How Does Carbon Emissions Efficiency Affect OFDI? Evidence from Chinese Listed Companies
Abstract
:1. Introduction
2. Literature Review
3. Research Hypothesis
3.1. The Financing Cost Effect
3.2. The Technological Innovation Effect
4. Methodology Specifications and Data
4.1. Model Construction
4.2. Variable Description
4.2.1. Dependent Variables
4.2.2. Explained Variable
4.2.3. Control Variables
4.3. Data Source
5. Findings and Discussion
5.1. Baseline Regression Results
5.2. Robustness Test
5.3. Endogenous Problem Analysis
5.4. Mechanism Analysis
5.5. Heterogeneity Analysis
5.5.1. Differences in the Nature of the Enterprise
5.5.2. Difference in Pollution Intensity
5.5.3. Differences in Enterprise Size
5.5.4. Differences in Market Competition
6. Further Analysis
6.1. The Regulatory Role of Financial Development Level
6.2. Dual Marginal Analysis of Foreign Direct Investment
7. Conclusions and Policy Recommendations
7.1. Conclusions
7.2. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, F.; Cao, X. Research on the path of differentiated industrial carbon peak in the Yangtze River Delta. J. Suzhou Univ. (Philos. Soc. Sci. Ed.) 2022, 43, 41–51. (In Chinese) [Google Scholar]
- Liu, M.; Marshall, A.; McColgan, P. Foreign direct investments: The role of corporate social responsibility. J. Multinatl. Financ. Manag. 2020, 59, 100663. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, Z.; Wen, Z.; Cheng, S. Environmental regulation and OFDI: Evidence from Chinese listed firms. Econ. Anal. Policy 2022, 75, 191–208. [Google Scholar] [CrossRef]
- Mani, M.; Wheeler, D. In Search of Pollution Havens? Dirty Industry in the World Economy, 1960 to 1995. J. Environ. Dev. 1998, 7, 215–247. [Google Scholar] [CrossRef]
- Birdsall, N.; Wheeler, D. Trade Policy and Industrial Pollution in Latin America: Where Are the Pollution Havens? J. Environ. Dev. 1993, 2, 137–149. [Google Scholar] [CrossRef]
- Huang, J.; Du, D.; Tao, Q. An analysis of technological factors and energy intensity in China. Energy Policy 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Hao, Y.; Guo, Y.; Guo, Y.; Wu, H.; Ren, S. Does Outward Foreign Direct Investment (OFDI) Affect the Home Country’s Environmental Quality? The Case of China. Struct. Chang. Econ. Dyn. 2019, 52, 109–119. [Google Scholar] [CrossRef]
- Yang, T.; Dong, Q.; Du, Q.; Du, M.; Dong, R.; Chen, M. Carbon dioxide emissions and Chinese OFDI: From the perspective of carbon neutrality targets and environmental management of home country. J. Environ. Manag. 2021, 295, 113120. [Google Scholar] [CrossRef]
- Cai, L.; Firdousi, S.F.; Li, C.; Luo, Y. Inward foreign direct investment, outward foreign direct investment, and carbon dioxide emission intensity-threshold regression analysis based on inter provincial panel data. Environ. Sci. Pollut. Res. 2021, 28, 46147–46160. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Yi, M.; Liu, H.; Jiang, X. Environmental regulation, hidden economy, and China’s outward foreign direct investment. Chin. J. Popul. Resour. Environ. 2020, 18, 35–41. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Shimamoto, K. Why the grass is not always greener: The competing effects of environmental regulations and factor intensities on US specialization. Ecol. Econ. 2004, 54, 95–109. [Google Scholar] [CrossRef]
- Luo, Y.; Salman, M.; Lu, Z. Heterogeneous impacts of environmental regulations and foreign direct investment on green innovation across different regions in China. Sci. Total Environ. 2021, 759, 143744. [Google Scholar] [CrossRef]
- Naughton, H.T. To shut down or to shift: Multinationals and environmental regulation. Ecol. Econ. 2014, 102, 113–117. [Google Scholar] [CrossRef]
- Chipalkatti, N.; Le, Q.V.; Rishi, M. Sustainability and Society: Do Environmental, Social, and Governance Factors Matter for Foreign Direct Investment? Energies 2021, 14, 6039. [Google Scholar] [CrossRef]
- Gu, L.; Yang, G.; Zuo, R. Dual liability and the moderating effect of corporate social responsibility–Evidence from Belt&Road investment of Chinese firms. Emerg. Mark. Rev. 2022, 50, 100833. [Google Scholar]
- Feenstra, R.C.; Li, Z.; Yu, M. Exports and Credit Constraints under lncomplete lnformation: Theory and Evidence from China. Rev. Econ. Stat. 2013, 96, 729–744. [Google Scholar] [CrossRef]
- Yang, T.; Ye, M.; Pei, P.; Shi, Y.; Pan, H. City Branding Evaluation as a Tool for Sustainable Urban Growth: A Framework and Lessons from the Yangtze River Delta Region. Sustainability 2019, 11, 4281. [Google Scholar] [CrossRef]
- Gillan, S.L.; Koch, A.; Starks, L.T. Firms and social responsibility: A review of ESG and CSR research in corporate finance. J. Corp. Financ. 2021, 66, 101889. [Google Scholar] [CrossRef]
- Stoian, C.; Mohr, A. Outward foreign direct investment from emerging economies: Escaping home country regulative voids. Int. Bus. Rev. 2016, 25, 1124–1135. [Google Scholar] [CrossRef]
- Luo, Y.; Tung, R.L. International Expansion of Emerging Market Enterprises: A Springboard Perspective. J. Int. Bus. Stud. 2007, 38, 481–498. [Google Scholar] [CrossRef]
- Jiang, X.; Fu, W.; Li, G. Can the improvement of living environment stimulate urban Innovation?—Analysis of high-quality innovative talents and foreign direct investment spillover effect mechanism. J. Clean. Prod. 2020, 255, 120212. [Google Scholar] [CrossRef]
- Elliott, R.J.R.; Zhou, Y. Environmental Regulation Induced Foreign Direct Investment. Environ. Resour. Econ. 2013, 55, 141–158. [Google Scholar] [CrossRef]
- Sexton, T.R.; Silkman, R.H.; Hogan, A.J. Data envelopment analysis: Critique and extensions. Evol. Anthropol. Issues News Rev. 1986, 32, 73–105. [Google Scholar] [CrossRef]
- Chen, S.; Chen, D. Haze pollution, government governance and high-quality economic development. Econ. Res. 2018, 53, 20–34. (In Chinese) [Google Scholar]
- Ju, X.S.; Lu, D.; Yu, Y. Financing constraints, working capital management and corporate innovation sustainability. Econ. Res. 2013, 48, 4–16. (In Chinese) [Google Scholar]
- Chen, F. Research on energy efficiency evaluation and influencing factors of the Yangtze River Economic Belt under the constraint of non-desirable output--Estimation based on non-radial directional distance function. J. Anhui Univ. (Philos. Soc. Sci. Ed.) 2016, 40, 138–147. (In Chinese) [Google Scholar]
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Decision: Probit Model | Scale: Fixed Effect Model | |||||
Variables | OFDI_D | OFDI_D | OFDI_D | OFDI_S | OFDI_S | OFDI_S |
Eff_CO2 | 0.774 *** | 0.449 *** | 0.424 *** | 0.362 *** | 0.136 *** | 0.143 *** |
(0.02) | (0.02) | (0.02) | (7.79) | (2.83) | (2.87) | |
Age | −0.058 *** | −0.054 *** | −0.008 | −0.001 | ||
(0.01) | (0.01) | (−0.47) | (−0.06) | |||
Fsr | −0.005 | −0.019 | 0.101 ** | 0.084 ** | ||
(0.02) | (0.02) | (2.51) | (2.10) | |||
Lev | 0.346 *** | 0.355 *** | 0.735 *** | 0.737 *** | ||
(0.01) | (0.01) | (21.68) | (21.72) | |||
Eur | −0.002 *** | −0.003 *** | −0.003 *** | −0.003 *** | ||
(0.00) | (0.00) | (−2.84) | (−2.86) | |||
Tobin Q | −0.014 *** | −0.014 *** | −0.011 *** | −0.011 *** | ||
(0.00) | (0.00) | (−3.81) | (−3.69) | |||
FAR | −0.227 *** | −0.211 *** | −0.272 *** | −0.251 *** | ||
(0.02) | (0.02) | (−5.38) | (−4.94) | |||
Ind | −0.282 *** | −0.177 ** | ||||
(0.03) | (−2.32) | |||||
Hum | −0.014 *** | −0.007 ** | ||||
(0.00) | (−2.48) | |||||
Gov | 0.384 | 2.318 *** | ||||
(0.37) | (2.78) | |||||
Industry fixed effect | N | Y | Y | N | Y | Y |
Year fixed effect | N | Y | Y | N | Y | Y |
Constant | 1.065 *** | 0.926 *** | 0.924 *** | |||
(43.12) | (15.32) | (10.81) | ||||
Observations | 28,812 | 28,739 | 28,739 | 11,968 | 11,967 | 11,967 |
R-squared | 0.005 | 0.109 | 0.113 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Replace | Winsorise | Remove | First | Second | |
Variables | OFDI_S | OFDI_S | OFDI_S | OFDI_S | VC |
Eff_CO2 | 0.148 *** | 0.167 *** | 1.245 ** | ||
(2.98) | (3.25) | (2.42) | |||
Eff_CO22 | 0.067 *** | ||||
(2.69) | |||||
VC | 0.013 *** | ||||
(10.77) | |||||
Controls | Y | Y | Y | Y | Y |
Industry fixed effect | Y | Y | Y | Y | Y |
Year fixed effect | Y | Y | Y | Y | Y |
Constant | 0.945 *** | 0.916 *** | 0.755 *** | 0.597 *** | 0.068 |
(11.36) | (10.18) | (7.74) | (37.46) | (0.20) | |
Observations | 11,967 | 11,967 | 9236 | 11,968 | 11,968 |
R-squared | 0.113 | 0.117 | 0.124 | 0.226 | 0.078 |
(1) | (2) | (3) | (4) | |
---|---|---|---|---|
Variables | Financing Cost | SA | Green Patent | Green Utility Model Patent |
Eff_CO2 | −0.009 * | −0.025 ** | 0.116 * | 0.122 ** |
(−1.88) | (−2.25) | (1.82) | (2.19) | |
Controls | Y | Y | Y | Y |
Industry fixed effect | Y | Y | Y | Y |
Year fixed effect | Y | Y | Y | Y |
Constant | −0.065 *** | 2.111 *** | −0.057 | −0.069 |
(−7.79) | (112.18) | (−0.52) | (−0.72) | |
Observations | 11,967 | 11,967 | 11,967 | 11,967 |
R-squared | 0.159 | 0.763 | 0.188 | 0.212 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
---|---|---|---|---|---|---|---|---|
Variables | OFDI_S | OFDI_S | OFDI_S | OFDI_S | OFDI_S | OFDI_S | OFDI_S | OFDI_S |
Eff_CO2 | −0.032 | 0.660 *** | 0.175 *** | 0.028 | 0.042 | 0.243 *** | 0.139 *** | 0.228 |
(−0.57) | (6.15) | (3.14) | (0.25) | (0.69) | (3.45) | (2.67) | (1.30) | |
Controls | Y | Y | Y | Y | Y | Y | Y | Y |
Industry fixed effect | Y | Y | Y | Y | Y | Y | Y | Y |
Year fixed effect | Y | Y | Y | Y | Y | Y | Y | Y |
Constant | 0.906 *** | 1.061 *** | 0.951 *** | 0.767 *** | 1.114 *** | 1.120 *** | 0.879 *** | 0.967 *** |
(9.17) | (5.72) | (9.96) | (3.97) | (10.60) | (8.94) | (9.70) | (3.51) | |
Observations | 8386 | 3575 | 9742 | 2225 | 4809 | 7155 | 10,425 | 1541 |
R-squared | 0.116 | 0.189 | 0.117 | 0.101 | 0.113 | 0.132 | 0.110 | 0.171 |
(1) | (2) | (3) | |
---|---|---|---|
VARIABLES | OFDI_S | OFDI_D | OFDI_W |
Eff_CO2 | 0.101 ** | 0.111 *** | 0.023 |
(1.99) | (4.82) | (0.65) | |
Fin | 0.017 ** | ||
(2.27) | |||
Eff_CO2 × Fin | 0.135 *** | ||
(3.37) | |||
Controls | Y | Y | Y |
Industry fixed effect | Y | Y | Y |
Year fixed effect | Y | Y | Y |
Constant | 0.796 *** | 0.799 *** | 0.904 *** |
(20.22) | (13.18) | (9.22) | |
Observations | 11,967 | 11,967 | 11,967 |
R-squared | 0.135 | 0.110 | 0.114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Sun, W. How Does Carbon Emissions Efficiency Affect OFDI? Evidence from Chinese Listed Companies. Sustainability 2023, 15, 13145. https://doi.org/10.3390/su151713145
Chen F, Sun W. How Does Carbon Emissions Efficiency Affect OFDI? Evidence from Chinese Listed Companies. Sustainability. 2023; 15(17):13145. https://doi.org/10.3390/su151713145
Chicago/Turabian StyleChen, Fang, and Wenya Sun. 2023. "How Does Carbon Emissions Efficiency Affect OFDI? Evidence from Chinese Listed Companies" Sustainability 15, no. 17: 13145. https://doi.org/10.3390/su151713145
APA StyleChen, F., & Sun, W. (2023). How Does Carbon Emissions Efficiency Affect OFDI? Evidence from Chinese Listed Companies. Sustainability, 15(17), 13145. https://doi.org/10.3390/su151713145