Recent Advances in Organic Fouling Control and Mitigation Strategies in Membrane Separation Processes: A Review
Abstract
:1. Introduction
2. Membrane Fouling, Types and Mechanisms
3. Types and Characteristics of Organic Foulants
4. Factors That Influence Organic Fouling
4.1. Organic Composition and Concentration in the Feed Solution
4.2. Operating Conditions
4.3. Membrane Properties
4.4. Pretreatment Wastewater
4.5. Membrane Materials
5. Fouling Control and Mitigation Strategies for Organic Fouling
5.1. Pre-Treatment Techniques
5.2. Physical Cleaning
5.2.1. Backwashing
5.2.2. Air Scouring
5.2.3. Vibration and Rotating Membranes
5.2.4. Ultrasound
5.3. Chemical Cleaning
- Clean-in-place (CIP), which involves immersion of fouled membranes in chemicals-in-place.
- “Clean out of place” (COP), which involves soaking fouled membranes in chemicals out of place.
- “Chemical wash” (CW), which involves washing the fouled membrane by the feed stream containing chemicals.
- “Chemical enhanced backwash” (CEB), which combines physical and chemical cleaning techniques.
Mechanism of Chemical Cleaning
- Cleaning reagents undergo a bulk reaction, including hydrolysis and other reactions.
- The cleaning agent is conveyed to the surface of the membrane.
- The cleaning agent then passes through the foulant layers.
- Cleaning reactions occur in the fouling layer, leading to solubilization and detachment of the foulants.
- Suspended foulants and waste cleaning agent are transported to the interface.
- Waste matter is transported from the retentate side of the membrane to the bulk solution.
5.4. Physio-Chemical Cleaning
5.5. Surface Modification
5.6. Three-Dimensional (3D) Printing
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABS, acrylonitrile butadiene styrene | MB, microbubble | PVDF, polyvinylidene fluoride |
AHA, Aldrich humic acid | MD, membrane distillation | PVA, polyvinyl alcohol |
AlCl3, aluminum chloride | MF, microfiltration | PFC, polymeric ferric chloride |
AnMBRs, anaerobic membrane reactors | MOFs, metal-organic frameworks | PP, polypropylene; SDL |
BSA, bovine serum albumin | MPs, organic micropollutants | RO, reverse osmosis |
CAD, computer-aided design | NaOCl, sodium hypochlorite | rotating hollow fiber membranes |
CEBW, chemically enhanced backwashing | NPs, nanoparticles | ROS, reactive oxygen species |
CEB, chemical enhanced backwash | NF, nanofiltration | SA, sodium alginate |
CIP, clean-in-place | NOM, organic matter | SDL, selective deposition lamination |
COP, clean-out-of-place | Na2-EDTA, disodium ethylenediaminetetraacetate | SDS, sodium dodecyl sulfate |
CTS, chitosan; R-HFM | OBW, osmotic backwashing | selective deposition lamination |
CW, chemical wash | PACl, polyaluminum chloride | SLA, stereolithography apparatus |
3D, three-dimension | PAC, polyaluminum chloride | SLS, selective laser sintering |
DEX, dextran | P (AM–DAC), cationic polyacrylamide | NaOH, sodium hydroxide |
DLP, digital light processing | PAM, polyacrylamide | SWMs, spiral wound modules |
EBM, electron beam melting | PASiC, polysilicate aluminum chloride | TA, tannic acid |
EDL, electric double layer | PCPs, personal care products | tCLP, transverse crossed layer of parallel |
EfOM, effluent organic matter | PCS, 2-N-propyl sulfonated chitosan | TPMS, triply periodic minimal surfaces |
EDTA, ethylene diamine tetra-acetic acid; | PDA, polydopamine | UF, ultrafiltration |
FDM, fused deposition modeling | PDMDAAC, poly dimethyl diallyl ammonium chloride | US, ultrasound |
FeCl3, ferric chloride | PEG, polyethylene glycol | USVM, uniform shearing vibration membrane |
FO, forward osmosis | PEI, polyethyleneimine | WOM, wastewater organic matter |
HA, humic acid; | PhACs, pharmaceutical active compounds; | |
HFNF, hollow fiber nanofiltration; | PLA, polylactic acid; | |
LMW, low-molecular-weight; | PM, Photocatalytic membrane; |
References
- Pan, Z.; Xin, H.; Xu, S.; Xu, R.; Wang, P.; Yuan, Y.; Fan, X.; Song, Y.; Song, C.; Wang, T. Preparation and performance of polyaniline modified coal-based carbon membrane for electrochemical filtration treatment of organic wastewater. Sep. Purif. Technol. 2022, 287, 120600. [Google Scholar] [CrossRef]
- Zhang, B.; Mao, X.; Tang, X.; Tang, H.; Shen, Y.; Shi, W. Pre-coagulation for membrane fouling mitigation in an aerobic granular sludge membrane bioreactor: A comparative study of modified microbial and organic flocculants. J. Membr. Sci. 2022, 644, 120129. [Google Scholar] [CrossRef]
- Li, C.; Feng, G.; Sun, M.; Pan, Z.; Yan, X.; Fan, X.; Song, C.; Wang, T. Preparation and application of high-performance and acid-tolerant TiO2/carbon electrocatalytic membrane for organic wastewater treatment. Chemosphere 2022, 296, 134017. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wan, X.; Cui, H.; Mo, L.; Jia, J.; Ding, G.; Cheng, G.; Zhang, W.; Zhong, D. Design of bentonite/polyurethane composite membrane with a high flux in treatment of organic wastewater by using the pigment volume concentration theory. Appl. Clay Sci. 2022, 229, 106666. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Y.; Huang, W.; Liu, Z.; Guo, R.; Chen, J. Synchronous complete COD reduction for persistent chemical-industrial organic wastewater using the integrated treatment system. Chem. Eng. J. 2022, 430, 133136. [Google Scholar] [CrossRef]
- Mehra, S.; Saroha, J.; Rani, E.; Sharma, V.; Goswami, L.; Gupta, G.; Srivastava, A.K.; Sharma, S.N. Development of visible light-driven SrTiO3 photocatalysts for the degradation of organic pollutants for waste-water treatment: Contrasting behavior of MB & MO dyes. Opt. Mater. 2023, 136, 113344. [Google Scholar]
- Maneewan, P.; Sajomsang, W.; Singto, S.; Lohwacharin, J.; Suwannasilp, B.B. Fouling mitigation in an anaerobic membrane bioreactor via membrane surface modification with tannic acid and copper. Environ. Pollut. 2021, 291, 118205. [Google Scholar] [CrossRef]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef]
- Guerra-Rodríguez, S.; Oulego, P.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Towards the implementation of circular economy in the wastewater sector: Challenges and opportunities. Water 2020, 12, 1431. [Google Scholar] [CrossRef]
- Zhu, J.; Qin, L.; Uliana, A.; Hou, J.; Wang, J.; Zhang, Y.; Li, X.; Yuan, S.; Li, J.; Tian, M.; et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 1975–1986. [Google Scholar] [CrossRef]
- Cancino-Madariaga, B.; Aguirre, J. Combination treatment of corn starch wastewater by sedimentation, microfiltration and reverse osmosis. Desalination 2011, 279, 285–290. [Google Scholar] [CrossRef]
- Šárka, E.; Pour, V.; Veselá, A.; Bubník, Z. Possibilities for the use of membrane processes for the pre-treatment of wastewater from the production of dried potato purée. Desalination 2009, 249, 135–138. [Google Scholar] [CrossRef]
- Chang, Y.R.; Lee, Y.J.; Lee, D.J. Membrane fouling during water or wastewater treatments: Current research updated. J. Taiwan Inst. Chem. Eng. 2019, 94, 88–96. [Google Scholar] [CrossRef]
- Ullah, A.; Tanudjaja, H.J.; Ouda, M.; Hasan, S.W.; Chew, J.W. Membrane fouling mitigation techniques for oily wastewater: A short review. J. Water Process Eng. 2021, 43, 102293. [Google Scholar] [CrossRef]
- Aslam, M.; Wicaksana, F.; Farid, M.; Wong, A.; Krantz, W.B. Mitigation of membrane fouling by whey protein via water hammer. J. Membr. Sci. 2022, 642, 119967. [Google Scholar] [CrossRef]
- Castillo, E.H.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Al-Rub, R.K.; Nghiem, L.D.; Vigneswaran, S.; Arafat, H.A.; Naidu, G. 3D printed spacers for organic fouling mitigation in membrane distillation. J. Membr. Sci. 2019, 581, 331–343. [Google Scholar] [CrossRef]
- Ding, A.; Ren, Z.; Hu, L.; Zhang, R.; Ngo, H.H.; Lv, D.; Nan, J.; Li, G.; Ma, J. Oxidation and coagulation/adsorption dual effects of ferrate (VI) pretreatment on organics removal and membrane fouling alleviation in UF process during secondary effluent treatment. Sci. Total Environ. 2022, 850, 157986. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Liu, T.; Crawshaw, J.; Liu, T.; Graham, N. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Water Res. 2018, 139, 353–362. [Google Scholar] [CrossRef]
- Lim, A.L.; Bai, R. Membrane fouling and cleaning in microfiltration of activated sludge wastewater. J. Membr. Sci. 2003, 216, 279–290. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Chen, P.; Li, F.; Hu, X.; Hua, T. Photocatalytic and antifouling properties of TiO2-based photocatalytic membranes. Mater. Today Chem. 2022, 23, 100650. [Google Scholar] [CrossRef]
- Aghdam, M.A.; Mirsaeedghazi, H.; Aboonajmi, M.; Kianmehr, M.H. Effect of ultrasound on different mechanisms of fouling during membrane clarification of pomegranate juice. Innov. Food Sci. Emerg. Technol. 2015, 30, 127–131. [Google Scholar] [CrossRef]
- Alkhatib, A.; Ayari, M.A.; Hawari, A.H. Fouling mitigation strategies for different foulants in membrane distillation. Chem. Eng. Process.-Process Intensif. 2021, 167, 108517. [Google Scholar] [CrossRef]
- Sisay, E.J.; László, Z. Trend and Novel Possibilities of Dairy Wastewater Treatment by Membrane Filtration. J. Eng. Sci. Technol. Rev. 2021, 1, 46–55. [Google Scholar] [CrossRef]
- Sisay, E.J.; Veréb, G.; Pap, Z.; Gyulavári, T.; Ágoston, Á.; Kopniczky, J.; Hodúr, C.; Arthanareeswaran, G.; Arumugam, G.K.; László, Z. Visible-light-driven photocatalytic PVDF-TiO2/CNT/BiVO4 hybrid nanocomposite ultrafiltration membrane for dairy wastewater treatment. Chemosphere 2022, 307, 135589. [Google Scholar] [CrossRef]
- Yadav, S.; Ibrar, I.; Bakly, S.; Khanafer, D.; Altaee, A.; Padmanaban, V.C.; Samal, A.K.; Hawari, A.H. Organic fouling in forward osmosis: A comprehensive review. Water 2020, 12, 1505. [Google Scholar] [CrossRef]
- Khanzada, N.K.; Farid, M.U.; Kharraz, J.A.; Choi, J.; Tang, C.Y.; Nghiem, L.D.; Jang, A.; An, A.K. Removal of organic micropollutants using advanced membrane-based water and wastewater treatment: A review. J. Membr. Sci. 2020, 598, 117672. [Google Scholar] [CrossRef]
- Tang, C.Y.; Chong, T.H.; Fane, A.G. Colloidal interactions and fouling of NF and RO membranes: A review. Adv. Colloid Interface Sci. 2011, 164, 126–143. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Nagaraja, N.; Skillman, L.; Li, D.; Ho, G. Comparison of polysaccharide fouling in forward osmosis and reverse osmosis separations. Desalination 2017, 402, 174–184. [Google Scholar] [CrossRef]
- Xiao, F.; Xiao, P.; Zhang, W.J.; Wang, D.S. Identification of key factors affecting the organic fouling on low-pressure ultrafiltration membranes. J. Membr. Sci. 2013, 447, 144–152. [Google Scholar] [CrossRef]
- Ly, Q.V.; Hu, Y.; Li, J.; Cho, J.; Hur, J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. Environ. Int. 2019, 129, 164–184. [Google Scholar] [CrossRef]
- Ricceri, F.; Giagnorio, M.; Zodrow, K.R.; Tiraferri, A. Organic fouling in forward osmosis: Governing factors and a direct comparison with membrane filtration driven by hydraulic pressure. J. Membr. Sci. 2021, 619, 118759. [Google Scholar] [CrossRef]
- She, Q.; Tang, C.Y.; Wang, Y.N.; Zhang, Z. The role of hydrodynamic conditions and solution chemistry on protein fouling during ultrafiltration. Desalination 2009, 249, 1079–1087. [Google Scholar] [CrossRef]
- Al-Amoudi, A.S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review. Desalination 2010, 259, 1–10. [Google Scholar] [CrossRef]
- Van Geluwe, S.; Braeken, L.; Van der Bruggen, B. Ozone oxidation for the alleviation of membrane fouling by natural organic matter: A review. Water Res. 2011, 45, 3551–3570. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Wang, X.; Huang, X.; Waite, T.D.; Wen, X. Combined effect of membrane and foulant hydrophobicity and surface charge on adsorptive fouling during microfiltration. J. Membr. Sci. 2011, 373, 140–151. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, K.; Chen, K.; Xue, Y.; Liang, J.; Cai, Y. Mitigation of organic fouling of ultrafiltration membrane by high-temperature crayfish shell biochar: Performance and mechanisms. Sci. Total Environ. 2022, 820, 153183. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Li, Q.; Cheng, C.; Shen, H.; Zhang, Z.; Zhang, Z.; Wang, H. Removal of refractory organics in wastewater by coagulation/flocculation with green chlorine-free coagulants. Sci. Total Environ. 2021, 787, 147654. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Wang, Z.; Wang, Q.; Jia, J.; Hao, X.; Gao, S.; Cui, F. Integrated process for membrane fouling mitigation and organic pollutants removal using copper oxide modified ceramic hollow fiber membrane with in-situ peroxymonosulfate activation. Chem. Eng. J. 2020, 396, 125289. [Google Scholar] [CrossRef]
- Sutrisna, P.D.; Kurnia, K.A.; Siagian, U.W.; Ismadji, S.; Wenten, I.G. Membrane fouling and fouling mitigation in oil–water separation: A review. J. Environ. Chem. Eng. 2022, 10, 107532. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Role of coagulation/flocculation as a pretreatment option to reduce colloidal/bio-colloidal fouling in tertiary filtration of textile wastewater: A review and future outlooks. Sec. Water Wastewater Manag. 2023, 11, 1142227. [Google Scholar] [CrossRef]
- Teng, J.; Chen, Y.; Ma, G.; Hong, H.; Sun, T.; Liao, B.Q.; Lin, H. Membrane fouling by alginate in polyaluminum chloride (PACl) coagulation/microfiltration process: Molecular insights. Sep. Purif. Technol. 2020, 236, 116294. [Google Scholar] [CrossRef]
- Zhao, C.; Zhou, J.; Yan, Y.; Yang, L.; Xing, G.; Li, H.; Wu, P.; Wang, M.; Zheng, H. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci. Total Environ. 2021, 765, 142795. [Google Scholar] [CrossRef]
- Du, P.; Li, X.; Yang, Y.; Su, Z.; Li, H.; Wang, N.; Guo, T.; Zhang, T.; Zhou, Z. Optimized coagulation pretreatment alleviates ultrafiltration membrane fouling: The role of floc properties and slow-mixing speed on mechanisms of chitosan-assisted coagulation. J. Environ. Sci. 2019, 82, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Gao, B.; Huang, X.; Bu, F.; Yue, Q.; Li, R.; Jin, B. Effect of the dosage ratio and the viscosity of PAC/PDMDAAC on coagulation performance and membrane fouling in a hybrid coagulation-ultrafiltration process. Chemosphere 2017, 173, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and chemical cleaning of microfiltration membranes: A mini-review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef]
- Ladewig, B.; Al-Shaeli, M.N. Fundamentals of Membrane Bioreactors; Springer Transactions in Civil and Environmental Engineering: Singapore, 2017; pp. 1238–1250. [Google Scholar]
- Aktij, S.A.; Taghipour, A.; Rahimpour, A.; Mollahosseini, A.; Tiraferri, A. A critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics 2020, 108, 106228. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.C.; Lee, D.J.; Huang, C. Membrane fouling mitigation: Membrane cleaning. Sep. Sci. Technol. 2010, 45, 858–872. [Google Scholar] [CrossRef]
- Xiao, T.; Zhu, Z.; Li, L.; Shi, J.; Li, Z.; Zuo, X. Membrane fouling and cleaning strategies in microfiltration/ultrafiltration and dynamic membrane. Sep. Purif. Technol. 2023, 123977. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, Y.; Chu, H.; Jiang, S.; Yu, Z.; Wang, M.; Zhou, X.; Zhao, J. A uniform shearing vibration membrane system reducing membrane fouling in algae harvesting. J. Clean. Prod. 2018, 196, 1026–1033. [Google Scholar] [CrossRef]
- Men, Y.; Li, Z.; Zhu, L.; Wang, X.; Cheng, S.; Lyu, Y. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies. Sci. Total Environ. 2023, 869, 161775. [Google Scholar] [CrossRef]
- Alnajjar, H.; Tabatabai, A.; Alpatova, A.; Leiknes, T.; Ghaffour, N. Organic fouling control in reverse osmosis (RO) by effective membrane cleaning using saturated CO2 solution. Sep. Purif. Technol. 2021, 264, 118410. [Google Scholar] [CrossRef]
- Wang, C.; Ding, M.; Ng, T.C.; Ng, H.Y. Mechanistic insights into simultaneous reversible and irreversible membrane fouling control in a vibrating anaerobic membrane bioreactor for sustainable municipal wastewater treatment. Chem. Eng. J. 2023, 466, 143226. [Google Scholar] [CrossRef]
- Ruigómez, I.; González, E.; Rodríguez-Gómez, L.; Vera, L. Fouling control strategies for direct membrane ultrafiltration: Physical cleanings assisted by membrane rotational movement. Chem. Eng. J. 2022, 436, 135161. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Y.; Mao, Z.; Tan, W.S.; Tan, Y.Z.; Chew, J.W.; Chong, T.H.; Fane, A.G. Spacer vibration for fouling control of submerged flat sheet membranes. Sep. Purif. Technol. 2019, 210, 719–728. [Google Scholar] [CrossRef]
- Kim, S.H.; Min, C.S. Fouling reduction using the resonance vibration in membrane separation of whole milk. J. Ind. Eng. Chem. 2019, 75, 123–129. [Google Scholar] [CrossRef]
- Gupta, S.; Gomaa, H.; Ray, M.B. Fouling control in a submerged membrane reactor: Aeration vs membrane oscillations. Chem. Eng. J. 2022, 432, 134399. [Google Scholar] [CrossRef]
- Kola, A.; Ye, Y.; Ho, A.; Le-Clech, P.; Chen, V. Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes. J. Membr. Sci. 2012, 409, 54–65. [Google Scholar] [CrossRef]
- Porcelli, N.; Judd, S. Chemical cleaning of potable water membranes: A review. Sep. Purif. Technol. 2010, 71, 137–143. [Google Scholar] [CrossRef]
- Naji, O.; Al-juboori, R.A.; Khan, A.; Yadav, S.; Altaee, A.; Alpatova, A.; Soukane, S.; Ghaffour, N. Ultrasound-assisted membrane technologies for fouling control and performance improvement: A review. J. Water Process Eng. 2021, 43, 102268. [Google Scholar] [CrossRef]
- Camara, H.W.; Doan, H.; Lohi, A. In-situ ultrasound-assisted control of polymeric membrane fouling. Ultrasonics 2020, 108, 106206. [Google Scholar] [CrossRef]
- Ehsani, M.; Zhu, N.; Doan, H.; Lohi, A.; Abdelrasoul, A. In situ investigation on ultrasound (US)-generated bubbles’ dynamics for membrane fouling control applications. J. Water Process Eng. 2022, 48, 102878. [Google Scholar] [CrossRef]
- Kuzmenko, D.; Arkhangelsky, E.; Belfer, S.; Freger, V.; Gitis, V. Chemical cleaning of UF membranes fouled by BSA. Desalination 2005, 179, 323–333. [Google Scholar] [CrossRef]
- Koo, C.C.; Wong, K.H.; Chong, W.C.; Thiam, H.S. Chemical cleaning of nanofiltration membranes fouled by organic matters. J. Eng. Sci. Technol. 2016, 11, 987–1000. [Google Scholar]
- Mo, Y.; Chen, J.; Xue, W.; Huang, X. Chemical cleaning of nanofiltration membrane filtrating the effluent from a membrane bioreactor. Sep. Purif. Technol. 2010, 75, 407–414. [Google Scholar] [CrossRef]
- Racar, M.; Dolar, D.; Košutić, K. Chemical cleaning of flat sheet ultrafiltration membranes fouled by effluent organic matter. Sep. Purif. Technol. 2017, 188, 140–146. [Google Scholar] [CrossRef]
- Li, Q.; Elimelech, M. Organic fouling and chemical cleaning of nanofiltration membranes: Measurements and mechanisms. Environ. Sci. Technol. 2004, 38, 4683–4693. [Google Scholar] [CrossRef]
- Meng, Y.; Zhong, Q.; Liu, Y.; Yan, Z.; Liang, Y.; Chang, H.; Liang, H.; Vidic, R.D. Evaluating membrane cleaning for organic fouling in direct contact membrane distillation. J. Clean. Prod. 2023, 410, 137319. [Google Scholar] [CrossRef]
- Ang, W.S.; Lee, S.; Elimelech, M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. J. Membr. Sci. 2006, 272, 198–210. [Google Scholar] [CrossRef]
- Park, S.; Son, M.; Shim, J.; Jeong, K.; Cho, K.H. Physically-assisted removal of organic fouling by osmotic backwashing coupled with chemical cleaning. J. Clean. Prod. 2022, 378, 134490. [Google Scholar] [CrossRef]
- Lee, J.; Zhan, M.; Kim, Y.; Hong, S. Comparison of different cleaning strategies on fouling mitigation in hollow fiber nanofiltration membranes for river water treatment. J. Clean. Prod. 2022, 380, 134764. [Google Scholar] [CrossRef]
- Chung, M.M.; Bao, Y.; Domingo, J.A.; Huang, J.Y. Enhancing cleaning of microfiltration membranes fouled by food oily wastewater using microbubbles. Food Bioprod. Process. 2023, 138, 53–59. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Yan, Z.; Li, S.; Xu, M.; Wang, C.; Li, Y. Improving the hydrophilicity and antifouling performance of PVDF membranes via PEI amination and further poly (methyl vinyl ether-alt-maleic anhydride) modification. React. Funct. Polym. 2023, 189, 105610. [Google Scholar] [CrossRef]
- Bae, T.H.; Tak, T.M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 249, 1–8. [Google Scholar] [CrossRef]
- Desa, A.L.; Hairom, N.H.; Sidik, D.A.; Misdan, N.; Yusof, N.; Ahmad, M.K.; Mohammad, A.W. A comparative study of ZnO-PVP and ZnO-PEG nanoparticles activity in membrane photocatalytic reactor (MPR) for industrial dye wastewater treatment under different membranes. J. Environ. Chem. Eng. 2019, 7, 103143. [Google Scholar] [CrossRef]
- Kim, T.; Lee, Y.; Kim, E.; Kim, K. Fouling-resistant surface modification of forward osmosis membranes using MoS2-Ag nanofillers. Surf. Interfaces 2023, 38, 102844. [Google Scholar] [CrossRef]
- Zabihi, Z.; Homayoonfal, M.; Davar, F. Application of UV irradiation enhanced by CuS photosensitive nanoparticles to mitigate polysulfone membrane fouling. J. Photochem. Photobiol. A Chem. 2020, 390, 112304. [Google Scholar] [CrossRef]
- Kamarudin, D.; Hashim, N.A.; Ong, B.H.; Faried, M.; Suga, K.; Umakoshi, H.; Mahari, W.A. Alternative fouling analysis of PVDF UF membrane for surface water treatment: The credibility of silver nanoparticles. J. Membr. Sci. 2022, 661, 120865. [Google Scholar] [CrossRef]
- Zhang, A.; Yang, Z.; Pan, G.; Xu, J.; Yan, H.; Liu, Y. In situ formation of copper nanoparticles in carboxylated chitosan layer: Preparation and characterization of surface modified TFC membrane with protein fouling resistance and long-lasting antibacterial properties. Sep. Purif. Technol. 2017, 176, 164–172. [Google Scholar] [CrossRef]
- Ayyaru, S.; Ahn, Y.H. Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES–STiO2) ultrafiltration membranes for fouling mitigation. J. Ind. Eng. Chem. 2018, 67, 199–209. [Google Scholar] [CrossRef]
- Akbari, A.; Yegani, R.; Pourabbas, B.; Behboudi, A. Fabrication and study of fouling characteristics of HDPE/PEG grafted silica nanoparticles composite membrane for filtration of Humic acid. Chem. Eng. Res. Des. 2016, 109, 282–296. [Google Scholar] [CrossRef]
- Safarpour, M.; Najjarizad-Peyvasti, S.; Khataee, A.; Karimi, A. Polyethersulfone ultrafiltration membranes incorporated with CeO2/GO nanocomposite for enhanced fouling resistance and dye separation. J. Environ. Chem. Eng. 2022, 10, 107533. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, T.; Kim, B.; Choi, S.; Kim, K. Synthesis of TiO2/MoSx/Ag nanocomposites via photodeposition for enhanced photocatalysis and membrane fouling mitigation. J. Environ. Chem. Eng. 2023, 11, 109266. [Google Scholar] [CrossRef]
- Dehghankar, M.; HMTShirazi, R.; Mohammadi, T.; Tofighy, M.A. Synthesis and Modification Methods of Metal-organic Frameworks and Their Application in Modification of Polymeric Ultrafiltration Membranes: A Review. J. Environ. Chem. Eng. 2023, 11, 109954. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, M.; Wang, D.; Zhou, Y.; Sun, X.; Jiang, S.; Li, M.; Xiao, C.; Zhang, D.; Zhang, L. Surface modification of PVDF membrane by CNC/Cu-MOF-74 for enhancing antifouling property. Sep. Purif. Technol. 2023, 306, 122599. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, D. Post-synthetic modification of metal-organic framework-based membranes for enhanced molecular separations. Coord. Chem. Rev. 2023, 491, 215259. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Gebru, K.A.; Das, C. Removal of bovine serum albumin from wastewater using fouling resistant ultrafiltration membranes based on the blends of cellulose acetate, and PVP-TiO2 nanoparticles. J. Environ. Manag. 2017, 200, 283–294. [Google Scholar] [CrossRef]
- Wardani, A.K.; Ariono, D.; Subagjo, S.; Wenten, I.G. Fouling tendency of PDA/PVP surface modified PP membrane. Surf. Interfaces 2020, 19, 100464. [Google Scholar] [CrossRef]
- Zhang, Y.; Wan, Y.; Pan, G.; Yan, H.; Yao, X.; Shi, H.; Tang, Y.; Wei, X.; Liu, Y. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling. Appl. Surf. Sci. 2018, 433, 139–148. [Google Scholar] [CrossRef]
- Yu, J.; He, Y.; Wang, Y.; Zhang, L.; Hou, R. Graphene oxide nanofiltration membrane for efficient dyes separation by hexagonal boron nitride nanosheets intercalation and polyethyleneimine surface modification. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130367. [Google Scholar] [CrossRef]
- Dai, J.; Wang, S.; Chen, P.; Tong, X.; Zhao, X.; Chen, C.; Zhou, H. Fabrication of ultrafiltration membranes with improved antifouling and antibacterial capability by surface modification of quaternary ammonium. Eur. Polym. J. 2023, 193, 112083. [Google Scholar] [CrossRef]
- da Silva, A.F.; da Silva, J.; Vicente, R.; Ambrosi, A.; Zin, G.; Di Luccio, M.; de Oliveira, J.V. Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. J. Water Process Eng. 2023, 53, 103743. [Google Scholar] [CrossRef]
- Ren, J.; Xia, W.; Feng, X.; Zhao, Y. Surface modification of PVDF membrane by sulfonated chitosan for enhanced anti-fouling property via PDA coating layer. Mater. Lett. 2022, 307, 130981. [Google Scholar] [CrossRef]
- Zhou, S.; Qu, Y.; Yang, B.; Zhang, Q.; Wang, J.; Lin, Y.; Chen, Z.; Lu, G.P. Bio-based tannic acid as a raw material for membrane surface modification. Desalination 2023, 555, 116535. [Google Scholar] [CrossRef]
- Shahkaramipour, N.; Tran, T.N.; Ramanan, S.; Lin, H. Membranes with surface-enhanced antifouling properties for water purification. Membranes 2017, 7, 13. [Google Scholar] [CrossRef]
- Balogun, H.A.; Sulaiman, R.; Marzouk, S.S.; Giwa, A.; Hasan, S.W. 3D printing and surface imprinting technologies for water treatment: A review. J. Water Process Eng. 2019, 31, 100786. [Google Scholar] [CrossRef]
- Aslam, M.; Ahmad, R.; Kim, J. Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment. Sep. Purif. Technol. 2018, 206, 297–315. [Google Scholar] [CrossRef]
- Saini, B.; Sinha, M.K.; Dash, S.K. Mitigation of HA, BSA and oil/water emulsion fouling of PVDF Ultrafiltration Membranes by SiO2-g-PEGMA nanoparticles. J. Water Process Eng. 2019, 30, 100603. [Google Scholar] [CrossRef]
- Kusworo, T.D.; Kumoro, A.C.; Utomo, D.P. Photocatalytic nanohybrid membranes for highly efficient wastewater treatment: A comprehensive review. J. Environ. Manag. 2022, 317, 115357. [Google Scholar] [CrossRef]
- Lyu, Z.; Ng, T.C.; Tran-Duc, T.; Lim, G.J.; Gu, Q.; Zhang, L.; Zhang, Z.; Ding, J.; Phan-Thien, N.; Wang, J.; et al. 3D-printed surface-patterned ceramic membrane with enhanced performance in crossflow filtration. J. Membr. Sci. 2020, 606, 118138. [Google Scholar] [CrossRef]
- Park, S.; Dal Jeong, Y.; Lee, J.H.; Kim, J.; Jeong, K.; Cho, K.H. 3D printed honeycomb-shaped feed channel spacer for membrane fouling mitigation in nanofiltration. J. Membr. Sci. 2021, 620, 118665. [Google Scholar] [CrossRef]
- Ali, S.M.; Kim, Y.; Qamar, A.; Naidu, G.; Phuntsho, S.; Ghaffour, N.; Vrouwenvelder, J.S.; Shon, H.K. Dynamic feed spacer for fouling minimization in forward osmosis process. Desalination 2021, 515, 115198. [Google Scholar] [CrossRef]
- Armbruster, S.; Cheong, O.; Lölsberg, J.; Popovic, S.; Yüce, S.; Wessling, M. Fouling mitigation in tubular membranes by 3D-printed turbulence promoters. J. Membr. Sci. 2018, 554, 156–163. [Google Scholar] [CrossRef]
- Koo, J.W.; Ho, J.S.; An, J.; Zhang, Y.; Chua, C.K.; Chong, T.H. A review on spacers and membranes: Conventional or hybrid additive manufacturing? Water Res. 2021, 188, 116497. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.Y.; Huang, A.; Luo, Y.L.; Hsu, T.Y.; Chen, C.H.; Hwang, K.J.; Ho, C.D.; Tung, K.L. 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal. J. Membr. Sci. 2019, 573, 647–656. [Google Scholar] [CrossRef]
- Abid, H.S.; Johnson, D.J.; Hashaikeh, R.; Hilal, N. A review of efforts to reduce membrane fouling by control of feed spacer characteristics. Desalination 2017, 420, 384–402. [Google Scholar] [CrossRef]
- Yanar, N.; Kallem, P.; Son, M.; Park, H.; Kang, S.; Choi, H. A New era of water treatment technologies: 3D printing for membranes. J. Ind. Eng. Chem. 2020, 91, 1–4. [Google Scholar] [CrossRef]
- Sreedhar, N.; Thomas, N.; Al-Ketan, O.; Rowshan, R.; Hernandez, H.; Al-Rub, R.K.; Arafat, H.A. 3D printed feed spacers based on triply periodic minimal surfaces for flux enhancement and biofouling mitigation in RO and UF. Desalination 2018, 425, 12–21. [Google Scholar] [CrossRef]
- Ng, V.H.; Koo, C.H.; Chong, W.C.; Tey, J.Y. Progress of 3D printed feed spacers for membrane filtration. Mater. Today Proc. 2021, 46, 2070–2077. [Google Scholar] [CrossRef]
- Khan, S.B.; Irfan, S.; Lam, S.S.; Sun, X.; Chen, S. 3D printed nanofiltration membrane technology for waste water distillation. J. Water Process Eng. 2022, 49, 102958. [Google Scholar] [CrossRef]
- Ibrahim, Y.; Hilal, N. The Potentials of 3D-Printed Feed Spacers in Reducing the Environmental Footprint of Membrane Separation Processes. J. Environ. Chem. Eng. 2022, 109249. [Google Scholar] [CrossRef]
- Yusoff, N.H.; Teo, L.R.; Phang, S.J.; Wong, V.L.; Cheah, K.H.; Lim, S.S. Recent advances in polymer-based 3D printing for wastewater treatment application: An overview. Chem. Eng. J. 2022, 429, 132311. [Google Scholar] [CrossRef]
- Heinz, O.; Aghajani, M.; Greenberg, A.R.; Ding, Y. Surface-patterning of polymeric membranes: Fabrication and performance. Curr. Opin. Chem. Eng. 2018, 20, 1–2. [Google Scholar] [CrossRef]
Factors Influencing Organic Fouling | Description | Reference |
---|---|---|
Organic composition and concentration in the feed solution | The properties of organic compounds, such as their size, molecular weight, hydrophobicity/hydrophilicity, charge, and tendency to form aggregates, can influence their fouling behavior. Certain compounds may have a higher affinity for membrane surfaces or be more prone to fouling the membrane pores. | [28,29,32,37] |
Operating conditions | Operating conditions, including transmembrane pressure, crossflow velocity, temperature, and pH, can influence organic fouling. Higher pressures and velocities can help minimize fouling by reducing the deposition of foulants on the membrane surface. Temperature and pH can affect the solubility and aggregation behavior of organic compounds. | [34,35] |
Membrane properties | The material and surface characteristics of the membrane, such as surface charge, hydrophilicity/hydrophobicity, roughness, and pore size, can affect the interaction between the membrane and organic foulants. Surface properties that reduce fouling include hydrophilic surfaces and negatively charged membranes. | [33,35,36] |
Pretreatment wastewater | The effectiveness of pre-treatment processes, such as coagulation, flocculation, or activated carbon adsorption, in removing or reducing organic foulants before they reach the membrane can impact fouling. | [38,39] |
Printing Method | Spacer Design | Spacer Material | Application | Effect | Reference |
---|---|---|---|---|---|
SLS | Honeycomb-shaped spacer standard diamond-shaped spacer | Nylon powder | NF | Thinner organic fouling layer is formed in honeycomb-shaped spacers than in standard spacers | [110] |
SLS | Triply periodic minimal surfaces (TPMS) spacers | PA 2202 (black) thermoplastic material | RO and UF | TPMS-based feed spacers enhanced flux and reduced fouling with sodium alginate solution | [110] |
SLS | TPMS (Gyroid and tCLP) and commercial spacer | Polypropylene | RO | Gyroid spacer exhibited superior fouling mitigation with humic acid solution | [16] |
Polyjet | Sinusoidal spacers | - | RO | Sinusoidal spacers performed better in controlling membrane fouling with NaCl solution | [105] |
Polyjet | Full-contact hexagonal support horizontal & vertical oriented | Polypropylene (PP)-like material | FO | Better flux and antifouling property were obtained by vertical oriented spacer | [111] |
Polyjet | Turbulence promoters or static mixers can | Photosensitive acrylate-based polymer | UF | Kenics mixer improved the flux with humic acid with a photosensitive acrylate-based polymer UF Kenics mixer | [104] |
FDM | Three turbulence promoters with different configurations (circular, diamond, and elliptic) | Polyester elastomer | MF | Elliptic promoter enhanced flux by 30–64%. Adding the turbulence promoter significantly mitigated membrane fouling and enhanced filtration flux | [106] |
DLP | Helical spacers | Liquid Resin Acrylate Monomer BV-007 | UF | Specific permeate flux increased up to 291%. Pressure loss decreased by up to 65% | [106] |
DLP | Turbospacer | - | UF | Turbospacer exhibited lower fouling layer & specific energy consumption than conventional spacers | [106] |
Fouling Control Strategy | Description | References |
---|---|---|
Pretreatment | These methods remove suspended solids, colloidal particles, and microorganisms that contribute to organic fouling. Effective pretreatment reduces the fouling potential by minimizing the presence of foulant precursors and particulate matter in the system. | [5,38,39,40,41] |
Physical Cleaning | Physical cleaning methods involve mechanical actions to physically remove organic fouling. Techniques include backwashing, air scouring, vibration, rotating membranes, and ultrasound | [48,52,55,56,58,64] |
Chemical Cleaning | Chemical cleaning utilizes cleaning agents or solvents to dissolve or dislodge organic foulants. Acidic or alkaline cleaning solutions, detergents, or enzymatic cleaners can be employed based on the nature of the foulants. Chemical cleaning should follow appropriate guidelines, considering material compatibility and safety precautions. It is crucial to select the appropriate cleaning agent for effective removal of organic fouling. | [28,69] |
Surface Modification | Surface modification techniques alter the surface properties of materials to make them less prone to fouling. Strategies include applying hydrophilic or non-stick coatings, surface roughening, or incorporating surface-active agents. These modifications discourage organic foulant adhesion, making cleaning or fouling removal easier. Surface modification methods should be selected based on the specific application and material characteristics. | [7,97,112] |
3D Printing | 3D printing technology allows for the fabrication of complex geometries and customized designs. In the context of fouling control, 3D printing can be utilized to create structures with enhanced fluid dynamics, optimized surface textures, or integrated features that reduce fouling potential. Tailoring the design of components using 3D printing can improve fouling resistance and facilitate easier cleaning. | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisay, E.J.; Al-Tayawi, A.N.; László, Z.; Kertész, S. Recent Advances in Organic Fouling Control and Mitigation Strategies in Membrane Separation Processes: A Review. Sustainability 2023, 15, 13389. https://doi.org/10.3390/su151813389
Sisay EJ, Al-Tayawi AN, László Z, Kertész S. Recent Advances in Organic Fouling Control and Mitigation Strategies in Membrane Separation Processes: A Review. Sustainability. 2023; 15(18):13389. https://doi.org/10.3390/su151813389
Chicago/Turabian StyleSisay, Elias Jigar, Aws N. Al-Tayawi, Zsuzsanna László, and Szabolcs Kertész. 2023. "Recent Advances in Organic Fouling Control and Mitigation Strategies in Membrane Separation Processes: A Review" Sustainability 15, no. 18: 13389. https://doi.org/10.3390/su151813389
APA StyleSisay, E. J., Al-Tayawi, A. N., László, Z., & Kertész, S. (2023). Recent Advances in Organic Fouling Control and Mitigation Strategies in Membrane Separation Processes: A Review. Sustainability, 15(18), 13389. https://doi.org/10.3390/su151813389