Experimental Study on the Static Behavior and Recovery Properties of CFRP/SMA Composites
Abstract
:1. Introduction
2. Materials and Test Program
2.1. Mechanical Property Test of CFRP/SMA Single Material
2.1.1. Material Properties
2.1.2. Loading Conditions and Regimes
2.2. Mechanical Properties Test of SMA Wire under Temperature Reciprocation
2.3. Mechanical Property Test of CFRP-SMA Composite
2.3.1. Specimen Design
2.3.2. Loading Regimes
3. Results and Analysis
3.1. Analysis of Mechanical Properties of Single Material
3.1.1. Uniaxial Tensile Mechanical Properties of CFRP Sheet
3.1.2. Uniaxial Tensile Mechanical Properties of SMA Wire
- Linear elastic stage. From the beginning of loading of SMA wire to the stress reaching the beginning of phase transformation σs (about 100~120 MPa in the figure, the corresponding strain was approximately 1.5%), SMA was in the elastic stage; at this time, the theoretical deformation could be completely restored after the stress was removed;
- Yield stage. With the increase in tensile load, the tensile stress of SMA wire exceeded the initial stress of phase transformation σs, triggering the SMA to undergo the transformation from the twinning martensite phase to the de-twinning martensite phase. At this time, the stress of the SMA basically did not increase and the strain continued to increase. The yield ‘stress platform’ of the transformation section of 0.5 mm SMA wire was about 120 MPa, while the ‘stress platform’ corresponding to 1 mm SMA wire was stable between 100 and 110 MPa, and the strain of the corresponding transformation phase usually started from 1.5% to about 7%. The SMA wire would have residual deformation during unloading at the phase transformation stage, but this residual deformation could be recovered (the SMA wire will be heated to T > Af austenite end temperature, which would induce the SMA wire to change from austenite to martensite, that is, the transformation from austenite to twin martensite);
- Strengthening stage. When the tensile stress of SMA wire exceeded the transformation end stress σf, the material recovered part of its resistance to deformation, and the stress-strain curve showed an obvious rising curve;
- Failure stage. After passing the highest point of the stress-strain curve, the section at the weak part of the SMA specimen underwent local necking, the deformation continued to increase and the stress decreased steadily until it was destroyed with fracture failure.
3.2. Analysis of Factors Affecting Mechanical Properties of SMA Wire
3.2.1. Cyclic Loading Times
3.2.2. Strain Amplitude
3.2.3. Loading Rate
3.2.4. Wire Diameter
3.3. Effect of Temperature Reciprocation on Resilience of SMA Wire
3.3.1. Effect of Pre-Strain Value on Resilience
3.3.2. Effect of Reciprocating Temperature on Maximum Resilience
3.4. Analysis of Mechanical Properties of CFRP/SMA Composites
3.4.1. Failure Mode
3.4.2. Uniaxial Tensile Properties
4. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pantelides, C.P.; Gibbons, M.E.; Reaveley, L.D. Axial Load Behavior of Concrete Columns Confined with GFRP Spirals. J. Compos. Constr. 2013, 17, 305–313. [Google Scholar] [CrossRef]
- Ma, Y.; Che, Y.; Gong, J.X. Behavior of Corrosion Damaged Circular Reinforced Concrete Columns under Cyclic Loading. Constr. Build. Mater. 2012, 29, 548–556. [Google Scholar] [CrossRef]
- Teng, J.G. FRP Strengthened RC Structures; China Architecture Publishing: Beijing, China, 2005. [Google Scholar]
- Wang, W.W. The Technology and Application of FRP Strengthened RC Structures; China Architecture Publishing: Beijing, China, 2007. [Google Scholar]
- Feng, P.; Lu, X.Z.; Ye, L.P. Application of Fiber Reinforced Polymer in Construction: Experiment, Theory and Methodology; China Architecture Publishing: Beijing, China, 2011. [Google Scholar]
- Wu, Z.S.; Wang, X.; Wu, G. FRP Reinforced Engineering Structural Systems; Science Press: Beijing, China, 2017. [Google Scholar]
- Bakis, C.E.; Bank, L.C.; Brown, V.L.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Machida, A.; Rizkalla, S.H.; Triantafillou, T.C. Fiber-Reinforced Polymer Composites for Construction-State-of-the-Art Review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Koaik, A.; Bel, S.; Jurkiewiez, B. Experimental Tests and Analytical Model of Concrete-GFRP Hybrid Beams under Flexure. Compos. Struct. 2017, 180, 192–210. [Google Scholar] [CrossRef]
- Liu, T.Q.; Feng, P.; Lu, X.; Yang, J.Q.; Wu, Y.W. Flexural Behavior of Novel Hybrid Multicell GFRP-Concrete Beam. Compos. Struct. 2020, 250, 112606. [Google Scholar] [CrossRef]
- Li, P.D.; Wu, Y.F.; Zhou, Y.W.; Xing, F. Stress-Strain Model for FRP-Confined Concrete Subject to Arbitrary Load Path. Compos. Part B-Eng. 2019, 163, 9–25. [Google Scholar] [CrossRef]
- Li, P.D.; Ren, Y.H.; Zhou, Y.W.; Zhu, Z.Z.; Chen, Y.D. Experimental Study on the Mechanical Properties of Corroded RC Columns Repaired with Large Rupture Strain FRP. J. Build. Eng. 2022, 54, 104413. [Google Scholar] [CrossRef]
- Wei, Y.; Duan, M.J.; Li, G.F. Bridge Inspection, Evaluation and Strengthening Technology; China Communication Press Co., Ltd.: Beijing, China, 2019. [Google Scholar]
- Zeng, J.J.; Gao, W.Y.; Duan, Z.J.; Bai, Y.L.; Guo, Y.C.; Ouyang, L.J. Axial Compressive Behavior of Polyethylene Terephthalate/Carbon FRP-Confined Seawater Sea-Sand Concrete in Circular Columns. Constr. Build. Mater. 2020, 234, 117383. [Google Scholar] [CrossRef]
- Wang, W.W.; Dai, J.G.; Harries, K.A. Performance Evaluation of RC Beams Strengthened with an Externally Bonded FRP System under Simulated Vehicle Loads. J. Bridge Eng. 2013, 18, 76–82. [Google Scholar] [CrossRef]
- Xue, Y.J.; Wang, W.W.; Tan, X.; Hui, Y.X.; Tian, J.; Zhu, Z.F. Mechanical Behavior and Recoverable Properties of CFRP Shape Memory Alloy Composite under Different Prestrains. Constr. Build. Mater. 2022, 333, 127186. [Google Scholar] [CrossRef]
- Wang, W.W.; Dai, J.G.; Harries, K.A.; Bao, Q.H. Prestress Losses and Flexural Behavior of Reinforced Concrete Beams Strengthened with Posttensioned CFRP Sheets. J. Compos. Constr. 2012, 16, 207–216. [Google Scholar] [CrossRef]
- Michels, J.; Sena-Cruz, J.; Czaderski, C.; Motavalli, M. Structural Strengthening with Prestressed CFRP Strips with Gradient Anchorage. J. Compos. Constr. 2013, 17, 651–661. [Google Scholar] [CrossRef]
- Tian, A.G. Experimental Research and Design Theory of RC Beams Strengthened by Pre-Stressed FRP Sheet. Ph.D. Thesis, Southeast University, Nanjing, China, 2006. (In Chinese). [Google Scholar]
- Zhuang, J.B. Experimental Study and Analysis of RC T-Beams Strengthened with Prestressed CFRP Sheets. Master’s Thesis, Tsinghua University, Beijing, China, 2005. (In Chinese). [Google Scholar]
- Ge, K. The Experimental Study on the Flexural Behavior of Beams Strengthened with Prestressed Carbon Fiber Reinforced Polymer Sheets. Master’s Thesis, CARS, Beijing, China, 2006. (In Chinese). [Google Scholar]
- Wang, D.X. Mechanical Performance of Steel-Concrete Composite Beams Strengthened with Prestressing CFRP Sheets. Ph.D. Thesis, Northeastern University, Shenyang, China, 2009. (In Chinese). [Google Scholar]
- Song, G.; Ma, N.; Li, H.N. Applications of Shape Memory Alloys in Civil Structures. Eng. Struct. 2006, 28, 1266–1274. [Google Scholar] [CrossRef]
- Tran, H.; Balandraud, X.; Destrebecq, J.F. Recovery Stresses in SMA Wires for Civil Engineering Applications: Experimental Analysis and Thermomechanical Modelling. Materwiss. Werksttech. 2011, 42, 435–443. [Google Scholar] [CrossRef]
- Dong, J.H.; Cai, C.S.; Okeil, A.M. Overview of Potential and Existing Applications of Shape Memory Alloys in Bridges. J. Bridge Eng. 2011, 16, 305–315. [Google Scholar] [CrossRef]
- Shahverdi, M.; Czaderski, C.; Motavalli, M. Iron-Based Shape Memory Alloys for Prestressed near-Surface Mounted Strengthening of Reinforced Concrete Beams. Constr. Build. Mater. 2016, 112, 28–38. [Google Scholar] [CrossRef]
- Wu, B.; Li, H.; Sun, K.X. The Application of Shape Memory Alloy in Civil Engineering. World Inf. Earthq. Eng. 1999, 15, 1–13. [Google Scholar]
- Menna, C.; Auricchio, F.; Asprone, D. Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; pp. 369–403. [Google Scholar]
- Cui, D.; Li, H.N.; Song, G.B. Progress on study and application of shape memory alloy in civil engineering. J. Disaster Prev. Mitig. Eng. 2005, 25, 86–94. (In Chinese) [Google Scholar]
- Zhang, Y.; Cui, D.; Guan, P. Progress research on the shape memory alloy smart concrete structure. J. Dalian Univ. 2012, 33, 23–28. (In Chinese) [Google Scholar]
- Choi, E.; Mohammadzadeh, B.; Kim, H.S. SMA Bending Bars as Self-Centering and Damping Devices. Smart Mater. Struct. 2019, 28, 025029. [Google Scholar] [CrossRef]
- Zafar, A.; Andrawes, B. Fabrication and Cyclic Behavior of Highly Ductile Superelastic Shape Memory Composites. J. Mater. Civ. Eng. 2014, 26, 622–632. [Google Scholar] [CrossRef]
- Murugesan, K.; Kalaichelvan, K.; Jenarthanan, M.P.; Sornakumar, T. Enhancement of Vibration Characteristics in Filament Wound FRP Composite Shafts Using Nitinol Wires. Pigment. Resin. Technol. 2018, 47, 377–385. [Google Scholar] [CrossRef]
- Zhang, R.X.; Ni, Q.Q.; Masuda, A.; Yamamura, T.; Iwamoto, M. Vibration Characteristics of Laminated Composite Plates with Embedded Shape Memory Alloys. Compos. Struct. 2006, 74, 389–398. [Google Scholar] [CrossRef]
- Zheng, B.T.; Dawood, M. Fatigue Crack Growth Analysis of Steel Elements Reinforced with Shape Memory Alloy (SMA)/Fiber Reinforced Polymer (FRP) Composite Patches. Compos. Struct. 2017, 164, 158–169. [Google Scholar] [CrossRef]
- Dawood, M.; El-Tahan, M.W.; Zheng, B. Bond Behavior of Superelastic Shape Memory Alloys to Carbon Fiber Reinforced Polymer Composites. Compos. Part B-Eng. 2015, 77, 238–247. [Google Scholar] [CrossRef]
- Shin, M.; Andrawes, B. Experimental Investigation of Actively Confined Concrete Using Shape Memory Alloys. Eng. Struct. 2010, 32, 656–664. [Google Scholar] [CrossRef]
- Shin, M.; Andrawes, B. Parametric Study of RC Bridge Columns Actively Confined with Shape Memory Alloy Spirals under Lateral Cyclic Loading. J. Bridge Eng. 2014, 19, 04014040. [Google Scholar] [CrossRef]
- Zafar, A.; Andrawes, B. Seismic Behavior of SMA-FRP Reinforced Concrete Frames under Sequential Seismic Hazard. Eng. Struct. 2015, 98, 163–173. [Google Scholar] [CrossRef]
- Zafar, A.; Andrawes, B. Experimental flexural behavior of SMA-FRP reinforced concrete beam. Front. Struct. Civ. Eng. 2013, 7, 341–355. [Google Scholar] [CrossRef]
- Wu, J.Y.; Zhu, Y.Q.; Li, C.G. Experimental Investigation of Fatigue Capacity of Bending-Anchored CFRP Cables. Polymers 2023, 15, 2483. [Google Scholar] [CrossRef]
- Ding, J.L.; Cheng, L.; Chen, X.; Chen, C.; Liu, K. A review on ultra-high cycle fatigue of CFRP. Compos. Struct. 2021, 256, 113058. [Google Scholar] [CrossRef]
- Xian, G.J.; Guo, R.; Li, C.G.; Wang, Y.J. Mechanical performance evolution and life prediction of prestressed CFRP plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022, 293, 115719. [Google Scholar] [CrossRef]
- GB/T 3354-2014; Test Method for Tensile Properties of Orientation Fiber Reinforced Polymer Matrix Composite Materials. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2014.
- Jiang, J.K. Research on Damaged RC Beam Repaired with Intelligent Shape Memory Alloy Based on Arduino UNO. Master’s Thesis, Southeast University, Nanjing, China, 2022. (In Chinese). [Google Scholar]
- Bettini, P.; Riva, M.; Sala, G.; Di Landro, L.; Airoldi, A.; Cucco, J. Carbon fiber reinforced smart laminates with embedded SMA actuators--part I: Embedding techniques and interface analysis. J. Mater. Eng. Perform. 2009, 18, 664–671. [Google Scholar] [CrossRef]
Material | Material Parameters | Performance Index |
---|---|---|
CFS-I-300 high-strength CFRP unidirectional cloth | Tensile strength (MPa) | 3467 |
Elastic modulus (GPa) | 241 | |
Theoretical thickness (mm) | 0.167 | |
Density (g/m3) | 300 | |
CFSR-A/B epoxy resin | Tensile strength (MPa) | 26 |
Tensile modulus of elasticity (GPa) | 4.0 | |
Ultimate elongation rate (%) | 0.7 | |
Glass transition temperature (°C) | 85 | |
Weight ratio (recommended) | 2:1 | |
Density after mixing (g/cm3) | 1.05–1.25 | |
Positive tensile bonding strength with concrete (MPa) | ≥2.5 (Cohesive failure of concrete) |
Group No. | Number of Specimens | Specimen Designation | Gauge Length (mm) | SMA Diameter (mm) | Strain Amplitude (%) | Loading Rate (mm/min) | Cycle Number (Times) |
---|---|---|---|---|---|---|---|
1 | 12 | SMA-0.5-2%-1 mm/min-10 | 200 | 0.5 | 2 | 1 | 10 |
SMA-0.5-3%-1 mm/min-10 | 200 | 0.5 | 3 | 1 | 10 | ||
SMA-0.5-4%-1 mm/min-10 | 200 | 0.5 | 4 | 1 | 10 | ||
SMA-0.5-5%-1 mm/min-10 | 200 | 0.5 | 5 | 1 | 10 | ||
SMA-0.5-6%-1 mm/min-10 | 200 | 0.5 | 6 | 1 | 10 | ||
SMA-0.5-7%-1 mm/min-10 | 200 | 0.5 | 7 | 1 | 10 | ||
2 | 12 | SMA-0.5-2%-1 mm/min-1 | 200 | 0.5 | 2 | 1 | 1 |
SMA-0.5-3%-1 mm/min-1 | 200 | 0.5 | 3 | 1 | 1 | ||
SMA-0.5-4%-1 mm/min-1 | 200 | 0.5 | 4 | 1 | 1 | ||
SMA-0.5-5%-1 mm/min-1 | 200 | 0.5 | 5 | 1 | 1 | ||
SMA-0.5-6%-1 mm/min-1 | 200 | 0.5 | 6 | 1 | 1 | ||
SMA-0.5-7%-1 mm/min-1 | 200 | 0.5 | 7 | 1 | 1 | ||
SMA-1-4%-1 mm/min-1 | 200 | 1 | 4 | 1 | 1 | ||
SMA-1-5%-1 mm/min-1 | 200 | 1 | 5 | 1 | 1 | ||
SMA-1-6%-1 mm/min-1 | 200 | 1 | 6 | 1 | 1 | ||
SMA-1-7%-1 mm/min-1 | 200 | 1 | 7 | 1 | 1 | ||
SMA-1-8%-1 mm/min-1 | 200 | 1 | 8 | 1 | 1 | ||
SMA-1-10%-1 mm/min-1 | 200 | 1 | 10 | 1 | 1 | ||
3 | 10 | SMA-0.5-7%-10 mm/min-1 | 200 | 0.5 | 7 | 10 | 1 |
SMA-0.5-7%-15 mm/min-1 | 200 | 0.5 | 7 | 15 | 1 | ||
SMA-0.5-7%-20 mm/min-1 | 200 | 0.5 | 7 | 20 | 1 | ||
SMA-0.5-7%-25 mm/min-1 | 200 | 0.5 | 7 | 25 | 1 | ||
SMA-0.5-7%-30 mm/min-1 | 200 | 0.5 | 7 | 30 | 1 | ||
SMA-1-7%-10 mm/min-1 | 200 | 1 | 7 | 10 | 1 | ||
SMA-1-7%-15 mm/min-1 | 200 | 1 | 7 | 15 | 1 | ||
SMA-1-7%-20 mm/min-1 | 200 | 1 | 7 | 20 | 1 | ||
SMA-1-7%-25 mm/min-1 | 200 | 1 | 7 | 25 | 1 | ||
SMA-1-7%-30 mm/min-1 | 200 | 1 | 7 | 30 | 1 | ||
4 | 16 | SMA-0.5-4%-1 mm/min-1 | 200 | 0.5 | 4 | 1 | 1 |
SMA-0.5-5%-1 mm/min-1 | 200 | 0.5 | 5 | 1 | 1 | ||
SMA-0.5-6%-1 mm/min-1 | 200 | 0.5 | 6 | 1 | 1 | ||
SMA-0.5-7%-1 mm/min-1 | 200 | 0.5 | 7 | 1 | 1 | ||
SMA-1-4%-1 mm/min-1 | 200 | 1 | 4 | 1 | 1 | ||
SMA-1-5%-1 mm/min-1 | 200 | 1 | 5 | 1 | 1 | ||
SMA-1-6%-1 mm/min-1 | 200 | 1 | 6 | 1 | 1 | ||
SMA-1-7%-1 mm/min-1 | 200 | 1 | 7 | 1 | 1 | ||
5 | 6 | SMA-0.5-LD-1 mm/min | 200 | 0.5 | - | 1 | - |
SMA-1-LD-1 mm/min | 200 | 1 | - | 1 | - |
Number of Specimens | Specimen Designation | Gauge Length (mm) | SMA Diameter (mm) | Strain Amplitude (%) | Loading Rate (mm/min) | Number of Temperature Cycles (Times) |
---|---|---|---|---|---|---|
3 | SMA-0.5-8%-1 mm/min-10 | 200 | 0.5 | 8 | 1 | 10 |
9 | SMA-0.5-2%-1 mm/min-1 | 200 | 0.5 | 2 | 1 | 1 |
SMA-0.5-5%-1 mm/min-1 | 200 | 0.5 | 5 | 1 | 1 | |
SMA-0.5-8%-1 mm/min-1 | 200 | 0.5 | 8 | 1 | 1 |
Specimen Designation | Numbers of SMA Wire | SMA Diameter (mm) | Strain Amplitude (%) | Composite Length (mm) |
---|---|---|---|---|
FRP/SMA-I-0.5-5-4% | 5 | 0.5 | 4 | 250 |
FRP/SMA-I-0.5-10-4% | 10 | 0.5 | 4 | 250 |
FRP/SMA-I-0.5-15-4% | 15 | 0.5 | 4 | 250 |
FRP/SMA-I-1-10-4% | 10 | 1 | 4 | 250 |
Cycle-Index | Maximum Resilience (MPa) | |||||
---|---|---|---|---|---|---|
Specimen 1 | Specimen 2 | Specimen 3 | Average | Predictive Value | Predictive Value/Test Average | |
0 | 462.420 | 486.624 | 471.656 | 473.566 | 474.802 | 1.003 |
1 | 466.242 | 490.458 | 482.929 | 479.876 | 478.650 | 0.997 |
2 | 470.063 | 497.554 | 495.668 | 487.762 | 485.842 | 0.996 |
3 | 475.159 | 504.898 | 507.159 | 495.738 | 497.668 | 1.004 |
4 | 492.159 | 510.738 | 514.649 | 505.849 | 505.023 | 0.998 |
5 | 480.471 | 502.496 | 503.649 | 495.539 | 495.778 | 1.000 |
6 | 473.114 | 493.528 | 489.171 | 485.271 | 484.496 | 0.998 |
7 | 467.554 | 489.515 | 475.286 | 477.452 | 477.928 | 1.001 |
8 | 463.006 | 484.859 | 467.713 | 471.859 | 474.408 | 1.005 |
9 | 463.732 | 483.394 | 466.057 | 471.061 | 472.419 | 1.003 |
10 | 464.554 | 485.942 | 468.057 | 472.851 | 471.216 | 0.997 |
Average of predictive value/test average | 1.000 | |||||
COV | 9.181 × 10−4 |
Specimen Designation | Average Ultimate Tensile Strength (MPa) | Elastic Modulus (GPa) | Fracture Strain (%) |
---|---|---|---|
FRP/SMA-I-0.5-5-4% | 2496 | 177 | 1.41 |
FRP/SMA-I-0.5-10-4% | 2568 | 184.7 | 1.39 |
FRP/SMA-I-0.5-15-4% | 2989 | 182.3 | 1.64 |
FRP/SMA-I-1-10-4% | 2031 | 148.2 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.-S.; Wang, W.-W.; Tang, Y.-X.; Xue, Y.-J. Experimental Study on the Static Behavior and Recovery Properties of CFRP/SMA Composites. Sustainability 2023, 15, 13078. https://doi.org/10.3390/su151713078
He C-S, Wang W-W, Tang Y-X, Xue Y-J. Experimental Study on the Static Behavior and Recovery Properties of CFRP/SMA Composites. Sustainability. 2023; 15(17):13078. https://doi.org/10.3390/su151713078
Chicago/Turabian StyleHe, Chu-Sheng, Wen-Wei Wang, Yi-Xing Tang, and Yan-Jie Xue. 2023. "Experimental Study on the Static Behavior and Recovery Properties of CFRP/SMA Composites" Sustainability 15, no. 17: 13078. https://doi.org/10.3390/su151713078
APA StyleHe, C. -S., Wang, W. -W., Tang, Y. -X., & Xue, Y. -J. (2023). Experimental Study on the Static Behavior and Recovery Properties of CFRP/SMA Composites. Sustainability, 15(17), 13078. https://doi.org/10.3390/su151713078