Need of Integrated Regional Planning Approach for the Decentralisation and Optimisation of Renewable Energy Based Electric Vehicle Infrastructure: A Comprehensive Visualisation
Abstract
:1. Introduction
1.1. Contributions of the Paper
1.2. Organisation of the Paper
2. Classification of System, Support and Services for REEVI Package and Spatial Planning
2.1. System
2.2. Support
2.3. Services
2.4. Renewable Energy Based Electric Vehicle Infrastructure (REEVI) Package
2.5. Hierarchy and Scale in Integrated Regional Spatial Planning
3. Methodology to Identify Spatial Planning Gaps
4. Distribution of Literature over the Last Two Decades and Missing Linkages
5. Proposed Methodology for Integrated Regional Spatial Planning REEVI-SSS Decentralisation and Optimisation
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DCRs | Development control regulation |
DRE | Decentralised renewable energy |
ED | Energy decentralisation |
EV/s | Electric vehicles |
EVCI | Electric vehicle charging infrastructure |
EVCPs | Electric vehicle charging projects |
EVCSs | Electric vehicle charging stations |
EVI | Electric vehicle infrastructure |
GHG | Greenhouse gas |
HVI | Hybrid vehicle infrastructure |
ICT | Information, communications and technology |
OD | Origin destination |
PHEVs | Plug-In hybrid electric vehicles |
PV | Photovoltaic |
REC | Renewable energy committee |
REEVCSs | Renewable energy based electric vehicle charging stations |
REEVI | Renewable energy based electric vehicle infrastructure |
REHVI | Renewable energy based hybrid vehicle infrastructure |
REI | Renewable energy infrastructure |
RES | Renewable energy system |
SDG | Sustainable development goals |
SEVI | Solar electric vehicle infrastructure |
SSS | System, support and services |
References
- Chen, W.; Wu, A.N.; Biljecki, F. Classification of urban morphology with deep learning: Application on urban vitality. Comput. Environ. Urban Syst. 2021, 90, 101706. [Google Scholar] [CrossRef]
- Zoungrana, A.; Çakmakc, M. From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review. Int. J. Energy Res. 2020, 45, 3495–3522. [Google Scholar] [CrossRef]
- Williams, J.H.; DeBenedictis, A.; Ghanadan, R.; Mahone, A.; Moore, J.; Morrow, W.R.; Price, S.; Torn, M.S. The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity. Science 2012, 335, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Tu, T.; Gu, B.; Zeng, Y. Scenario simulation of CO2 emissions from light-duty passenger vehicles under land use-transport planning: A case of Shenzhen International Low Carbon City. Sustain. Cities Soc. 2021, 75, 103266. [Google Scholar] [CrossRef]
- Michael, J. Future forms and Design for Sustainable Cities; Architectural: Oxford, UK, 2005. [Google Scholar]
- Morrow, W.R.; Gallagher, K.S.; Collantes, G.; Lee, H. Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector. Energy Policy 2010, 38, 1305–1320. [Google Scholar] [CrossRef]
- Ong, H.C.; Mahlia, T.M.I.; Masjuki, H.H. A review on energy pattern and policy for transportation sector in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 532–542. [Google Scholar] [CrossRef]
- Hong, S.; Chung, Y.; Kim, J.; Chun, D. Analysis on the level of contribution to the national greenhouse gas reduction target in Korean transportation sector using LEAP model. Renew. Sustain. Energy Rev. 2016, 60, 549–559. [Google Scholar] [CrossRef]
- Kriegler, E.; Weyant, J.P.; Blanford, G.J.; Krey, V.; Clarke, L.; Edmonds, J.; Fawcett, A.; Luderer, G.; Riahi, K.; Richels, R.; et al. The role of technology for achieving climate policy objectives: Overview of the EMF 27 study on global technology and climate policy strategies. Clim. Chang. 2014, 123, 353–367. [Google Scholar] [CrossRef]
- Manfred, H.; Simone, T. The Geopolitics of the Global Energy Transition; Springer International Publishing: Cham, Switzerland, 2020; Volume 73. [Google Scholar] [CrossRef]
- Kılınç, A.; Stanisstreet, M.; Boyes, E. Incentives and disincentives for using renewable energy: Turkish students’ ideas. Renew. Sustain. Energy Rev. 2009, 13, 1089–1095. [Google Scholar] [CrossRef]
- Shirwani, R.; Gulzar, S.; Asim, M.; Umair, M.; Al-Rashid, M.A. Control of vehicular emission using innovative energy solutions comprising of hydrogen for transportation sector in Pakistan: A case study of Lahore City. Int. J. Hydrog. Energy 2019, 45, 16287–16297. [Google Scholar] [CrossRef]
- Lakshmi, G.S.; Rubanenko, O.; Hunko, I. Renewable Energy Generation and Impacts on E-Mobility. J. Phys. Conf. Ser. 2020, 1457, 012009. [Google Scholar] [CrossRef]
- Hanson, S.E.; Nicholls, R.J. Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea-Level Rise. Earths Future 2020, 8, e2020EF001543. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaños, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed]
- Berka, A.; Dreyfus, M. Decentralisation and inclusivity in the energy sector: Preconditions, impacts and avenues for further research. Renew. Sustain. Energy Rev. 2021, 138, 110663. [Google Scholar] [CrossRef]
- Arvanitopoulos, T.; Wilson, C.; Ferrini, S. Local conditions for the decentralization of energy systems. Reg. Stud. 2022, 1–17. [Google Scholar] [CrossRef]
- Khan, I. Impacts of energy decentralization viewed through the lens of the energy cultures framework: Solar home systems in the developing economies. Renew. Sustain. Energy Rev. 2019, 119, 109576. [Google Scholar] [CrossRef]
- Jain, S. Essay on Decentralised Planning in India. Economics Discussion, 2 March 2023. Available online: https://www.economicsdiscussion.net/india/essay-on-decentralised-planning-in-india/17687 (accessed on 1 April 2023).
- NITI Aayog; Ministry of Power (MoP); Department of Science and Technology (DST); Bureau of Energy Efficiency (BEE); WRI India. Handbook on Electric Vehicle Charging Infrastructure Implementation; NITI Aayog: New Delhi, India, 2023. [Google Scholar]
- Rathnayake, R.M.D.I.M.; Jayawickrama, T.S.; Melagoda, D.G. The Feasibility of Establishing Electric Vehicle Charging Stations at Public Hotspots in Sri Lanka. In Proceedings of the 5th International Multidisciplinary Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 3–5 July 2019; pp. 510–514. [Google Scholar] [CrossRef]
- Ajanovic, A.; Haas, R. Economic and Environmental Prospects for Battery Electric- and Fuel Cell Vehicles: A Review. Fuel Cells 2019, 19, 515–529. [Google Scholar] [CrossRef]
- Haddadian, G.; Khodayar, M.; Shahidehpour, M. Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers. Electr. J. 2015, 28, 53–68. [Google Scholar] [CrossRef]
- Lee, W.; Xiang, L.; Schober, R.; Wong, V.W.S. Electric Vehicle Charging Stations with Renewable Power Generators: A Game Theoretical Analysis. IEEE Trans. Smart Grid 2014, 6, 608–617. [Google Scholar] [CrossRef]
- Acharya, S.; Dvorkin, Y.; Pandzic, H.; Karri, R. Cybersecurity of Smart Electric Vehicle Charging: A Power Grid Perspective. IEEE Access 2020, 8, 214434–214453. [Google Scholar] [CrossRef]
- Tookanlou, M.B.; Marzband, M.; al Sumaiti, A.; Mazza, A. Cost-benefit analysis for multiple agents considering an electric vehicle charging/discharging strategy and grid integration. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON), Palermo, Italy, 16–18 June 2020; pp. 19–24. [Google Scholar] [CrossRef]
- Feng, J.; Yang, J.; Li, Y.; Wang, H.; Ji, H.; Yang, W.; Wang, K. Load forecasting of electric vehicle charging station based on grey theory and neural network. Energy Rep. 2021, 7, 487–492. [Google Scholar] [CrossRef]
- Wang, B.; Dehghanian, P.; Wang, S.; Mitolo, M. Electrical Safety Considerations in Large-Scale Electric Vehicle Charging Stations. IEEE Trans. Ind. Appl. 2019, 55, 6603–6612. [Google Scholar] [CrossRef]
- Ahmad, F.; Iqbal, A.; Ashraf, I.; Marzband, M.; khan, I.; khan, I. Optimal location of electric vehicle charging station and its impact on distribution network: A review. Energy Rep. 2022, 8, 2314–2333. [Google Scholar] [CrossRef]
- Hauke, E.; Russell, H.; Stefan, K.; Shivika, S. Charging-Ahead-Electric-Vehicle-Infrastructure-Demand-Final. 2018. Available online: https://www.mckinsey.com.br/~/media/McKinsey/Industries/Automotive%20and%20Assembly/Our%20Insights/Charging%20ahead%20Electric-vehicle%20infrastructure%20demand/Charging-ahead-electric-vehicle-infrastructure-demand-final.pdf (accessed on 1 February 2023).
- Razi, F.; Dincer, I. A review of the current state, challenges, opportunities and future directions for implementation of sustainable electric vehicle infrastructure in Canada. J. Energy Storage 2022, 56, 106048. [Google Scholar] [CrossRef]
- Solanke, T.U.; Khatua, P.K.; Ramachandaramurthy, V.K.; Yong, J.Y.; Tan, K.M. Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 144, 111020. [Google Scholar] [CrossRef]
- Alkawsi, G.; Baashar, Y.; Abbas, U.D.; Alkahtani, A.A.; Tiong, S.K. Review of Renewable Energy-Based Charging Infrastructure for Electric Vehicles. Appl. Sci. 2021, 11, 3847. [Google Scholar] [CrossRef]
- Wu, A.N.; Biljecki, F. Roofpedia: Automatic mapping of green and solar roofs for an open roofscape registry and evaluation of urban sustainability. Landsc. Urban Plan. 2021, 214, 104167. [Google Scholar] [CrossRef]
- McKuin, B.; Zumkehr, A.; Ta, J.; Bales, R.; Viers, J.H.; Pathak, T.; Campbell, J.E. Energy and water co-benefits from covering canals with solar panels. Nat. Sustain. 2021, 4, 609–617. [Google Scholar] [CrossRef]
- Kalpana, S. The ‘Solar Canals’ Making Smart Use of India’s Space. BBC Future Planet, 4 August 2020. Available online: https://www.bbc.com/future/article/20200803-the-solar-canals-revolutionising-indias-renewable-energy (accessed on 1 June 2023).
- Dale, H.; Nic, L. Emerging Best Practices for Electric Vehicle Charging Infrastructure. 2017. Available online: www.theicct.org (accessed on 26 June 2023).
- Rahman, I.; Vasant, P.M.; Singh, B.S.M.; Abdullah-Al-Wadud, M.; Adnan, N. Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renew. Sustain. Energy Rev. 2016, 58, 1039–1047. [Google Scholar] [CrossRef]
- Kar, S.K.; Sharma, A.; Roy, B. Solar energy market developments in India. Renew. Sustain. Energy Rev. 2016, 62, 121–133. [Google Scholar] [CrossRef]
- Naor, M.; Bernardes, E.S.; Druehl, C.T.; Shiftan, Y. Overcoming barriers to adoption of environmentally-friendly innovations through design and strategy. Int. J. Oper. Prod. Manag. 2015, 35, 26–59. [Google Scholar] [CrossRef]
- Majumdar, D.; Majhi, B.K.; Dutta, A.; Mandal, R.; Jash, T. Study on possible economic and environmental impacts of electric vehicle infrastructure in public road transport in Kolkata. Clean Technol. Environ. Policy 2014, 17, 1093–1101. [Google Scholar] [CrossRef]
- Ma, T.; Mohammed, O.A. Optimal Charging of Plug-in Electric Vehicles for a Car-Park Infrastructure. IEEE Trans. Ind. Appl. 2014, 50, 2323–2330. [Google Scholar] [CrossRef]
- Marra, F. Electric Vehicles Integration in the Electric Power System with Intermittent Energy Sources-The Charge/Discharge Infrastructure; APA: Washington, DC, USA, 2013. [Google Scholar]
- Eberle, U.; Müller, B.; von Helmolt, R. Fuel cell electric vehicles and hydrogen infrastructure: Status 2012. Energy Environ. Sci. 2012, 5, 8780–8798. [Google Scholar] [CrossRef]
- He, Y.; Chowdhury, M.; Ma, Y.; Pisu, P. Merging mobility and energy vision with hybrid electric vehicles and vehicle infrastructure integration. Energy Policy 2012, 41, 599–609. [Google Scholar] [CrossRef]
- Benysek, G.; Jarnut, M. Electric vehicle charging infrastructure in Poland. Renew. Sustain. Energy Rev. 2012, 16, 320–328. [Google Scholar] [CrossRef]
- Markel, T. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation. In Proceedings of the 2010 MIT Energy Initiative Transportation Electrification Symposium, Cambridge, MA, USA, 8 April 2010. [Google Scholar]
- von Jouanne, A.; Husa, I.; Wallace, A.; Yokochi, A. Gone with the wind: Innovative hydrogen/fuel cell electric vehicle infrastructure based on wind energy sources. IEEE Ind. Appl. Mag. 2005, 11, 12–19. [Google Scholar] [CrossRef]
- Huang, S.; Wang, J.; Fu, Y.; Zuo, W.; Hinkelman, K.; Kaiser, R.M.; He, D.; Vrabie, D. An open-source virtual testbed for a real Net-Zero Energy Community. Sustain. Cities Soc. 2021, 75, 103255. [Google Scholar] [CrossRef]
- Duan, P.; Askari, M.; Hemat, K.; Ali, Z.M. Optimal operation and simultaneous analysis of the electric transport systems and distributed energy resources in the smart city. Sustain. Cities Soc. 2021, 75, 103306. [Google Scholar] [CrossRef]
- Liu, H.-C.; Yang, M.; Zhou, M.; Tian, G. An Integrated Multi-Criteria Decision Making Approach to Location Planning of Electric Vehicle Charging Stations. IEEE Trans. Intell. Transp. Syst. 2018, 20, 362–373. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Mastoi, M.S.; Zhuang, S.; Munir, H.M.; Haris, M.; Hassan, M.; Usman, M.; Bukhari, S.S.H.; Ro, J.-S. An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Energy Rep. 2022, 8, 11504–11529. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Choi, D.-H. Decentralized Distributionally Robust Coordination Between Distribution System and Charging Station Operators in Unbalanced Distribution Systems. IEEE Trans. Smart Grid 2022, 14, 2164–2177. [Google Scholar] [CrossRef]
- Herbst, D.; Schürhuber, R.; Lagler, M.A.; Schmautzer, E.; Henein, S.; Zehetbauer, P.; Einfalt, A. Low-Voltage Grids in Transition-Auto-Matic Grid Reconfiguration Approach for Future Smart Grids Challenges. In Proceedings of the CIRED 2021-The 26th International Conference and Exhibition on Electricity Distribution, Geneva, Switzerland, 20–23 September 2021; pp. 1490–1494. [Google Scholar] [CrossRef]
- Acharya, S.; Mieth, R.; Konstantinou, C.; Karri, R.; Dvorkin, Y. Cyber Insurance Against Cyberattacks on Electric Vehicle Charging Stations. 2021. Available online: http://arxiv.org/abs/2107.03954 (accessed on 26 June 2023).
- Acharya, S.; Dvorkin, Y.; Karri, R. Public Plug-in Electric Vehicles + Grid Data: Is a New Cyberattack Vector Viable? IEEE Trans. Smart Grid 2020, 11, 5099–5113. [Google Scholar] [CrossRef]
- ElHusseini, H.; Assi, C.; Moussa, B.; Attallah, R.; Ghrayeb, A. Blockchain, AI and Smart Grids: The Three Musketeers to a Decentralized EV Charging Infrastructure. IEEE Internet Things Mag. 2020, 3, 24–29. [Google Scholar] [CrossRef]
- Shakerighadi, B.; Anvari-Moghaddam, A.; Ebrahimzadeh, E.; Blaabjerg, F.; Bak, C.L. A Hierarchical Game Theoretical Approach for Energy Management of Electric Vehicles and Charging Stations in Smart Grids. IEEE Access 2018, 6, 67223–67234. [Google Scholar] [CrossRef]
- Lee, W.; Schober, R.; Wong, V.W.S. An Analysis of Price Competition in Heterogeneous Electric Vehicle Charging Stations. IEEE Trans. Smart Grid 2018, 10, 3990–4002. [Google Scholar] [CrossRef]
- Davidov, S.; Pantoš, M. Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy 2017, 118, 1156–1167. [Google Scholar] [CrossRef]
- Wood, E.; Rames, C.; Muratori, M.; Raghavan, S.; Melaina, M. National Plug-In Electric Vehicle Infrastructure Analysis; US Department of Energy: Washington, DC, USA, 2017. [Google Scholar]
- Sathaye, N.; Kelley, S. An approach for the optimal planning of electric vehicle infrastructure for highway corridors. Transp. Res. Part E: Logist. Transp. Rev. 2013, 59, 15–33. [Google Scholar] [CrossRef]
- Lee, W.; Xiang, L.; Schober, R.; Wong, V.W.S. Analysis of the behavior of electric vehicle charging stations with renewable generations. In Proceedings of the 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm), Vancouver, BC, Canada, 21–24 October 2013; pp. 145–150. [Google Scholar] [CrossRef]
- Farhoodnea, M.; Mohamed, A.; Shareef, H.; Zayandehroodi, H. Power quality impacts of high-penetration electric vehicle stations and renewable energy-based generators on power distribution systems. Measurement 2013, 46, 2423–2434. [Google Scholar] [CrossRef]
- Tan, J.; Wang, L. Real-Time Charging Navigation of Electric Vehicles to Fast Charging Stations: A Hierarchical Game Approach. IEEE Trans. Smart Grid 2015, 8, 846–856. [Google Scholar] [CrossRef]
- Sovacool, B.K. Experts, theories, and electric mobility transitions: Toward an integrated conceptual framework for the adoption of electric vehicles. Energy Res. Soc. Sci. 2017, 27, 78–95. [Google Scholar] [CrossRef]
- Alam, K.M.; Li, X.; Baig, S. Impact of Transport Cost and Travel Time on Trade under China-Pakistan Economic Corridor (CPEC). J. Adv. Transp. 2019, 2019, 7178507. [Google Scholar] [CrossRef]
- Trombin, M.; Pinna, R.; Musso, M.; Magnaghi, E.; de Marco, M. Mobility Management: From Traditional to People-Centric Approach in the Smart City. In Emerging Technologies for Connected Internet of Vehicles and Intelligent Transportation System Networks; Springer: Berlin/Heidelberg, Germany, 2020; pp. 165–182. [Google Scholar] [CrossRef]
- Petrauskiene, K.; Dvarioniene, J.; Kaveckis, G.; Kliaugaite, D.; Chenadec, J.; Hehn, L.; Pérez, B.; Bordi, C.; Scavino, G.; Vignoli, A.; et al. Situation Analysis of Policies for Electric Mobility Development: Experience from Five European Regions. Sustainability 2020, 12, 2935. [Google Scholar] [CrossRef]
- Cui, F.-B.; You, X.-Y.; Shi, H.; Liu, H.-C. Optimal Siting of Electric Vehicle Charging Stations Using Pythagorean Fuzzy VIKOR Approach. Math. Probl. Eng. 2018, 2018, 9262067. [Google Scholar] [CrossRef]
- Ahmed, M.A.; El-Sharkawy, M.R.; Kim, Y.-C. Remote Monitoring of Electric Vehicle Charging Stations in Smart Campus Parking Lot. J. Mod. Power Syst. Clean Energy 2020, 8, 124–132. [Google Scholar] [CrossRef]
- Dixon, J.; Bell, K. Electric vehicles: Battery capacity, charger power, access to charging and the impacts on distribution networks. eTransportation 2020, 4, 100059. [Google Scholar] [CrossRef]
- Fokui, W.S.T.; Ngoo, L.; Saulo, M. Optimal Integration of Electric Vehicle Charging Stations and Compensating Photovoltaic Systems in a Distribution Network Segregated into Communities. J. Adv. Eng. Comput. 2022, 6, 260–275. [Google Scholar] [CrossRef]
- Devendiran, R.; Kasinathan, P.; Ramachandaramurthy, V.K.; Subramaniam, U.; Govindarajan, U.; Fernando, X. Intelligent optimization for charging scheduling of electric vehicle using exponential Harris Hawks technique. Int. J. Intell. Syst. 2021, 36, 5816–5844. [Google Scholar] [CrossRef]
- Adhikari, M.; Ghimire, L.P.; Kim, Y.; Aryal, P.; Khadka, S.B. Identification and Analysis of Barriers against Electric Vehicle Use. Sustainability 2020, 12, 4850. [Google Scholar] [CrossRef]
- Deshwal, D.; Sangwan, P.; Dahiya, N. How will COVID-19 impact renewable energy in India? Exploring challenges, lessons and emerging opportunities. Energy Res. Soc. Sci. 2021, 77, 102097. [Google Scholar] [CrossRef] [PubMed]
- Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.; Melero, F.J.; Molina, D.; Fernández, B.; et al. A panoramic view and swot analysis of artificial intelligence for achieving the sustainable development goals by 2030: Progress and prospects. Appl. Intell. 2021, 51, 6497–6527. [Google Scholar] [CrossRef] [PubMed]
- Franke, T.; Neumann, I.; Bühler, F.; Cocron, P.; Krems, J.F. Experiencing Range in an Electric Vehicle: Understanding Psychological Barriers. Appl. Psychol. 2011, 61, 368–391. [Google Scholar] [CrossRef]
- Franke, T.; Rauh, N.; Günther, M.; Trantow, M.; Krems, J.F. Which Factors Can Protect Against Range Stress in Everyday Usage of Battery Electric Vehicles? Toward Enhancing Sustainability of Electric Mobility Systems. Hum. Factors: J. Hum. Factors Ergon. Soc. 2015, 58, 13–26. [Google Scholar] [CrossRef] [PubMed]
- TFranke; Schmalfuß, F.; Kreißig, I.; Krems, J. Adapting to the Range of an Electric Vehicle: The Relation of Experience to Subjectively Available Mobility Resources. 2012. Available online: https://www.researchgate.net/publication/257401389 (accessed on 26 June 2023).
- Franke, T.; Krems, J.F. What drives range preferences in electric vehicle users? Transp. Policy 2013, 30, 56–62. [Google Scholar] [CrossRef]
- Franke, T.; Krems, J.F. Interacting with limited mobility resources: Psychological range levels in electric vehicle use. Transp. Res. Part A Policy Pr. 2013, 48, 109–122. [Google Scholar] [CrossRef]
- Franke, T.; Krems, J.F. Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traffic Psychol. Behav. 2013, 21, 75–89. [Google Scholar] [CrossRef]
- Thomas, F.; Madlen, G.; Maria, T.; Josef, K.; Roman, V.; Andreas, K. Examining User-Range Interaction in Battery Electric Vehicles-A Field Study Approach. In Proceedings of the International Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences, Krakow, Poland, 19–23 July 2014. [Google Scholar]
- Franke, T.; Günther, M.; Trantow, M.; Rauh, N.; Krems, J.F. Range comfort zone of electric vehicle users–concept and assessment. IET Intell. Transp. Syst. 2015, 9, 740–745. [Google Scholar] [CrossRef]
- Franke, T.; Günther, M.; Trantow, M.; Krems, J.F. Does this range suit me? Range satisfaction of battery electric vehicle users. Appl. Ergon. 2017, 65, 191–199. [Google Scholar] [CrossRef]
- Franke, T.; Trantow, M.; Günther, M.; Krems, J.F.; Zott, V.; Keinath, A. Advancing electric vehicle range displays for enhanced user experience. In Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Nottingham, UK, 1–3 September 2015; pp. 249–256. [Google Scholar] [CrossRef]
- Franke, T.; Schmalfuß, F.; Rauh, N. Human Factors and Ergonomics in the Individual Adoption and Use of Electric Vehicles. In Ergonomics and Human Factors for a Sustainable Future; Springer Singapore: Singapore, 2018; pp. 135–160. [Google Scholar] [CrossRef]
- Franke, T.; Trantow, M.; Günther, M.; Krems, J.F.; Vilimek, R.; Keinath, A. Evaluation Methods for the Assessment of Driver Distraction View Project User Interaction with Remote Access to Range-Related Information in BEVs. 2014. Available online: http://www.itsineurope.com/its10/ (accessed on 26 June 2023).
- Thomas, F.; Franziska, B.; Peter, C.; Isabel, N.; Jose, F.K.f. Enhancing Sustainability of Electric Vehicles: A Field Study Approach to Understanding User Acceptance and Behaviour. In Advances in Traffic Psychology; Ashgate: Farham, UK, 2019. [Google Scholar]
- Nie, Y.M.; Ghamami, M. A corridor-centric approach to planning electric vehicle charging infrastructure. Transp. Res. Part B Methodol. 2013, 57, 172–1902013. [Google Scholar] [CrossRef]
- Morrissey, P.; Weldon, P.; O’Mahony, M. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviourr. Energy Policy 2016, 89, 257–270. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.-P.; Wang, J.; Li, J.; Wu, C.; Hu, M.; Bian, H. A Review on Electric Vehicle Charging Infrastructure Development in the UK. J. Mod. Power Syst. Clean Energy 2020, 8, 193–205. [Google Scholar] [CrossRef]
- Foley, A.M.; Winning, I.J.; Gallachoir, B.P.O. State-of-the-art in electric vehicle charging infrastructure. In Proceedings of the 2010 IEEE Vehicle Power and Propulsion Conference, Lille, France, 1–3 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Lee, J.H.; Chakraborty, D.; Hardman, S.J.; Tal, G. Exploring electric vehicle charging patterns: Mixed usage of charging infrastructure. Transp. Res. Part D Transp. Environ. 2020, 79, 102249. [Google Scholar] [CrossRef]
- Metais, M.O.; Jouini, O.; Perez, Y.; Berrada, J.; Suomalainen, E. Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options. Renew. Sustain. Energy Rev. 2021, 153, 111719. [Google Scholar] [CrossRef]
- Madina, C.; Zamora, I.; Zabala, E. Methodology for assessing electric vehicle charging infrastructure business models. Energy Policy 2015, 89, 284–293. [Google Scholar] [CrossRef]
- Rauh, N.; Franke, T.; Krems, J.F. Understanding the Impact of Electric Vehicle Driving Experience on Range Anxiety. Hum. Factors J. Hum. Factors Ergon. Soc. 2014, 57, 177–187. [Google Scholar] [CrossRef]
- Rauh, N.; Franke, T.; Krems, J.F. User experience with electric vehicles while driving in a critical range situation–a qualitative approach. IET Intell. Transp. Syst. 2015, 9, 734–739. [Google Scholar] [CrossRef]
- Haugneland, P.; Kvisle, H.H. Norwegian electric car user experiences. In Proceedings of the 2013 World Electric Vehicle Symposium and Exhibition (EVS27), Barcelona, Spain, 17–20 November 2013; pp. 1–11. [Google Scholar] [CrossRef]
- Weldon, P.; Morrissey, P.; O’Mahony, M. Environmental impacts of varying electric vehicle user behaviours and comparisons to internal combustion engine vehicle usage–An Irish case study. J. Power Sources 2016, 319, 27–38. [Google Scholar] [CrossRef]
- Daina, N.; Sivakumar, A.; Polak, J.W. Modelling electric vehicles use: A survey on the methods. Renew. Sustain. Energy Rev. 2017, 68, 447–460. [Google Scholar] [CrossRef]
- Daramy-Williams, E.; Anable, J.; Grant-Muller, S. A systematic review of the evidence on plug-in electric vehicle user experience. Transp. Res. Part D Transp. Environ. 2019, 71, 22–36. [Google Scholar] [CrossRef]
- Will, C.; Schuller, A. Understanding user acceptance factors of electric vehicle smart charging. Transp. Res. Part C Emerg. Technol. 2016, 71, 198–214. [Google Scholar] [CrossRef]
- Block, D.S.; Director, A.K.S.; Kumar, A.; Director, S. Floating Solar Photovoltaic (FSPV): A Third Pillar to Solar PV Sector? 2 Floating Solar Photovoltaic (FSPV): A Third Pillar to Solar PV Sector? 2019. Available online: www.teriin.org (accessed on 26 June 2023).
- Chung, Y.-W.; Khaki, B.; Li, T.; Chu, C.; Gadh, R. Ensemble machine learning-based algorithm for electric vehicle user behavior prediction. Appl. Energy 2019, 254, 113732. [Google Scholar] [CrossRef]
- Nordbakke, F.E.; Institute of Transport Economics Oslo. Battery Electric Vehicle User Experiences in Norway’s Maturing Market; TOI: Oslo, Norway, 2019. [Google Scholar]
- Helmus, J.R.; Lees, M.H.; van den Hoed, R. A data driven typology of electric vehicle user types and charging sessions. Transp. Res. Part C Emerg. Technol. 2020, 115, 102637. [Google Scholar] [CrossRef]
- Budak, G.; Chen, X.; Celik, S.; Ozturk, B. A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy Sustain. Soc. 2019, 9, 37. [Google Scholar] [CrossRef]
- Rao, C.S.V.P.; Pandian, A.; Reddy, C.R.; Aymen, F.; Alqarni, M.; Alharthi, M.M. Location Determination of Electric Vehicles Parking Lot with Distribution System by Mexican AXOLOTL Optimization and Wild Horse Optimizer. IEEE Access 2022, 10, 55408–55427. [Google Scholar] [CrossRef]
- Majhi, R.C.; Ranjitkar, P.; Sheng, M.; Covic, G.A.; Wilson, D.J. A systematic review of charging infrastructure location problem for electric vehicles. Transp. Rev. 2020, 41, 432–455. [Google Scholar] [CrossRef]
- Pagany, R.; Camargo, L.R.; Dorner, W. A review of spatial localization methodologies for the electric vehicle charging infrastructure. Int. J. Sustain. Transp. 2018, 13, 433–449. [Google Scholar] [CrossRef]
- Efthymiou, D.; Chrysostomou, K.; Morfoulaki, M.; Aifantopoulou, G. Electric vehicles charging infrastructure location: A genetic algorithm approach. Eur. Transp. Res. Rev. 2017, 9, 27. [Google Scholar] [CrossRef]
- Csonka, B.; Csiszár, C. Determination of charging infrastructure location for electric vehicles. Transp. Res. Procedia 2017, 27, 768–775. [Google Scholar] [CrossRef]
- Jerome, S.; Udayakumar, M. An Economic Feasibility Study of Electric Vehicle Charging Stations in India. In Recent Advances in Hybrid and Electric Automotive Technologies; Springer: Berlin/Heidelberg, Germany, 2022; pp. 207–221. [Google Scholar] [CrossRef]
- Sperling, K.; Arler, F. Local government innovation in the energy sector: A study of key actors’ strategies and arguments. Renew. Sustain. Energy Rev. 2020, 126, 109837. [Google Scholar] [CrossRef]
- Noussan, M.; Raimondi, P.P.; Scita, R.; Hafner, M. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 2021, 13, 298. [Google Scholar] [CrossRef]
- Goldthau, A.; Eicke, L.; Weko, S. The Global Energy Transition and the Global South. In The Geopolitics of the Global Energy Transition; Springer: Berlin/Heidelberg, Germany, 2020; pp. 319–339. [Google Scholar] [CrossRef]
- Hariharan, T.S. Formulation of an Electricity Tariff Policy Framework for Electric Vehicle Charging Stations: Implications of Energy Law Principles, the Energy Trilemma, and Energy Life Cycle Stages. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3989751 (accessed on 26 June 2023).
- Heldeweg, M.A.; Saintier, S. Renewable energy communities as ‘socio-legal institutions’: A normative frame for energy decentralization? Renew. Sustain. Energy Rev. 2020, 119, 109518. [Google Scholar] [CrossRef]
- Wisner, B.; Uitto, J. Life on the Edge: Urban Social Vulnerability and Decentralized, Citizen-Based Disaster Risk Reduction in Four Large Cities of the Pacific Rim. In Facing Global Environmental Change: Environmental, Human, Energy, Food, Health and Water Security Concepts; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar] [CrossRef]
- Poupeau, F.-M. Everything must change in order to stay as it is. The impossible decentralization of the electricity sector in France. Renew. Sustain. Energy Rev. 2019, 120, 109597. [Google Scholar] [CrossRef]
- Brinker, L.; Satchwell, A.J. A comparative review of municipal energy business models in Germany, California, and Great Britain: Institutional context and forms of energy decentralization. Renew. Sustain. Energy Rev. 2019, 119, 109521. [Google Scholar] [CrossRef]
- Asamer, J.; Reinthaler, M.; Ruthmair, M.; Straub, M.; Puchinger, J. Optimizing charging station locations for urban taxi providers. Transp. Res. Part A Policy Pr. 2016, 85, 233–246. [Google Scholar] [CrossRef]
- Ramos-Escudero, A.; Gil-García, I.C.; García-Cascales, M.S.; Molina-Garcia, A. Energy, economic and environmental GIS–based analysis of shallow geothermal potential in urban areas—A Spanish case example. Sustain. Cities Soc. 2021, 75, 103267. [Google Scholar] [CrossRef]
- Omahne, V.; Knez, M.; Obrecht, M. Social Aspects of Electric Vehicles Research—Trends and Relations to Sustainable Development Goals. World Electr. Veh. J. 2021, 12, 15. [Google Scholar] [CrossRef]
- Judson, E.; Fitch-Roy, O.; Pownall, T.; Bray, R.; Poulter, H.; Soutar, I.; Lowes, R.; Connor, P.; Britton, J.; Woodman, B.; et al. The centre cannot (always) hold: Examining pathways towards energy system de-centralisation. Renew. Sustain. Energy Rev. 2019, 118, 109499. [Google Scholar] [CrossRef]
- World Wildlife Fund (WWF). Ecological Footprint; World Wildlife Fund (WWF): Gland, Switzerland, 2021. [Google Scholar]
- Strengers, Y.; Nicholls, L. Convenience and energy consumption in the smart home of the future: Industry visions from Australia and beyond. Energy Res. Soc. Sci. 2017, 32, 86–93. [Google Scholar] [CrossRef]
- Bureau of Energy Efficiency. Energy Conservation Building Code 2017; Bureau of Energy Efficiency: New Delhi, India, 2017. [Google Scholar]
- IS 15797; Rooftop Rain Water Harvesting. Bureau of Indian Standards (BIS): New Delhi, India, 2008.
- Singh, H.B. Lecture Notes; School of Planning and Architecture: New Delhi, India, 2011. [Google Scholar]
- Bauwens, T.; Schraven, D.; Drewing, E.; Radtke, J.; Holstenkamp, L.; Gotchev, B.; Yildiz, Ö. Conceptualizing community in energy systems: A systematic review of 183 definitions. Renew. Sustain. Energy Rev. 2021, 156, 111999. [Google Scholar] [CrossRef]
- Bekirsky, N.; Hoicka, C.E.; Brisbois, M.C.; Camargo, L.R. Many actors amongst multiple renewables: A systematic review of actor involvement in complementarity of renewable energy sources. Sustain. Energy Rev. 2022, 161, 112368. [Google Scholar] [CrossRef]
- Bashi, M.H.; De Tommasi, L.; Le Cam, A.; Relaño, L.S.; Lyons, P.; Mundó, J.; Pandelieva-Dimova, I.; Schapp, H.; Loth-Babut, K.; Egger, C.; et al. A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors. Renew. Sustain. Energy Rev. 2023, 172, 113055. [Google Scholar] [CrossRef]
- Ahl, A.; Yarime, M.; Goto, M.; Chopra, S.S.; Kumar, N.M.; Tanaka, K.; Sagawa, D. Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan. Renew. Sustain. Energy Rev. 2020, 117, 109488. [Google Scholar] [CrossRef]
- Kumari, A.; Sukharamwala, U.C.; Tanwar, S.; Raboaca, M.S.; Alqahtani, F.; Tolba, A.; Sharma, R.; Aschilean, I.; Mihaltan, T.C. Blockchain-Based Peer-to-Peer Transactive Energy Management Scheme for Smart Grid System. Sensors 2022, 22, 4826. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.K.; Kumari, A.; Tanwar, S.; Hong, W.-C.; Sharma, R. AI-Empowered Recommender System for Renewable Energy Harvesting in Smart Grid System. IEEE Access 2022, 10, 24316–24326. [Google Scholar] [CrossRef]
S. No. | Reference | Type of Research | Findings |
---|---|---|---|
1 | [22,23] | Battery Technology in EV |
|
2 | [24,25,26,27,28,29] | Electrical Grid for EVCSs |
|
3 | [30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] | EVI Source of Energy |
|
4 | [21,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65] | Smart Grid for EVCSs |
|
5 | [8,21,49,50,51,52,66,67,68,69,70,71,72,73,74,75] | EVCSs location |
|
6 | [76] | Electric Vehicle User Experience |
|
7 | [77,78] | RE Policy |
|
S. No. | Reference | Type of Research | Findings |
---|---|---|---|
1 | [79,80,81,82,83,84,85,86,87,88,89,90,91] | Mobility Resources Electric Vehicle Use |
|
2 | [37,92,93,94,95,96,97,98] | EV Infrastructure (EVI) |
|
3 | [84,86,88,94,99,100,101,102,103,104,105,106,107,108,109,110] | Electric Vehicle User Experience |
|
4 | [31,106,110] | EVI Source of Energy |
|
5 | [111,112,113,114,115] | EVCSs location and optimisation |
|
S. No. | Reference | Type of Research | Findings |
---|---|---|---|
1 | [7,9,10,11,13,14,15,16,18,52,54,58,114,118,119,120,121,122,123,124] | RE Policy |
|
2 | [31,111,112,113,114,115,116,125] | EVCSs location and optimisation |
|
3 | [4,50,125,126] | RES integration |
|
4 | [125,127] | Electric Vehicle User Experience |
|
5 | [4,31,51,61,63,92,93,97] | EVI Source of Energy |
|
S. No. | References | System | Support | Services | Studies on REEVI Package |
---|---|---|---|---|---|
1 | [3,8,12,18,19,20,21,22,23,24,25,26,30,31,32,34,35,36,37,38,39,43,44,45,47,49,50,52,53,54,56,57,59,61,62,63,64,65,66,67,68,70,71,72,85,97] | ✓ | ꭓ | ꭓ | ꭓ |
2 | [6,76,77,78,79,80,81,82,83,84,86,87,88,90,91,92,93,95,96,98,99,100,101,102,105,106] | ꭓ | ✓ | ꭓ | ꭓ |
3 | [1,2,4,5,7,114,119,120,122,123,124,125,126,129,130,131,132,133,134] | ꭓ | ꭓ | ✓ | ꭓ |
4 | [33,40,41,42,73,74,75,85,97,103,104] | ✓ | ✓ | ꭓ | ꭓ |
5 | [9,10,11,13,14,15,16,17,46,48,51,52,55,58,60,115,116,117,118] | ✓ | ꭓ | ✓ | ꭓ |
6 | [31,89,94,107,108,109,110,111,112,128,135] | ꭓ | ✓ | ✓ | ꭓ |
7 | [27,29,69,113,121,127] | ✓ | ✓ | ✓ | ✓ |
Categories | Local | City | Region | Totals | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | System | Support | Services | System | Support | Services | System | Support | Services | |
2005 | 1 | 1 | ||||||||
2009 | 1 | 1 | ||||||||
2010 | 1 | 1 | ||||||||
2012 | 3 | 3 | 1 | 7 | ||||||
2013 | 4 | 4 | 2 | 10 | ||||||
2014 | 3 | 1 | 1 | 5 | ||||||
2015 | 4 | 6 | 10 | |||||||
2016 | 3 | 2 | 1 | 6 | ||||||
2017 | 5 | 1 | 2 | 8 | ||||||
2018 | 7 | 7 | ||||||||
2019 | 8 | 5 | 1 | 14 | ||||||
2020 | 8 | 2 | 5 | 15 | ||||||
2021 | 13 | 1 | 4 | 3 | 21 | |||||
2022 | 3 | 1 | 1 | 1 | 2 | 8 | ||||
Totals | 62 | 25 | 0 | 1 | 0 | 4 | 1 | 3 | 16 | 112 |
Grand Totals | 87 | 5 | 20 | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rani, G.; Saini, D.K. Need of Integrated Regional Planning Approach for the Decentralisation and Optimisation of Renewable Energy Based Electric Vehicle Infrastructure: A Comprehensive Visualisation. Sustainability 2023, 15, 13315. https://doi.org/10.3390/su151813315
Rani G, Saini DK. Need of Integrated Regional Planning Approach for the Decentralisation and Optimisation of Renewable Energy Based Electric Vehicle Infrastructure: A Comprehensive Visualisation. Sustainability. 2023; 15(18):13315. https://doi.org/10.3390/su151813315
Chicago/Turabian StyleRani, Geetanjli, and Devender Kumar Saini. 2023. "Need of Integrated Regional Planning Approach for the Decentralisation and Optimisation of Renewable Energy Based Electric Vehicle Infrastructure: A Comprehensive Visualisation" Sustainability 15, no. 18: 13315. https://doi.org/10.3390/su151813315
APA StyleRani, G., & Saini, D. K. (2023). Need of Integrated Regional Planning Approach for the Decentralisation and Optimisation of Renewable Energy Based Electric Vehicle Infrastructure: A Comprehensive Visualisation. Sustainability, 15(18), 13315. https://doi.org/10.3390/su151813315