Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil
Abstract
:1. Introduction
2. Materials
Study Area
3. Methods
3.1. Surface Runoff
3.2. Soil Electrical Resistivity Surveys
3.2.1. Description of ρ Measurements
3.2.2. Description of ρ–θ Calibration Test
3.3. Statistical Analysis
4. Results and Discussion
4.1. Runoff with Cornell Infiltrometer
4.2. ρ–θ Modeling
4.3. Seasonal Water Content Distribution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Melo, M.C.; Fernandes, L.F.S.; Pissarra, T.C.T.; Valera, C.A.; da Costa, A.M.; Pacheco, F.A.L. The COP27 screened through the lens of global water security. Sci. Total Environ. 2023, 873, 162303. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Felfelani, F.; Satoh, Y.; Boulange, J.; Burek, P.; Gädeke, A.; Gerten, D.; Gosling, S.N.; Grillakis, M.; Gudmundsson, L.; et al. Global terrestrial water storage and drought severity under climate change. Nat. Clim. Chang. 2021, 11, 226–233. [Google Scholar] [CrossRef]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef]
- MEA Millenium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; p. 1597260401.
- Alves, M.A.B.; de Souza, A.P.; de Almeida, F.T.; Hoshide, A.K.; Araújo, H.B.; da Silva, A.F.; de Carvalho, D.F. Effects of Land Use and Cropping on Soil Erosion in Agricultural Frontier Areas in the Cerrado-Amazon Ecotone, Brazil, Using a Rainfall Simulator Experiment. Sustainability 2023, 15, 4954. [Google Scholar] [CrossRef]
- Lense, G.H.E.; Avanzi, J.C.; Parreiras, T.C.; Mincato, R.L. Effects of deforestation on water erosion rates in the Amazon region. Rev. Bras. Cienc. Agrar. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Bassiouni, M.; Manzoni, S.; Vico, G. Optimal plant water use strategies explain soil moisture variability. Adv. Water Resour. 2023, 173, 104405. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, I.; Porporato, A. Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics; Cambridge University Press: Cambridge, UK, 2007; Volume I–VI. [Google Scholar] [CrossRef]
- Jayawickreme, D.H.; Jobbágy, E.G.; Jackson, R.B. Geophysical subsurface imaging for ecological applications. New Phytol. 2014, 201, 1170–1175. [Google Scholar] [CrossRef]
- Kim, J.H.; Fourcaud, T.; Jourdan, C.; Maeght, J.-L.; Mao, Z.; Metayer, J.; Meylan, L.; Pierret, A.; Rapidel, B.; Roupsard, O.; et al. Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes. Geophys. Res. Lett. 2017, 44, 4897–4907. [Google Scholar] [CrossRef]
- Yu, B.; Liu, G.; Liu, Q.; Huang, C.; Li, H.; Zhao, Z. Seasonal variation of deep soil moisture under different land uses on the semi-arid Loess Plateau of China. J. Soils Sediments 2019, 19, 1179–1189. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Milazzo, F.; Francksen, R.M.; Zavattaro, L.; Abdalla, M.; Hejduk, S.; Enri, S.R.; Pittarello, M.; Price, P.N.; Schils, R.L.; Smith, P.; et al. The role of grassland for erosion and flood mitigation in Europe: A meta-analysis. Agric. Ecosyst. Environ. 2023, 348, 108443. [Google Scholar] [CrossRef]
- Sala, O.; Paruelo, J. Ecosystem services in grasslands. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G., Ed.; Island Press: Washington, DC, USA, 1997; pp. 237–252. [Google Scholar]
- Leul, Y.; Assen, M.; Damene, S.; Legass, A. Effects of land use types on soil quality dynamics in a tropical sub-humid ecosystem, western Ethiopia. Ecol. Indic. 2023, 147, 110024. [Google Scholar] [CrossRef]
- Uezu, A.; Sarcinelli, O.; Chiodi, R.; Jenkins, C.; Martins, C. Atlas Dos Serviços Ambientais Do Sistema Cantareira, 1st ed.; IPÊ: São Paulo, Brazil, 2017; Volume 1, ISSN 9788579541131. [Google Scholar]
- Domingues, L.M.; da Rocha, H.R. Serial droughts and loss of hydrologic resilience in a subtropical basin: The case of water inflow into the Cantareira reservoir system in Brazil during 2013–2021. J. Hydrol. Reg. Stud. 2022, 44, 101235. [Google Scholar] [CrossRef]
- Mamedes, I.; Guerra, A.; Rodrigues, D.B.; Garcia, L.C.; Godoi, R.d.F.; Oliveira, P.T.S. Brazilian payment for environmental services programs emphasize water-related services. Int. Soil Water Conserv. Res. 2023, 11, 276–289. [Google Scholar] [CrossRef]
- Ruggiero, P.G.; Metzger, J.P.; Tambosi, L.R.; Nichols, E. Payment for ecosystem services programs in the Brazilian Atlantic Forest: Effective but not enough. Land Use Policy 2018, 82, 283–291. [Google Scholar] [CrossRef]
- Taffarello, D.; Srinivasan, R.; Mohor, G.S.; Guimarães, J.L.B.; Calijuri, M.D.C.; Mendiondo, E.M. Modeling freshwater quality scenarios with ecosystem-based adaptation in the headwaters of the Cantareira system, Brazil. Hydrol. Earth Syst. Sci. 2018, 22, 4699–4723. [Google Scholar] [CrossRef]
- Luz, C.C.d.S.; de Almeida, W.S.; de Souza, A.P.; Schultz, N.; Anache, J.A.A.; de Carvalho, D.F. Simulated rainfall in Brazil: An alternative for assesment of soil surface processes and an opportunity for technological development. Int. Soil Water Conserv. Res. 2023; in press. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef]
- Garcia-Montiel, D.C.; Coe, M.T.; Cruz, M.P.; Ferreira, J.N.; da Silva, E.M.; Davidson, E.A. Estimating Seasonal Changes in Volumetric Soil Water Content at Landscape Scales in a Savanna Ecosystem Using Two-Dimensional Resistivity Profiling. Earth Interact. 2008, 12, 1–25. [Google Scholar] [CrossRef]
- Grubbs, R.A.; Straw, C.M.; Bowling, W.J.; Radcliffe, D.E.; Taylor, Z.; Henry, G.M. Predicting spatial structure of soil physical and chemical properties of golf course fairways using an apparent electrical conductivity sensor. Precis. Agric. 2019, 20, 496–519. [Google Scholar] [CrossRef]
- Jeřábek, J.; Zumr, D.; Dostál, T. Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance. Soil Tillage Res. 2017, 174, 231–240. [Google Scholar] [CrossRef]
- Roodposhti, H.R.; Hafizi, M.K.; Kermani, M.R.S.; Nik, M.R.G. Electrical resistivity method for water content and compaction evaluation, a laboratory test on construction material. J. Appl. Geophys. 2019, 168, 49–58. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, X.; Chen, X.; Zhang, Z.; Ling, M. Water infiltration underneath single-ring permeameters and hydraulic conductivity determination. J. Hydrol. 2011, 398, 135–143. [Google Scholar] [CrossRef]
- van Es, H.M.; Schindelbeck, R. Field Procedures and Data Analysis for the Cornell Sprinkle Infiltrometer; Cornell University: Ithaca, NY, USA, 2003. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Santos, H.G. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Staff Keys to Soil Taxonomy, 12th ed.; USDA: Washington, DC, USA, 2014; Volume 11, ISBN 0926487221.
- Gee, G.W.; Or, D.; Dane, J.H.; Topp, C. Particle-Size Analysis. In Methods of Soil Analysis, Part 4—Physical Methods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 255–293. ISBN 9780891188933. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. Bulk density and linear extensibility. In Methods of Soil Analysis, Part 4—Physical Methods; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; pp. 201–228. ISBN 2002109389. [Google Scholar]
- Reynolds, W.; Drury, C.; Yang, X.; Tan, C. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma 2008, 146, 466–474. [Google Scholar] [CrossRef]
- Klute, A. Laboratory Measurement of Hydraulic Conductivity of Saturated Soil. In Methods of Soil Analysis, Part 1—Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy, Inc.: Madison, WI, USA, 1965; pp. 210–221. [Google Scholar] [CrossRef]
- Santana, M.L.T.; dos Santos, F.F.; de Carvalho, K.M.; Peixoto, D.S.; Uezu, A.; Avanzi, J.C.; Serafim, M.E.; Nunes, M.R.; van Es, H.M.; Curi, N.; et al. Interactions between land use and soil type drive soil functions, highlighting water recharge potential, in the Cantareira System, Southeast of Brazil. Sci. Total Environ. 2023, 903, 166125. [Google Scholar] [CrossRef] [PubMed]
- INMET. Banco de Dados Meteorológicos Para Ensino e Pesquisa. Available online: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep (accessed on 11 December 2021).
- Melo, L.B.B.; Benevenute, P.A.N.; Barbosa, S.M.; Chiarini, T.P.A.; Oliveira, G.C.; Lima, J.M.; Vanella, D.; Consoli, S.; Ferreira, E.A.; Silva, B.M. Spatial and temporal electrical resistivity dynamics in a dense Ultisol under deep tillage and different citrus root-stocks. Soil Tillage Res. 2023, 228, 105629. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.r-project.org (accessed on 15 November 2022).
- Chittolina, M.; da Rocha, H.R.; Domingues, L.M.; Lobo, G.d.A. Hydrological response of a headwater catchment in Southeast Brazil—Threshold patterns of stormflow response. Hydrol. Process. 2023, 37, e14879. [Google Scholar] [CrossRef]
- Pinto, L.C.; de Mello, C.R.; Norton, L.D.; Silva, S.H.G.; Taveira, L.R.S.; Curi, N. Land-use effect on hydropedology in a mountainous region of Southeastern Brazil. Ciência Agrotecnol. 2017, 41, 413–427. [Google Scholar] [CrossRef]
- de Menezes, M.D.; Silva, S.H.G.; de Mello, C.R.; Owens, P.R.; Curi, N. Spatial prediction of soil properties in two contrasting physiographic regions in Brazil. Sci. Agric. 2016, 73, 274–285. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Leite, M.B.; Mattos, T.; Nearing, M.A.; Scott, R.L.; Xavier, R.d.O.; Matos, D.M.d.S.; Wendland, E. Groundwater recharge decrease with increased vegetation density in the Brazilian cerrado. Ecohydrology 2017, 10, e1759. [Google Scholar] [CrossRef]
- Lense, G.H.E.; Lämmle, L.; Ayer, J.E.B.; Lama, G.F.C.; Rubira, F.G.; Mincato, R.L. Modeling of Soil Loss by Water Erosion and Its Impacts on the Cantareira System, Brazil. Water 2023, 15, 1490. [Google Scholar] [CrossRef]
- Cosenza, P.; Marmet, E.; Rejiba, F.; Cui, Y.J.; Tabbagh, A.; Charlery, Y. Correlations between geotechnical and electrical data: A case study at Garchy in France. J. Appl. Geophys. 2006, 60, 165–178. [Google Scholar] [CrossRef]
- McCarter, W.J. The electrical resistivity characteristics of compacted clays. Geotechnique 1984, 34, 263–267. [Google Scholar] [CrossRef]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- de Melo, L.B.B.; Silva, B.M.; Peixoto, D.S.; Chiarini, T.P.A.; de Oliveira, G.C.; Curi, N. Effect of compaction on the relationship between electrical resistivity and soil water content in Oxisol. Soil Tillage Res. 2021, 208, 104876. [Google Scholar] [CrossRef]
- Alvarenga, L.; de Mello, C.; Colombo, A.; Cuartas, L.; Bowling, L. Assessment of land cover change on the hydrology of a Brazilian headwater watershed using the Distributed Hydrology-Soil-Vegetation Model. CATENA 2016, 143, 7–17. [Google Scholar] [CrossRef]
- Bispo, D.F.A.; Guimarães, D.V.; Marques, J.J.G.d.S.e.M.; Beniaich, A.; Acuña-Guzman, S.F.; Silva, M.L.N.; Curi, N. Soil Organic Carbon as Response to Reforestation Age and Land Use Changes: A Qualitative Approach to Ecosystem Services. Sustainability 2023, 15, 6863. [Google Scholar] [CrossRef]
- Sone, J.S.; de Oliveira, P.T.S.; Zamboni, P.A.P.; Vieira, N.O.M.; Carvalho, G.A.; Macedo, M.C.M.; de Araujo, A.R.; Montagner, D.B.; Sobrinho, T.A. Effects of Long-Term Crop-Livestock-Forestry Systems on Soil Erosion and Water Infiltration in a Brazilian Cerrado Site. Sustainability 2019, 11, 5339. [Google Scholar] [CrossRef]
- Rodrigues, A.F.; de Mello, C.R.; Terra, M.d.C.N.S.; Beskow, S. Water balance of an Atlantic forest remnant under a prolonged drought period. Ciência Agrotecnol. 2021, 45, e008421. [Google Scholar] [CrossRef]
- O’Connor, J.; Santos, M.J.; Rebel, K.T.; Dekker, S.C. The influence of water table depth on evapotranspiration in the Amazon arc of deforestation. Hydrol. Earth Syst. Sci. 2019, 23, 3917–3931. [Google Scholar] [CrossRef]
- Bruijnzeel, L. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Salemi, L.F.; Groppo, J.D.; Trevisan, R.; de Moraes, J.M.; Ferraz, S.F.d.B.; Villani, J.P.; Duarte-Neto, P.J.; Martinelli, L.A. Land-use change in the Atlantic rainforest region: Consequences for the hydrology of small catchments. J. Hydrol. 2013, 499, 100–109. [Google Scholar] [CrossRef]
- Centeno, L.N.; Hu, W.; Timm, L.C.; She, D.; Ferreira, A.d.S.; Barros, W.S.; Beskow, S.; Caldeira, T.L. Dominant Control of Macroporosity on Saturated Soil Hydraulic Conductivity at Multiple Scales and Locations Revealed by Wavelet Analyses. J. Soil Sci. Plant Nutr. 2020, 20, 1686–1702. [Google Scholar] [CrossRef]
- Hakamada, R.E.; Hubbard, R.M.; Stape, J.L.; Lima, W.d.P.; Moreira, G.G.; Ferraz, S.F.d.B. Stocking effects on seasonal tree transpiration and ecosystem water balance in a fast-growing Eucalyptus plantation in Brazil. For. Ecol. Manag. 2020, 466, 118149. [Google Scholar] [CrossRef]
Soil/City | Land Use | Depth | Clay | Silt | Sand | BD | KS | TP | MAC | MIP |
---|---|---|---|---|---|---|---|---|---|---|
cm | -----------------%--------------- | Mg m−3 | cm h−1 | ------------m3 m−3------------ | ||||||
Typic Hapludult/ | NF | 0–5 | 38 | 22 | 40 | 1.14 | 117.21 | 0.51 | 0.15 | 0.36 |
Piracaia/ | 30–35 | 45 | 18 | 37 | 1.59 | 54.53 | 0.48 | 0.07 | 0.41 | |
E | 0–5 | 33 | 18 | 49 | 1.26 | 6.13 | 0.50 | 0.17 | 0.33 | |
30–35 | 56 | 15 | 29 | 1.39 | 34.87 | 0.48 | 0.14 | 0.34 | ||
RG | 0–5 | 23 | 16 | 61 | 1.32 | 14.60 | 0.51 | 0.15 | 0.36 | |
30–35 | 40 | 13 | 47 | 1.58 | 2.01 | 0.47 | 0.10 | 0.37 | ||
EG | 0–5 | 26 | 12 | 62 | 1.44 | 1.80 | 0.51 | 0.12 | 0.39 | |
30–35 | 28 | 15 | 57 | 1.52 | 0.74 | 0.45 | 0.08 | 0.37 | ||
Typic Dystrudept/ | NF | 0–5 | 36 | 15 | 49 | 0.88 | 115.90 | 0.46 | 0.18 | 0.29 |
Nazaré Paulista | 30–35 | 415 | 42 | 19 | 39 | 15.58 | 0.56 | 0.16 | 0.40 | |
E | 0–5 | 33 | 14 | 53 | 1.19 | 36.39 | 0.50 | 0.19 | 0.31 | |
30–35 | 43 | 12 | 45 | 1.48 | 2.97 | 0.46 | 0.11 | 0.35 | ||
RG | 0–5 | 40 | 17 | 43 | 1.31 | 19.45 | 0.48 | 0.09 | 0.39 | |
30–35 | 46 | 14 | 40 | 1.40 | 8.52 | 0.51 | 0.14 | 0.37 | ||
EG | 0–5 | 34 | 19 | 47 | 1.45 | 2.61 | 0.46 | 0.09 | 0.37 | |
30–35 | 42 | 16 | 42 | 1.52 | 4.18 | 0.47 | 0.13 | 0.35 | ||
Typic Usthortent/ | NF | 0–5 | 55 | 12 | 33 | 0.67 | 221.81 | 0.62 | 0.24 | 0.37 |
Joanópolis | 30–35 | 29 | 20 | 51 | 1.11 | 150.54 | 0.56 | 0.20 | 0.35 | |
E | 0–5 | 38 | 23 | 39 | 0.77 | 4.06 | 0.65 | 0.18 | 0.46 | |
30–35 | 45 | 32 | 23 | 1.20 | 234.76 | 0.53 | 0.19 | 0.35 | ||
RG | 0–5 | 43 | 16 | 41 | 0.87 | 44.47 | 0.66 | 0.24 | 0.41 | |
30–35 | 44 | 22 | 34 | 1.24 | 82.09 | 0.64 | 0.29 | 0.34 | ||
EG | 0–5 | 55 | 13 | 32 | 0.96 | 7.33 | 0.67 | 0.19 | 0.48 | |
30–35 | 27 | 17 | 56 | 1.27 | 95.07 | 0.52 | 0.24 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, M.L.T.; Faria, V.L.d.; Barbosa, S.M.; Serafim, M.E.; Uezu, A.; Silva, B.M.; Avanzi, J.C. Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil. Sustainability 2023, 15, 13395. https://doi.org/10.3390/su151813395
Santana MLT, Faria VLd, Barbosa SM, Serafim ME, Uezu A, Silva BM, Avanzi JC. Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil. Sustainability. 2023; 15(18):13395. https://doi.org/10.3390/su151813395
Chicago/Turabian StyleSantana, Monna Lysa Teixeira, Vanêssa Lopes de Faria, Samara Martins Barbosa, Milson Evaldo Serafim, Alexandre Uezu, Bruno Montoani Silva, and Junior Cesar Avanzi. 2023. "Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil" Sustainability 15, no. 18: 13395. https://doi.org/10.3390/su151813395
APA StyleSantana, M. L. T., Faria, V. L. d., Barbosa, S. M., Serafim, M. E., Uezu, A., Silva, B. M., & Avanzi, J. C. (2023). Impacts of Land Use Changes on Soil Functions and Water Security: Insights from a Three-Year-Long Study in the Cantareira System, Southeast of Brazil. Sustainability, 15(18), 13395. https://doi.org/10.3390/su151813395