al. Quantification of Climate Warming and Crop Management Impacts on Cotton Phenology. Plants 2017, 6, 7. [Google Scholar] [CrossRef]
- Abbas, Q.; Ahmad, S. Effect of Different Sowing Times and Cultivars on Cotton Fiber Quality under Stable Cotton-Wheat Cropping System in Southern Punjab, Pakistan. Pakistan J. Life Soc. Sci. 2018, 16, 77–84. [Google Scholar]
- Tariq, M.; Yasmeen, A.; Ahmad, S.; Hussain, N.; Afzal, M.N.; Hasanuzzaman, M. Shedding of Fruiting Structures in Cotton: Factors, Compensation and Prevention1. Trop. Subtrop. Agroecosyst. 2017, 20, 251–262. [Google Scholar]
- Tariq, M.; Afzal, M.N.; Muhammad, D.; Ahmad, S.; Shahzad, A.N.; Kiran, A.; Wakeel, A. Relationship of Tissue Potassium Content with Yield and Fiber Quality Components of Bt Cotton as Influenced by Potassium Application Methods. Field Crops Res. 2018, 229, 37–43. [Google Scholar] [CrossRef]
- Usman, M.; Ahmad, A.; Ahmad, S.; Arshad, M.; Khaliq, T.; Wajid, A.; Hussain, K.; Nasim, W.; Chattha, T.M.; Trethowan, R.; et al. Development and Application of Crop Water Stress Index for Scheduling Irrigation in Cotton (Gossypium hirsutum L.) under Semiarid Environment. J. Food Agric. Environ. 2009, 7, 386–391. [Google Scholar]
- Karaş, E. Sustainable and Effective Management Strategies in Cotton Cultivation. Available online: https://www.intechopen.com/chapters/81421 (accessed on 23 June 2022).
- Majeed, S.; Rana, I.A.; Mubarik, M.S.; Atif, R.M.; Yang, S.-H.; Chung, G.; Jia, Y.; Du, X.; Hinze, L.; Azhar, M.T. Heat Stress in Cotton: A Review on Predicted and Unpredicted Growth-Yield Anomalies and Mitigating Breeding Strategies. Agronomy 2021, 11, 1825. [Google Scholar] [CrossRef]
- Ahmad, S.; Hasanuzzaman, M. Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies; Springer Nature: Singapore, 2020. [Google Scholar]
- Uluhan, E.; Keleş, E.N.; Tufan, F. Analysis of WRKY Transcription Factors in Barley Cultivars Infected with Fusarium Culmorum. Int. J. Life Sci. Biotechnol. 2019, 2, 165–174. [Google Scholar] [CrossRef]
- Mohiddin, F.A. Studies on the Development of Certain Fungal and Bacterial Biopesticides for the Management of Wilt Disease Complex of Chickpea Caused by Fusarium and Meloidogyne Species; Aligarh Muslim University: Aligarh, India, 2007. [Google Scholar]
- Liu, N.; Zhang, X.; Sun, Y.; Wang, P.; Li, X.; Pei, Y.; Li, F.; Hou, Y. Molecular Evidence for the Involvement of a Polygalacturonase-Inhibiting Protein, GhPGIP1, in Enhanced Resistance to Verticillium and Fusarium Wilts in Cotton. Sci. Rep. 2017, 7, 39840. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.F. Some Diseases of Cotton. 3. Frenching. Ala. Agric. Exp. Stn. Bull. 1892, 41, 19–29. [Google Scholar]
- Dastur, R.H.; Arora, R.D.; Sawhney, K.; Sikka, S.M. Resource Productivity and Resource Use Efficiency in Sugarcane Production. J. Agric. Res. Technol. 2015, 40, 176. [Google Scholar]
- Cook, R.J. Fusarium Diseases in the People’s Republic of China. In Fusarium Diseases, Biology, and Taxonomy; Nelson, P.E., Tousson, T.A., Cook, R.J., Eds.; Penn State University Press: University Park, PA, USA, 1981. [Google Scholar]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Chohan, S.; Perveen, R.; Abid, M.; Naz, M.S.; Akram, N. Morpho-Physiological Studies Management and Screening of Tomato Germplasm against Alternaria Solani the Causal Agent of Tomato Early Blight. Int. J. Agric. Biol. 2015, 17, 111–118. [Google Scholar]
- Akmal, M.; Maqbool, Z.; Khan, K.S.; Hussain, Q.; Ijaz, S.S.; Iqbal, M.; Aziz, I.; Hussain, A.; Abbas, M.S.; Rafa, H.U. Integrated Use of Biochar and Compost to Improve Soil Microbial Activity, Nutrient Availability, and Plant Growth in Arid Soil. Arab. J. Geosci. 2019, 12, 232. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Dalley, T.S.L.; Helleur, R.J. Preliminary Laboratory Production and Characterization of Biochars from Lignocellulosic Municipal Waste. J. Anal. Appl. Pyrolysis 2013, 99, 71–78. [Google Scholar] [CrossRef]
- Aftab, Z.-H.; Aslam, W.; Aftab, A.; Shah, A.N.; Akhter, A.; Fakhar, U.; Siddiqui, I.; Ahmed, W.; Majid, F.; Wróbel, J.; et al. Incorporation of Engineered Nanoparticles of Biochar and Fly Ash against Bacterial Leaf Spot of Pepper. Sci. Rep. 2022, 12, 8561. [Google Scholar] [CrossRef]
- Xi, J.; Li, H.; Xi, J.; Tan, S.; Zheng, J.; Tan, Z. Effect of Returning Biochar from Different Pyrolysis Temperatures and Atmospheres on the Growth of Leaf-Used Lettuce. Environ. Sci. Pollut. Res. 2020, 27, 35802–35813. [Google Scholar] [CrossRef] [PubMed]
- Rasool, M.; Akhter, A.; Soja, G.; Haider, M.S. Role of Biochar, Compost and Plant Growth Promoting Rhizobacteria in the Management of Tomato Early Blight Disease. Sci. Rep. 2021, 11, 6092. [Google Scholar] [CrossRef] [PubMed]
- Davoudpour, Y.; Schmidt, M.; Calabrese, F.; Richnow, H.H.; Musat, N. High Resolution Microscopy to Evaluate the Efficiency of Surface Sterilization of Zea Mays Seeds. PLoS ONE 2020, 15, e0242247. [Google Scholar] [CrossRef]
- Zhu, Y.; Lujan, P.A.; Wedegaertner, T.; Nichols, R.; Abdelraheem, A.; Zhang, J.F.; Sanogo, S. First Report of Fusarium oxysporum f. Sp. Vasinfectum Race 4 Causing Fusarium Wilt of Cotton in New Mexico, USA. Plant Dis. 2020, 104, 588. [Google Scholar] [CrossRef]
- Naika, S.; van Lidt de Jeude, J.; de Goffau, M.; Hilmi, M. AD17E Cultivation of Tomato; Agromisa Foundation: Wageningen, The Netherlands, 2005; ISBN 9085730392. [Google Scholar]
- Awan, Z.A.; Shoaib, A.; Khan, K.A. Variations in Total Phenolics and Antioxidant Enzymes Cause Phenotypic Variability and Differential Resistant Response in Tomato Genotypes against Early Blight Disease. Sci. Hortic. 2018, 239, 216–223. [Google Scholar] [CrossRef]
- Bradford, N. A Rapid and Sensitive Method for the Quantitation Microgram Quantities of a Protein Isolated from Red Cell Membranes. Anal. Biochem. 1976, 72, e254. [Google Scholar] [CrossRef]
- Chia-Chi, C.; Ming-Hua, Y.; Hwei-Mei, W.; Jiing-Chuan, C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002, 10, 3. [Google Scholar]
- Tan, M. Analysis of DNA Methylation of Maize in Response to Osmotic and Salt Stress Based on Methylation-Sensitive Amplified Polymorphism. Plant Physiol. Biochem. 2010, 48, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Saleh, B. Effect of Salt Stress on Growth and Chlorophyll Content of Some Cultivated Cotton Varieties Grown in Syria. Commun. Soil Sci. Plant Anal. 2012, 43, 1976–1983. [Google Scholar] [CrossRef]
- Estefan, G. Methods of Soil, Plant, and Water Analysis: A Manual for the West Asia and North Africa Region; International Center for Agricultural Research in the Dry Areas (ICARDA): Beirut, Lebanon, 2013. [Google Scholar]
- Shaner, G. The Effect of Nitrogen Fertilization on the Expression of Slow-Mildewing Resistance in Knox Wheat. Phytopathology 1977, 67, 1051–1056. [Google Scholar] [CrossRef]
- Hage-Ahmed, K.; Krammer, J.; Steinkellner, S. The Intercropping Partner Affects Arbuscular Mycorrhizal Fungi and Fusarium oxysporum f. sp. Lycopersici Interactions in Tomato. Mycorrhiza 2013, 23, 543–550. [Google Scholar] [CrossRef]
- Wheeler, B.E.J. An Introduction to Plant Diseases; John Wiley & Sons Ltd.: London, UK, 1969. [Google Scholar]
- Dhingra, O.D.; Sinclair, J.B. Basic Plant Pathology Methods, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 1995. [Google Scholar]
- Elad, Y.; Chet, I.; Henis, Y. Biological Control of Rhizoctonia solani in Strawberry Fields by Trichoderma harzianum. Plant Soil 1981, 60, 245–254. [Google Scholar] [CrossRef]
- Kritzman, G.; Shani-Cahani, A.; Kirshner, B.; Riven, Y.; Bar, Z.; Katan, J.; Grinstein, A. Pod Wart Disease of Peanuts. Phytoparasitica 1996, 24, 293–304. [Google Scholar] [CrossRef]
- Elad, Y.; Baker, R. The Role of Competition for Iron and Carbon in Suppression of Chlamydospore Germination of Fusarium Spp. by Pseudomonas spp. Phytopathology 1985, 75, 1053–1059. [Google Scholar] [CrossRef]
- Cytryn, E.; Minz, D.; Gieseke, A.; van Rijn, J. Transient Development of Filamentous Thiothrix Species in a Marine Sulfide Oxidizing, Denitrifying Fluidized Bed Reactor. FEMS Microbiol. Lett. 2006, 256, 22–29. [Google Scholar] [CrossRef]
- Gamliel, A.; Katan, J. Involvement of Fluorescent Pseudomonads and Other Microorganisms in Increased Growth Response of Plants in Solarized Soils. Phytopathology 1991, 81, 494–502. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Elad, Y.; Paudel, I.; Graber, E.R.; Cytryn, E.; Frenkel, O. Linking the Belowground Microbial Composition, Diversity and Activity to Soilborne Disease Suppression and Growth Promotion of Tomato Amended with Biochar. Sci. Rep. 2017, 7, 44382. [Google Scholar] [CrossRef]
- Moonsamy, P.V.; Williams, T.; Bonella, P.; Holcomb, C.L.; Höglund, B.N.; Hillman, G.; Goodridge, D.; Turenchalk, G.S.; Blake, L.A.; Daigle, D.A. High Throughput HLA Genotyping Using 454 Sequencing and the Fluidigm Access ArrayTM System for Simplified Amplicon Library Preparation. Tissue Antigens 2013, 81, 141–149. [Google Scholar] [CrossRef]
- Lee, K.C.; Archer, S.D.J.; Boyle, R.H.; Lacap-Bugler, D.C.; Belnap, J.; Pointing, S.B. Niche Filtering of Bacteria in Soil and Rock Habitats of the Colorado Plateau Desert, Utah, USA. Front. Microbiol. 2016, 7, 1489. [Google Scholar] [CrossRef] [PubMed]
- Garland, J.L. Analysis and Interpretation of Community-Level Physiological Profiles in Microbial Ecology. FEMS Microbiol. Ecol. 1997, 24, 289–300. [Google Scholar] [CrossRef]
- Garland, J.L.; Mills, A.L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization. Appl. Environ. Microbiol. 1991, 57, 2351–2359. [Google Scholar] [CrossRef] [PubMed]
- Pratt, K.; Moran, D. Evaluating the Cost-Effectiveness of Global Biochar Mitigation Potential. Biomass Bioenergy 2010, 34, 1149–1158. [Google Scholar] [CrossRef]
- Khan, N.; Bolan, N.; Jospeh, S.; Anh, M.T.L.; Meier, S.; Kookana, R.; Borchard, N.; Sánchez-Monedero, M.A.; Jindo, K.; Solaiman, Z.M. Complementing Compost with Biochar for Agriculture, Soil Remediation and Climate Mitigation. Adv. Agron. 2023, 179, 1–90. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: An Introduction. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK, 2015. [Google Scholar]
- Xu, W.; Xu, H.; Delgado-Baquerizo, M.; Gundale, M.J.; Zou, X.; Ruan, H. Global Meta-Analysis Reveals Positive Effects of Biochar on Soil Microbial Diversity. Geoderma 2023, 436, 116528. [Google Scholar] [CrossRef]
- Ali, N.; Khan, S.; Yao, H.; Wang, J. Biochars Reduced the Bioaccessibility and (Bio)Uptake of Organochlorine Pesticides and Changed the Microbial Community Dynamics in Agricultural Soils. Chemosphere 2019, 224, 805–815. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Chen, J.; Wu, L.; Xiao, Z.; Wu, Y.; Wu, H.; Qin, X.; Wang, J.; Wei, X.; Khan, M.U.; Lin, S. Assessment of the Diversity of Pseudomonas Spp. and Fusarium Spp. in Radix Pseudostellariae Rhizosphere under Monoculture by Combining DGGE and Quantitative PCR. Front. Microbiol. 2017, 8, 1748. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Z.; Liu, C.; Zhang, Z.; Liu, X. Biochar Combined with Bacillus Subtilis SL-44 as an Eco-Friendly Strategy to Improve Soil Fertility, Reduce Fusarium Wilt, and Promote Radish Growth. Ecotoxicol. Environ. Saf. 2023, 251, 114509. [Google Scholar] [CrossRef]
- Song, Y.; Yuan, G.; Wu, Q.; Situ, G.; Liang, C.; Qin, H.; Chen, J. Change in Microbial Metabolic Quotient Under Biochar Amendment Was Associated with Soil Organic Carbon Quality, Microbial Community Composition, and Enzyme Activity in Bulk and Rhizosphere Soils in an Acid Rice Paddy. J. Soil Sci. Plant Nutr. 2023, 23, 3149–3162. [Google Scholar] [CrossRef]
- Bakker, P.A.H.M.; Pieterse, C.M.J.; Van Loon, L.C. Induced Systemic Resistance by Fluorescent pseudomonas spp. Phytopathology 2007, 97, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Gerbore, J.; Benhamou, N.; Vallance, J.; Le Floch, G.; Grizard, D.; Regnault-Roger, C.; Rey, P. Biological Control of Plant Pathogens: Advantages and Limitations Seen through the Case Study of Pythium Oligandrum. Environ. Sci. Pollut. Res. 2014, 21, 4847–4860. [Google Scholar] [CrossRef]
- Akhter, A.; Hage-Ahmed, K.; Soja, G.; Steinkellner, S. Potential of Fusarium Wilt-Inducing Chlamydospores, in Vitro Behaviour in Root Exudates and Physiology of Tomato in Biochar and Compost Amended Soil. Plant Soil 2016, 406, 425–440. [Google Scholar] [CrossRef]
- Gu, Y.; Hou, Y.; Huang, D.; Hao, Z.; Wang, X.; Wei, Z.; Jousset, A.; Tan, S.; Xu, D.; Shen, Q. Application of Biochar Reduces Ralstonia Solanacearum Infection via Effects on Pathogen Chemotaxis, Swarming Motility, and Root Exudate Adsorption. Plant Soil 2017, 415, 269–281. [Google Scholar] [CrossRef]
- Caroline, A.; Debode, J.; Vandecasteele, B.; D’Hose, T.; Cremelie, P.; Haegeman, A.; Ruttink, T.; Dawyndt, P.; Maes, M. Biological, Physicochemical and Plant Health Responses in Lettuce and Strawberry in Soil or Peat Amended with Biochar. Appl. Soil Ecol. 2016, 107, 1–12. [Google Scholar]
- Jenkins, J.R.; Viger, M.; Arnold, E.C.; Harris, Z.M.; Ventura, M.; Miglietta, F.; Girardin, C.; Edwards, R.J.; Rumpel, C.; Fornasier, F. Biochar Alters the Soil Microbiome and Soil Function: Results of Next-generation Amplicon Sequencing across Europe. Gcb Bioenergy 2017, 9, 591–612. [Google Scholar] [CrossRef]
- Matsubara, Y.; Hasegawa, N.; Fukui, H. Incidence of Fusarium Root Rot in Asparagus Seedlings Infected with Arbuscular Mycorrhizal Fungus as Affected by Several Soil Amendments. J. Jpn. Soc. Hortic. Sci. 2002, 71, 370–374. [Google Scholar] [CrossRef]
- Gravel, V.; Dorais, M.; Ménard, C. Organic Potted Plants Amended with Biochar: Its Effect on Growth and Pythium Colonization. Can. J. Plant Sci. 2013, 93, 1217–1227. [Google Scholar] [CrossRef]
- Copley, T.R.; Aliferis, K.A.; Jabaji, S. Maple Bark Biochar Affects Rhizoctonia Solani Metabolism and Increases Damping-off Severity. Phytopathology 2015, 105, 1334–1346. [Google Scholar] [CrossRef]
- Zwart, D.C.; Kim, S.H. Biochar Amendment Increases Resistance to Stem Lesions Caused by Phytophthora spp. in Tree Seedlings. HortScience 2012, 47, 1736–1740. [Google Scholar] [CrossRef]
- Elmer, W.H.; Pignatello, J.J. Effect of Biochar Amendments on Mycorrhizal Associations and Fusarium Crown and Root Rot of Asparagus in Replant Soils. Plant Dis. 2011, 95, 960–966. [Google Scholar] [CrossRef]
- Meller Harel, Y.; Elad, Y.; Rav-David, D.; Borenstein, M.; Shulchani, R.; Lew, B.; Graber, E.R. Biochar Mediates Systemic Response of Strawberry to Foliar Fungal Pathogens. Plant Soil 2012, 357, 245–257. [Google Scholar] [CrossRef]
- Atucha, A.; Litus, G. Effect of Biochar Amendments on Peach Replant Disease. HortScience 2015, 50, 863–868. [Google Scholar] [CrossRef]
- Mehari, Z.H.; Elad, Y.; Rav-David, D.; Graber, E.R.; Meller Harel, Y. Induced Systemic Resistance in Tomato (Solanum lycopersicum) against Botrytis Cinerea by Biochar Amendment Involves Jasmonic Acid Signaling. Plant Soil 2015, 395, 31–44. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of Cow Manure Biochar on Maize Productivity under Sandy Soil Condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Nigussie, A.; Kissi, E.; Misganaw, M.; Ambaw, G. Effect of Biochar Application on Soil Properties and Nutrient Uptake of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. Am. J. Agric. Environ. Sci. 2012, 12, 369–376. [Google Scholar]
- Alkorta, I.; Aizpurua, A.; Riga, P.; Albizu, I.; Amézaga, I.; Garbisu, C. Soil Enzyme Activities as Biological Indicators of Soil Health. Rev. Environ. Health 2003, 18, 65–73. [Google Scholar] [CrossRef]
- Garcia-Perez, M.; Wang, X.S.; Shen, J.; Rhodes, M.J.; Tian, F.; Lee, W.-J.; Wu, H.; Li, C.-Z. Fast Pyrolysis of Oil Mallee Woody Biomass: Effect of Temperature on the Yield and Quality of Pyrolysis Products. Ind. Eng. Chem. Res. 2008, 47, 1846–1854. [Google Scholar] [CrossRef]
- Flexas, J.; Escalona, J.M.; Medrano, H. Water Stress Induces Different Levels of Photosynthesis and Electron Transport Rate Regulation in Grapevines. Plant. Cell Environ. 1999, 22, 39–48. [Google Scholar] [CrossRef]
- Viger, M.; Hancock, R.D.; Miglietta, F.; Taylor, G. More Plant Growth but Less Plant Defence? First Global Gene Expression Data for Plants Grown in Soil Amended with Biochar. Gcb Bioenergy 2015, 7, 658–672. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Frenkel, O.; Elad, Y.; Lew, B.; Graber, E.R. Non-Monotonic Influence of Biochar Dose on Bean Seedling Growth and Susceptibility to Rhizoctonia Solani: The “Shifted Rmax-Effect”. Plant Soil 2015, 395, 125–140. [Google Scholar] [CrossRef]
- Singh, H.P.; Kaur, S.; Batish, D.R.; Kohli, R.K. Ferulic Acid Impairs Rhizogenesis and Root Growth, and Alters Associated Biochemical Changes in Mung Bean (Vigna radiata) Hypocotyls. J. Plant Interact. 2014, 9, 267–274. [Google Scholar] [CrossRef]
- Yao, K.; De Luca, V.; Brisson, N. Creation of a Metabolic Sink for Tryptophan Alters the Phenylpropanoid Pathway and the Susceptibility of Potato to Phytophthora Infestans. Plant Cell 1995, 7, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, R.; Singh, D.V.; Srivastava, K.D. Phenols as a Biochemical Basis of Resistance in Wheat against Karnal Bunt. Plant Pathol. 2001, 50, 470–476. [Google Scholar] [CrossRef]
- De Carvalho, D.; Ferreira, R.A.; de Oliveira, L.M.; de Oliveira, A.F.; Gemaque, R.C.R. Proteins and Isozymes Electroforesis in Seeds of Copaifera Langsdorffii Desf.(Leguminosae Caesalpinioideae) Artificially Aged. Rev. Árvore 2006, 30, 19–24. [Google Scholar] [CrossRef]
- Favali, M.A.; Vestena, C.; Fossati, F.; Musetti, R.; di Toppi, L.S.; Martin, R.R. Phytoplasmas Associated with Tomato Stolbur Disease. In Proceedings of the Ninth International Symposium on Small Fruit Virus Diseases, Canterbury and HRI, East Malling, UK, 9–15 July 2000. [Google Scholar]
- Hameed, A.; Iqbal, N. Chemo-Priming with Mannose, Mannitol and H2O2 Mitigate Drought Stress in Wheat. Cereal Res. Commun. 2014, 42, 450–462. [Google Scholar] [CrossRef]
- Choodamani, M.S.; Hariprasad, P.; Sateesh, M.K.; Umesha, S. Involvement of Catalase in Bacterial Blight Disease Development of Rice Caused by Xanthomonas Oryzae Pv. Oryzae. Int. J. Pest Manag. 2009, 55, 121–127. [Google Scholar] [CrossRef]
Parameter | Soil | OWB | Compost |
---|---|---|---|
N (%) | 0.068 | 0.91 | 1.19 |
P (%) | 2.11 | 0.74 | 0.383 |
K (%) | 1.80 | 0.62 | 0.51 |
C (%) | 1.18 | 45.61 | 28.42 |
C/N Ratio | 15.16 | 48.53 | 23.66 |
Cu | 0.24 ppm | 0.14 (%) | 74 mg/kg |
Zn | 1.15 ppm | 0.025 (%) | 4459 mg/kg |
Fe | 1.51 ppm | 0.55 (%) | ----- |
CEC (mcq/100 g) | 125 | 13.11 | ----- |
EC (mS/cm) | 0.49 | 1.61 | 1.29 |
Organic matter (%) | 0.588 | 60.11 | 17.11 |
pH | 7.88 | 9.23 | 7.31 |
Treatment | Total Phenolic | Catalase | Flavonoids | Total Proteins | Chlorophyll | N | P | K | SL | RL | SDW | RDW |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S | *** | ** | *** | * | *** | ** | *** | ** | *** | *** | *** | *** |
FOV | * | *** | ** | *** | ** | *** | * | *** | *** | *** | *** | ** |
S × FOV | *** | ** | ** | *** | ** | * | *** | * | *** | ** | ** | * |
Treatments | Chlorophyll Contents (SPAD Value) | |
---|---|---|
Soil | −FOV | 36.2 ± 0.42 f |
+FOV | 30.9 ± 0.73 g | |
S + 3% OWB | −FOV | 41.6 ± 0.51 d |
+FOV | 39.65 ± 0.47 e | |
S + 6% OWB | −FOV | 43.5 ± 0.52 b |
+FOV | 42.5 ± 0.52 c | |
S + 9% OWB | −FOV | 45.2 ± 0.63 a |
+FOV | 44.4 ± 0.69 a |
Treatment | Total Phenolic (mg/g of f.wt) | Catalase (mg/g of f.wt) | Flavonoids (mg/g of f.wt) | Total Proteins (mg/g of f.wt) |
---|---|---|---|---|
S | 21.2 ± 0.91 f | 118.7 ± 0.94 h | 16.9 ± 1.19 f | 12.5 ± 1.17 f |
S + FOV | 24.6 ± 0.45 e | 129.9 ± 1.37 f | 17.5 ± 0.70 f | 16.9 ± 1.19 e |
S + 3% OWB | 29.7 ± 0.82 d | 123.8 ± 1.03 g | 19.3 ± 1.33 e | 17.5 ± 0.70 e |
S + 3% OWB + FOV | 32.5 ± 0.52 c | 138.8 ± 0.78 c | 20 ± 1.33 e | 21.7 ± 0.94 d |
S + 6% OWB | 33.8 ± 0.78 bc | 133.7 ± 0.82 e | 24.8 ± 0.78 d | 28.2 ± 1.39 b |
6% OWB + FOV | 35.3 ± 0.67 a | 147.7 ± 0.67 a | 27.2 ± 0.63 c | 35.3 ± 0.67 a |
S + 9% OWB | 34.3 ± 0.82 ab | 137.4 ± 1.07 d | 30.1 ± 1.19 b | 24.8 ± 0.78 c |
9% OWB + FOV | 34.9 ± 1.79 ab | 142 ± 0.94 b | 33.4 ± 1.34 a | 27.2 ± 0.63 b |
Microorganism | Stress | Soil | S + 3% OWB | S + 6% OWB | S + 9% OWB |
---|---|---|---|---|---|
CFU g−1 dry potting mixture | |||||
General Bacteria | −FOV | 6.52 × 107 | 1.38 × 108 | 1.24 × 108 | 7.38 × 109 |
+FOV | 5.93 × 107 | 1.25 × 108 | 1.31 × 108 | 6.79 × 109 | |
Fluorescent Pseudomonas | −FOV | 3.14 × 104 | 3.11 × 106 | 4.13 × 106 | 6.92 × 106 |
+FOV | 3.09 × 104 | 2.83 × 106 | 2.99 × 106 | 4.33 × 106 | |
Actinomycetes spp. | −FOV | 1.07 × 105 | 1.01 × 105 | 1.69 × 105 | 4.13 × 105 |
+FOV | 0.95 × 105 | 0.98 × 105 | 1.19 × 105 | 2.11 × 105 | |
Filamentous Fungi | −FOV | 3.93 × 105 | 3.91 × 105 | 3.92 × 105 | 4.12 × 105 |
+FOV | 3.06 × 105 | 3.12 × 105 | 3.39 × 105 | 3.18 × 105 | |
Trichoderma spp. | −FOV | 3.74 × 105 | 3.41 × 105 | 4.18 × 105 | 6.99 × 105 |
+FOV | 3.18 × 105 | 3.11 × 105 | 3.68 × 105 | 5.48 × 105 | |
Yeasts | −FOV | 1.03 × 104 | 1.03 × 104 | 1.11 × 104 | 1.21 × 104 |
+FOV | 1.07 × 104 | 0.95 × 104 | 0.96 × 104 | 1.13 × 104 |
Phylum | Stress | Soil | 3% OWB | 6% OWB | 9% OWB |
---|---|---|---|---|---|
Proteobacteria | −FOV | 44.1 | 51.2 | 51.4 | 52.3 |
+FOV | 39.2 | 41.2 | 43.4 | 45.2 | |
Bacteroidetes | −FOV | 9.5 | 12.3 | 14.3 | 16.7 |
+FOV | 7.3 | 9.7 | 11.4 | 14.9 | |
Acidobacteria | −FOV | 18 | 7.2 | 6.4 | 8.1 |
+FOV | 15 | 6.3 | 5.0 | 7.8 | |
Actinobacteria | −FOV | 5.92 | 6.12 | 6.01 | 6.23 |
+FOV | 5.31 | 5.43 | 5.39 | 5.89 | |
Verrucomicrobia | −FOV | 1.3 | 2.2 | 2.78 | 2.92 |
+FOV | 1.1 | 2.2 | 2.24 | 2.43 | |
Firmicutes | −FOV | 0.19 | 0.25 | 0.46 | 0.58 |
+FOV | 0.07 | 0.09 | 0.21 | 0.31 | |
Gemmatimonadetes | −FOV | 0.2 | 0.4 | 0.48 | 0.53 |
+FOV | 0.1 | 0.33 | 0.38 | 0.49 | |
Planctomycetes | −FOV | 2.01 | 1.11 | 1.03 | 1.2 |
+FOV | 1.71 | 1.04 | 1.13 | 1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, M.; Haider, M.S.; Akhter, A. Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community. Sustainability 2023, 15, 12936. https://doi.org/10.3390/su151712936
Asif M, Haider MS, Akhter A. Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community. Sustainability. 2023; 15(17):12936. https://doi.org/10.3390/su151712936
Chicago/Turabian StyleAsif, Mamoona, Muhammad Saleem Haider, and Adnan Akhter. 2023. "Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community" Sustainability 15, no. 17: 12936. https://doi.org/10.3390/su151712936
APA StyleAsif, M., Haider, M. S., & Akhter, A. (2023). Impact of Biochar on Fusarium Wilt of Cotton and the Dynamics of Soil Microbial Community. Sustainability, 15(17), 12936. https://doi.org/10.3390/su151712936