Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health
Abstract
:1. Introduction
2. Ai, DL, and Sustainable Development Goals (SDGs)
3. Ai and DL in Renewable Energy
4. AI and DL in Environmental Health
5. AI and DL in Smart Building Energy Management
6. Challenges and Future Directions
6.1. Explainability and Transparency of AI and DL Models
6.2. Scalability and High Dimensionality of Data
6.3. Integration of AI and DL with Next-Generation Wireless Networks
6.4. Ethics and Privacy Concerns
6.5. Energy Efficiency in AI and DL Models
6.6. Environmental Impact of AI Systems
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for modern deep learning research. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13693–13696. [Google Scholar]
- Yu, L.; Qin, S.; Zhang, M.; Shen, C.; Jiang, T.; Guan, X. A review of deep reinforcement learning for smart building energy management. IEEE Internet Things J. 2021, 8, 12046–12063. [Google Scholar] [CrossRef]
- Chen, Z.; He, Y. Artificial Intelligence and Environmental Protection of Buildings. Probl. Ekorozwoju/Probl. Sustain. Dev. 2023, 18, 254–262. [Google Scholar] [CrossRef]
- Pierdicca, R.; Paolanti, M.; Felicetti, A.; Piccinini, F.; Zingaretti, P. Automatic faults detection of photovoltaic farms: SolAIr, a deep learning-based system for thermal images. Energies 2020, 13, 6496. [Google Scholar] [CrossRef]
- Romero, H.F.M.; Hernández-Callejo, L.; Rebollo, M.Á.G.; Cardeñoso-Payo, V.; Gómez, V.A.; Bello, H.J.; Moyo, R.T.; Aragonés, J.I.M. Synthetic Dataset of Electroluminescence Images of Photovoltaic Cells by Deep Convolutional Generative Adversarial Networks. Sustainability 2023, 15, 7175. [Google Scholar] [CrossRef]
- Noh, S.K. Recycled clothing classification system using intelligent IoT and deep learning with AlexNet. Comput. Intell. Neurosci. 2021, 2021, 5544784. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Lamba, B.Y.; Jain, S.; Bolshev, V.; Budnikov, D.; Panchenko, V.; Smirnov, A. Biodiesel Production from Jatropha: A Computational Approach by Means of Artificial Intelligence and Genetic Algorithm. Sustainability 2023, 15, 9785. [Google Scholar] [CrossRef]
- Ben Othman, A.; Ouni, A.; Besbes, M. Deep learning-based estimation of PV power plant potential under climate change: A case study of El Akarit, Tunisia. Energy Sustain. Soc. 2020, 10, 34. [Google Scholar] [CrossRef]
- Mookkaiah, S.S.; Thangavelu, G.; Hebbar, R.; Haldar, N.; Singh, H. Design and development of smart Internet of Things–based solid waste management system using computer vision. Environ. Sci. Pollut. Res. 2022, 29, 64871–64885. [Google Scholar] [CrossRef]
- Cordeiro-Costas, M.; Villanueva, D.; Eguía-Oller, P.; Granada-Álvarez, E. Machine learning and deep learning models applied to photovoltaic production forecasting. Appl. Sci. 2022, 12, 8769. [Google Scholar] [CrossRef]
- Aggarwal, K.; Mijwil, M.M.; Al-Mistarehi, A.H.; Alomari, S.; Gök, M.; Alaabdin, A.M.Z.; Abdulrhman, S.H. Has the future started? The current growth of artificial intelligence, machine learning, and deep learning. Iraqi J. Comput. Sci. Math. 2022, 3, 115–123. [Google Scholar]
- Mhlanga, D. Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability 2021, 13, 5788. [Google Scholar] [CrossRef]
- Vinuesa, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.; Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 2020, 11, 233. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, I.S.; Sarwary, S.A.M.; El Refae, G.A.; Chabchoub, H. Time to Revisit Existing Student’s Performance Evaluation Approach in Higher Education Sector in a New Era of ChatGPT—A Case Study. Cogent Educ. 2023, 10, 2210461. [Google Scholar] [CrossRef]
- Hammadi, S.S.; Majeed, B.H.; Hassan, A.K. Impact of Deep Learning Strategy in Mathematics Achievement and Practical Intelligence among High School Students. Int. J. Emerg. Technol. Learn. 2023, 18, 42. [Google Scholar] [CrossRef]
- Ambubuyog, E.M.I.; Laumoc, G.L.C.; Mantac, F.H.A.; Pagulayan, F.M.C.; Sayson, C.J.E.C.; Velasco, A.C.M.; Biray, E.T. Active Listening: Its Impact on Language Learning and Understanding of Education Students. Int. J. Multidiscip. Appl. Bus. Educ. Res. 2023, 4, 671–676. [Google Scholar] [CrossRef]
- Dong, A. Analysis on the Steps of Physical Education Teaching Based on Deep Learning. Int. J. Distrib. Syst. Technol. (IJDST) 2023, 14, 1–15. [Google Scholar] [CrossRef]
- Olczak, J.; Pavlopoulos, J.; Prijs, J.; Ijpma, F.F.; Doornberg, J.N.; Lundström, C.; Hedlund, J.; Gordon, M. Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: An introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal. Acta Orthop. 2021, 92, 513–525. [Google Scholar] [CrossRef]
- Vinuesa, R.; Sirmacek, B. Interpretable deep-learning models to help achieve the Sustainable Development Goals. Nat. Mach. Intell. 2021, 3, 926. [Google Scholar] [CrossRef]
- Streich, J.; Romero, J.; Gazolla, J.G.F.M.; Kainer, D.; Cliff, A.; Prates, E.T.; Brown, J.B.; Khoury, S.; Tuskan, G.A.; Garvin, M.; et al. Can exascale computing and explainable artificial intelligence applied to plant biology deliver on the United Nations sustainable development goals? Curr. Opin. Biotechnol. 2020, 61, 217–225. [Google Scholar] [CrossRef]
- Giret, A.; Julian, V.; Carrascosa, C. AI-supported Digital Twins in applications related to sustainable development goals. In Proceedings of the The International FLAIRS Conference, Clearwater, FL, USA, 14–17 May 2023; Volume 36. [Google Scholar]
- Alami, A.H.; Olabi, A.G.; Ayoub, M.; Aljaghoub, H.; Alasad, S.; Abdelkareem, M.A. 3D Concrete Printing: Recent Progress, Applications, Challenges, and Role in Achieving Sustainable Development Goals. Buildings 2023, 13, 924. [Google Scholar] [CrossRef]
- Si, D. A Framework to analyze the Impacts of AI with the Sustainable Development Goals. Highlights Sci. Eng. Technol. 2022, 17, 313–323. [Google Scholar] [CrossRef]
- Truby, J. Governing artificial intelligence to benefit the UN sustainable development goals. Sustain. Dev. 2020, 28, 946–959. [Google Scholar] [CrossRef]
- Jaber, M. IoT and Machine Learning for Enabling Sustainable Development Goals. Front. Commun. Netw. 2023, 4, 1219047. [Google Scholar] [CrossRef]
- Zhang, C. Towards Societal Impact of AI. In Proceedings of the AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, p. 15463. [Google Scholar]
- Kilanioti, Irene; Papadopoulos, George A. A knowledge graph-based deep learning framework for efficient content similarity search of Sustainable Development Goals data. Data Intell. 2023; 1–19. [CrossRef]
- Nahorniak, H.; Hannouf, K. Features of the challenges and opportunities of formation of intellectual capital of domestic enterprises in the engineering sector ukraine in the conditions of digitalization. Probl. Transp. Telecommun. 2023, 24, 1–15. [Google Scholar] [CrossRef]
- Franzo, G.; Legnardi, M.; Faustini, G.; Tucciarone, C.M.; Cecchinato, M. When Everything Becomes Bigger: Big Data for Big Poultry Production. Animals 2023, 13, 1804. [Google Scholar] [CrossRef]
- Abangan, A.S.; Kopp, D.; Faillettaz, R. Artificial intelligence for fish behavior recognition may unlock fishing gear selectivity. Front. Mar. Sci. 2023, 10, 1010761. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef]
- Blumenstock, J.; Cadamuro, G.; On, R. Predicting poverty and wealth from mobile phone metadata. Science 2015, 350, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- Cao, L. Social security and social welfare data mining: An overview. IEEE Trans. Syst. Man, Cybern. Part C 2012, 42, 837–853. [Google Scholar]
- Beck, T.; Pamuk, H.; Ramrattan, R.; Uras, B.; Mobile money, trade credit and economic development: Theory and evidence. CentER Discussion Paper Series No. 2015-023, European Banking Center Discussion Paper No. 2015-005. 2015. Available online: https://ssrn.com/abstract=2588392 (accessed on 4 September 2023).
- Gupta, J.; Pouw, N.R.; Ros-Tonen, M.A. Towards an elaborated theory of inclusive development. Eur. J. Dev. Res. 2015, 27, 541–559. [Google Scholar] [CrossRef]
- Martos, V.; Ahmad, A.; Cartujo, P.; Ordoñez, J. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Appl. Sci. 2021, 11, 5911. [Google Scholar] [CrossRef]
- Boykin, L.M.; Ghalab, A.; Rossitto De Marchi, B.; Savill, A.; Wainaina, J.M.; Kinene, T.; Lamb, S.; Rodrigues, M.; Kehoe, M.A.; Ndunguru, J.; et al. Real time portable genome sequencing for global food security [version 1; peer review: 1 approved, 1 approved with reservations]. F1000Research 2018, 7, 1101. [Google Scholar] [CrossRef]
- Singh, R.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. Horticulture 4.0: Adoption of Industry 4.0 Technologies in Horticulture for Meeting Sustainable Farming. Appl. Sci. 2022, 12, 12557. [Google Scholar] [CrossRef]
- Singh, R.; Singh, R. Applications of sentiment analysis and machine learning techniques in disease outbreak prediction–A review. Mater. Today Proc. 2023, 81, 1006–1011. [Google Scholar] [CrossRef]
- Leopord, H.; Cheruiyot, W.K.; Kimani, S. A survey and analysis on classification and regression data mining techniques for diseases outbreak prediction in datasets. Int. J. Eng. Sci 2016, 5, 1–11. [Google Scholar]
- Habib, M.; Faris, M.; Qaddoura, R.; Alomari, M.; Alomari, A.; Faris, H. Toward an automatic quality assessment of voice-based telemedicine consultations: A deep learning approach. Sensors 2021, 21, 3279. [Google Scholar] [CrossRef]
- Lee, D.; Yoon, S.N. Application of artificial intelligence-based technologies in the healthcare industry: Opportunities and challenges. Int. J. Environ. Res. Public Health 2021, 18, 271. [Google Scholar] [CrossRef]
- Tang, H.; Huang, H.; Liu, J.; Zhu, J.; Gou, F.; Wu, J. AI-Assisted Diagnosis and Decision-Making Method in Developing Countries for Osteosarcoma. Healthcare 2022, 10, 2313. [Google Scholar] [CrossRef]
- Maghsudi, S.; Lan, A.; Xu, J.; van Der Schaar, M. Personalized education in the artificial intelligence era: What to expect next. IEEE Signal Process. Mag. 2021, 38, 37–50. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, K. Research on AI-assisted grading of math questions based on deep learning. In International Conference on Internet of Things and Machine Learning (IoTML 2021); SPIE: Washington, DC, USA, 2022; Volume 12174, pp. 211–217. [Google Scholar]
- Leavy, S.; Meaney, G.; Wade, K.; Greene, D. Mitigating gender bias in machine learning data sets. In Proceedings of the Bias and Social Aspects in Search and Recommendation: First International Workshop, BIAS 2020, Lisbon, Portugal, 14 April 2020; Proceedings 1. Springer: Berlin/Heidelberg, Germany, 2020; pp. 12–26. [Google Scholar]
- Dilmi, S.; Ladjal, M. A novel approach for water quality classification based on the integration of deep learning and feature extraction techniques. Chemom. Intell. Lab. Syst. 2021, 214, 104329. [Google Scholar] [CrossRef]
- Solanki, A.; Agrawal, H.; Khare, K. Predictive analysis of water quality parameters using deep learning. Int. J. Comput. Appl. 2015, 125, 0975–8887. [Google Scholar] [CrossRef]
- Jain, S.; Parida, A.K.; Sankaranarayanan, S. Water scarcity prediction for global region using machine learning. Int. J. Water 2020, 14, 69–88. [Google Scholar] [CrossRef]
- Hanoon, S.K.; Abdullah, A.F.; Shafri, H.Z.; Wayayok, A. A Novel Approach Based on Machine Learning and Public Engagement to Predict Water-Scarcity Risk in Urban Areas. ISPRS Int. J. Geo-Inf. 2022, 11, 606. [Google Scholar] [CrossRef]
- Grbčić, L.; Kranjčević, L.; Družeta, S. Machine learning and simulation-optimization coupling for water distribution network contamination source detection. Sensors 2021, 21, 1157. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Y.; Rahman, A. Optimized deep learning framework for water distribution data-driven modeling. Procedia Eng. 2017, 186, 261–268. [Google Scholar] [CrossRef]
- Tsai, S.B.; Xue, Y.; Zhang, J.; Chen, Q.; Liu, Y.; Zhou, J.; Dong, W. Models for forecasting growth trends in renewable energy. Renew. Sustain. Energy Rev. 2017, 77, 1169–1178. [Google Scholar] [CrossRef]
- Khan, S.; Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 107, 241–265. [Google Scholar] [CrossRef]
- Serradilla, O.; Zugasti, E.; Rodriguez, J.; Zurutuza, U. Deep learning models for predictive maintenance: A survey, comparison, challenges and prospects. Appl. Intell. 2022, 52, 10934–10964. [Google Scholar] [CrossRef]
- Milano, M.; O’Sullivan, B.; Gavanelli, M. Sustainable policy making: A strategic challenge for artificial intelligence. Ai Mag. 2014, 35, 22–35. [Google Scholar] [CrossRef]
- Anthony, L.F.W.; Kanding, B.; Selvan, R. Carbontracker: Tracking and predicting the carbon footprint of training deep learning models. arXiv 2020, arXiv:2007.03051. [Google Scholar]
- Fioretto, F.; Mak, T.W.; Van Hentenryck, P. Predicting ac optimal power flows: Combining deep learning and lagrangian dual methods. In Proceedings of the AAAI Conference on Artificial Intelligence; Association for the Advancement of Artificial Intelligence: Washington, DC, USA, 2020; Volume 34, pp. 630–637. [Google Scholar]
- Zhou, Y.; Zhang, B.; Xu, C.; Lan, T.; Diao, R.; Shi, D.; Wang, Z.; Lee, W.J. A data-driven method for fast ac optimal power flow solutions via deep reinforcement learning. J. Mod. Power Syst. Clean Energy 2020, 8, 1128–1139. [Google Scholar] [CrossRef]
- Moncada, A.; Richardson, W., Jr.; Vega-Avila, R. Deep learning to forecast solar irradiance using a six-month UTSA skyimager dataset. Energies 2018, 11, 1988. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Q.; Yan, K.; Du, Y. Deep learning enhanced solar energy forecasting with AI-driven IoT. Wirel. Commun. Mob. Comput. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Mahmoud, M.; Slama, S.B. Peer-to-Peer Energy Trading Case Study Using an AI-Powered Community Energy Management System. Appl. Sci. 2023, 13, 7838. [Google Scholar] [CrossRef]
- Mirjalili, M.A.; Aslani, A.; Zahedi, R.; Soleimani, M. A comparative study of machine learning and deep learning methods for energy balance prediction in a hybrid building-renewable energy system. Sustain. Energy Res. 2023, 10, 8. [Google Scholar] [CrossRef]
- Benabed, A. Artificial Intelligence’s Relevance for Energy Optimization, Companies and Business Internationalization. In Proceedings of the 9th BASIQ International Conference on New Trends in Sustainable Business and Consumption, Constanta, Romania, 8–10 June 2023. [Google Scholar]
- Peppas, A.; Kottaridis, S.; Politi, C.; Angelopoulos, P.M.; Taxiarchou, M. Multi-Model Assessment for Secondary Smelting Decarbonisation: The Role of Hydrogen in the Clean Energy Transition. Hydrogen 2023, 4, 103–119. [Google Scholar] [CrossRef]
- Gu, C.; Li, H. Review on deep learning research and applications in wind and wave energy. Energies 2022, 15, 1510. [Google Scholar] [CrossRef]
- Sarajcev, P.; Kunac, A.; Petrovic, G.; Despalatovic, M. Artificial intelligence techniques for power system transient stability assessment. Energies 2022, 15, 507. [Google Scholar] [CrossRef]
- Damjanović, I.; Pavić, I.; Puljiz, M.; Brcic, M. Deep reinforcement learning-based approach for autonomous power flow control using only topology changes. Energies 2022, 15, 6920. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Zhu, X.; Ye, J.; Kong, Y.; Hao, W. A GM-Based Energy Management Strategy of Hybrid Power System for Hydrogen Fuel Cell Buses. J. Adv. Transp. 2023, 2023, 6656612. [Google Scholar] [CrossRef]
- Fayyazi, M.; Sardar, P.; Thomas, S.I.; Daghigh, R.; Jamali, A.; Esch, T.; Kemper, H.; Langari, R.; Khayyam, H. Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles. Sustainability 2023, 15, 5249. [Google Scholar] [CrossRef]
- El Jery, A.; Salman, H.M.; Al-Khafaji, R.M.; Nassar, M.F.; Sillanpää, M. Thermodynamics Investigation and Artificial Neural Network Prediction of Energy, Exergy, and Hydrogen Production from a Solar Thermochemical Plant Using a Polymer Membrane Electrolyzer. Molecules 2023, 28, 2649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ning, L.; Yang, X.; Zeng, S.; Yuan, T.; Li, G.; Ke, C.; Zhang, J. Half-Power Prediction and Its Application on the Energy Management Strategy for Fuel Cell City Bus. Automot. Innov. 2023, 6, 131–142. [Google Scholar] [CrossRef]
- Shoeibi, A.; Khodatars, M.; Ghassemi, N.; Jafari, M.; Moridian, P.; Alizadehsani, R.; Panahiazar, M.; Khozeimeh, F.; Zare, A.; Hosseini-Nejad, H.; et al. Epileptic seizures detection using deep learning techniques: A review. Int. J. Environ. Res. Public Health 2021, 18, 5780. [Google Scholar] [CrossRef] [PubMed]
- VoPham, T.; Hart, J.E.; Laden, F.; Chiang, Y.Y. Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environ. Health 2018, 17, 1–6. [Google Scholar] [CrossRef]
- Alafif, T.; Tehame, A.M.; Bajaba, S.; Barnawi, A.; Zia, S. Machine and deep learning towards COVID-19 diagnosis and treatment: Survey, challenges, and future directions. Int. J. Environ. Res. Public Health 2021, 18, 1117. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D. Improved prediction of harmful algal blooms in four Major South Korea’s Rivers using deep learning models. Int. J. Environ. Res. Public Health 2018, 15, 1322. [Google Scholar] [CrossRef]
- Cirillo, D.; Catuara-Solarz, S.; Morey, C.; Guney, E.; Subirats, L.; Mellino, S.; Gigante, A.; Valencia, A.; Rementeria, M.J.; Chadha, A.S.; et al. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ Digit. Med. 2020, 3, 81. [Google Scholar] [CrossRef]
- Campero-Jurado, I.; Márquez-Sánchez, S.; Quintanar-Gómez, J.; Rodríguez, S.; Corchado, J.M. Smart helmet 5.0 for industrial internet of things using artificial intelligence. Sensors 2020, 20, 6241. [Google Scholar] [CrossRef] [PubMed]
- Akçay, H.G.; Kabasakal, B.; Aksu, D.; Demir, N.; Öz, M.; Erdoğan, A. Automated bird counting with deep learning for regional bird distribution mapping. Animals 2020, 10, 1207. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Ye, L. Spatial-Temporal Pattern of Mismatch Degree of High-Quality Tourism Development and Its Formation Mechanism in Taihu Lake Basin, China. Sustainability 2022, 14, 4812. [Google Scholar] [CrossRef]
- Saber, M.; Eğilmez, G.; Gedik, R.; Park, Y.S. A Comparative Time-Series Investigation of China and US Manufacturing Industries’ Global Supply-Chain-Linked Economic, Mid and End-Point Environmental Impacts. Sustainability 2021, 13, 5819. [Google Scholar] [CrossRef]
- Krittanawong, C.; Kaplin, S. Artificial intelligence in global health. Eur. Heart J. 2021, 42, 2321–2322. [Google Scholar] [CrossRef]
- Woschank, M.; Rauch, E.; Zsifkovits, H. A review of further directions for artificial intelligence, machine learning, and deep learning in smart logistics. Sustainability 2020, 12, 3760. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. Deep learning-based industry 4.0 and internet of things towards effective energy management for smart buildings. Sensors 2021, 21, 1038. [Google Scholar] [CrossRef] [PubMed]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-physical systems improving building energy management: Digital twin and artificial intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Farzaneh, H.; Malehmirchegini, L.; Bejan, A.; Afolabi, T.; Mulumba, A.; Daka, P.P. Artificial intelligence evolution in smart buildings for energy efficiency. Appl. Sci. 2021, 11, 763. [Google Scholar] [CrossRef]
- Han, T.; Muhammad, K.; Hussain, T.; Lloret, J.; Baik, S.W. An efficient deep learning framework for intelligent energy management in IoT networks. IEEE Internet Things J. 2020, 8, 3170–3179. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Iatagan, M.; Uță, C.; Ștefănescu, R.; Cocoșatu, M. Artificial intelligence-based decision-making algorithms, internet of things sensing networks, and deep learning-assisted smart process management in cyber-physical production systems. Electronics 2021, 10, 2497. [Google Scholar] [CrossRef]
- Ardabili, S.; Abdolalizadeh, L.; Mako, C.; Torok, B.; Mosavi, A. Systematic review of deep learning and machine learning for building energy. Front. Energy Res. 2022, 10, 786027. [Google Scholar] [CrossRef]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef]
- Solyali, D. A comparative analysis of machine learning approaches for short-/long-term electricity load forecasting in Cyprus. Sustainability 2020, 12, 3612. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, W.; Wen, Y. Thermal comfort modeling for smart buildings: A fine-grained deep learning approach. IEEE Internet Things J. 2018, 6, 2540–2549. [Google Scholar] [CrossRef]
- Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and explainability of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1312. [Google Scholar] [CrossRef]
- Meske, C.; Bunde, E. Transparency and trust in human-AI-interaction: The role of model-agnostic explanations in computer vision-based decision support. In Proceedings of the Artificial Intelligence in HCI: First International Conference, AI-HCI 2020, Held as Part of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24 July 2020; Proceedings 22. Springer: Berlin/Heidelberg, Germany, 2020; pp. 54–69. [Google Scholar]
- Misheva, B.H.; Osterrieder, J.; Hirsa, A.; Kulkarni, O.; Lin, S.F. Explainable AI in credit risk management. arXiv 2021, arXiv:2103.00949. [Google Scholar]
- Hossain, M.S.; Muhammad, G.; Guizani, N. Explainable AI and mass surveillance system-based healthcare framework to combat COVID-19 like pandemics. IEEE Netw. 2020, 34, 126–132. [Google Scholar] [CrossRef]
- Wu, W.T.; Li, Y.J.; Feng, A.Z.; Li, L.; Huang, T.; Xu, A.D.; Lyu, J. Data mining in clinical big data: The frequently used databases, steps, and methodological models. Mil. Med. Res. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Sheng, Y.; Zhu, W.; Beroza, G.C. STanford EArthquake Dataset (STEAD): A global data set of seismic signals for AI. IEEE Access 2019, 7, 179464–179476. [Google Scholar] [CrossRef]
- Pham, T.D. Classification of COVID-19 chest X-rays with deep learning: New models or fine tuning? Health Inf. Sci. Syst. 2021, 9, 1–11. [Google Scholar] [CrossRef]
- Mao, B.; Tang, F.; Kawamoto, Y.; Kato, N. AI models for green communications towards 6G. IEEE Commun. Surv. Tutorials 2021, 24, 210–247. [Google Scholar] [CrossRef]
- Ahmad, W.; Rasool, A.; Javed, A.R.; Baker, T.; Jalil, Z. Cyber security in IoT-based cloud computing: A comprehensive survey. Electronics 2021, 11, 16. [Google Scholar] [CrossRef]
- Abdel Hakeem, S.A.; Hussein, H.H.; Kim, H. Security requirements and challenges of 6G technologies and applications. Sensors 2022, 22, 1969. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Kumar, N.; Mohsan, S.A.H.; Khan, W.U.; Nasralla, M.M.; Alsharif, M.H.; Żywiołek, J.; Ullah, I. Swarm of UAVs for network management in 6G: A technical review. IEEE Trans. Netw. Serv. Manag. 2022. [Google Scholar] [CrossRef]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Hagendorff, T. The ethics of AI ethics: An evaluation of guidelines. Minds Mach. 2020, 30, 99–120. [Google Scholar] [CrossRef]
- Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing bias in big data and AI for health care: A call for open science. Patterns 2021, 2, 100347. [Google Scholar] [CrossRef]
- Collins, G.S.; Dhiman, P.; Navarro, C.L.A.; Ma, J.; Hooft, L.; Reitsma, J.B.; Logullo, P.; Beam, A.L.; Peng, L.; Van Calster, B.; et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open 2021, 11, e048008. [Google Scholar] [CrossRef]
- Balakrishnan, J.; Dwivedi, Y.K.; Hughes, L.; Boy, F. Enablers and Inhibitors of AI-Powered Voice Assistants: A Dual-Factor Approach by Integrating the Status Quo Bias and Technology Acceptance Model. Inf. Syst. Front. 2021, 1–22. [Google Scholar] [CrossRef]
- Tasci, E.; Zhuge, Y.; Camphausen, K.; Krauze, A.V. Bias and Class Imbalance in Oncologic Data—Towards Inclusive and Transferrable AI in Large Scale Oncology Data Sets. Cancers 2022, 14, 2897. [Google Scholar] [CrossRef]
- Gupta, R.; Tanwar, S.; Al-Turjman, F.; Italiya, P.; Nauman, A.; Kim, S.W. Smart contract privacy protection using AI in cyber-physical systems: Tools, techniques and challenges. IEEE Access 2020, 8, 24746–24772. [Google Scholar] [CrossRef]
- McStay, A. Emotional AI, soft biometrics and the surveillance of emotional life: An unusual consensus on privacy. Big Data Soc. 2020, 7, 2053951720904386. [Google Scholar] [CrossRef]
- Fang, H.; Qian, Q. Privacy preserving machine learning with homomorphic encryption and federated learning. Future Internet 2021, 13, 94. [Google Scholar] [CrossRef]
- Park, J.; Lim, H. Privacy-preserving federated learning using homomorphic encryption. Appl. Sci. 2022, 12, 734. [Google Scholar] [CrossRef]
- Ren, H.; Deng, J.; Xie, X. GRNN: Generative regression neural network—A data leakage attack for federated learning. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–24. [Google Scholar] [CrossRef]
- Stripelis, D.; Saleem, H.; Ghai, T.; Dhinagar, N.; Gupta, U.; Anastasiou, C.; Ver Steeg, G.; Ravi, S.; Naveed, M.; Thompson, P.M.; et al. Secure neuroimaging analysis using federated learning with homomorphic encryption. In Proceedings of the 17th International Symposium on Medical Information Processing and Analysis, SPIE, Campinas, Brazil, 10–12 December 2021; Volume 12088, pp. 351–359. [Google Scholar]
- Liu, J.; Xiang, J.; Jin, Y.; Liu, R.; Yan, J.; Wang, L. Boost precision agriculture with unmanned aerial vehicle remote sensing and edge intelligence: A survey. Remote. Sens. 2021, 13, 4387. [Google Scholar] [CrossRef]
- Shafique, M.; Marchisio, A.; Putra, R.V.W.; Hanif, M.A. Towards energy-efficient and secure edge AI: A cross-layer framework ICCAD special session paper. In Proceedings of the 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), IEEE, Munich, Germany, 1–4 November 2021; pp. 1–9. [Google Scholar]
- Shepovalova, O.; Izmailov, A.; Lobachevsky, Y.; Dorokhov, A. High-Efficiency Photovoltaic Equipment for Agriculture Power Supply. Agriculture 2023, 13, 1234. [Google Scholar] [CrossRef]
- Guo, Z.; Yang, F.; Zhang, H.; Wu, X.; Wu, Q.; Zhu, K.; Jiang, J.; Jiang, H.; Yang, Y.; Li, Y.; et al. Level pinning of anti-PT-symmetric circuits for efficient wireless power transfer. Natl. Sci. Rev. 2023. [Google Scholar] [CrossRef]
- Lahcen, B.; Brusselaers, J.; Vrancken, K.; Dams, Y.; Da Silva Paes, C.; Eyckmans, J.; Rousseau, S. Green recovery policies for the COVID-19 crisis: Modelling the impact on the economy and greenhouse gas emissions. Environ. Resour. Econ. 2020, 76, 731–750. [Google Scholar] [CrossRef]
- Yusuf, A.M.; Abubakar, A.B.; Mamman, S.O. Relationship between greenhouse gas emission, energy consumption, and economic growth: Evidence from some selected oil-producing African countries. Environ. Sci. Pollut. Res. 2020, 27, 15815–15823. [Google Scholar] [CrossRef]
- Pata, U.; Kumar, A. The influence of hydropower and coal consumption on greenhouse gas emissions: A comparison between China and India. Water 2021, 13, 1387. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Huang, P.; Wang, J. Exploring the road toward environmental sustainability: Natural resources, renewable energy consumption, economic growth, and greenhouse gas emissions. Sustainability 2022, 14, 1579. [Google Scholar] [CrossRef]
- Lin, W.; Zhu, Y.; Arslan, T. DycSe: A Low-Power, Dynamic Reconfiguration Column Streaming-Based Convolution Engine for Resource-Aware Edge AI Accelerators. J. Low Power Electron. Appl. 2023, 13, 21. [Google Scholar] [CrossRef]
- Li, J.; Ren, S.G.; Li, Y.; Yang, L.; Yu, Y.; Ni, R.; Zhou, H.; Bao, H.; He, Y.; Chen, J.; et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 2023, 9, eadf7474. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, A.A.; Sharova, D.E. Artificial intelligence ethics code in healthcare. Sustainability of artificial intelligence systems: Why do we talk about their impact on the environment? Digit. Diagn. 2023, 4, 93–95. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef] [PubMed]
- Gaur, A.; Pant, G.; Jalal, A.S. Comparative assessment of artificial intelligence (AI)-based algorithms for detection of harmful bloom-forming algae: An eco-environmental approach toward sustainability. Appl. Water Sci. 2023, 13, 1–11. [Google Scholar] [CrossRef]
SDG Goal | Application |
---|---|
No Poverty | Predicting poverty regions [31,32], optimizing social security payments [33], improving microfinance services [34,35] |
Zero Hunger | Crop yield prediction [36], Crop disease detection [37], precision agriculture [38] |
Good Health and Well-being | Disease outbreak prediction [39,40], telemedicine services [41], AI-assisted diagnosis [42,43] |
Quality Education | Personalized education [44], AI-assisted grading [45] |
Gender Equality | Analysis of gender bias data [46] |
Clean Water and Sanitation | Water quality monitoring [47,48], water scarcity prediction [49,50], optimizing water distribution systems [51,52] |
Decent Work and Economic Growth | Enhancing productivity, job creation, forecasting economic trends [53] |
Industry, Innovation, and Infrastructure | Optimizing operations, reducing maintenance costs [54], predictive maintenance [55] |
Reduced Inequalities | Identifying and predicting social inequality, AI in policy-making [56], targeted interventions for inequality reduction |
Climate Action | Creation and improvement of climate models, climate change prediction, carbon footprint tracking [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Z.; Yan, Z.; Wen, S. Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability 2023, 15, 13493. https://doi.org/10.3390/su151813493
Fan Z, Yan Z, Wen S. Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability. 2023; 15(18):13493. https://doi.org/10.3390/su151813493
Chicago/Turabian StyleFan, Zhencheng, Zheng Yan, and Shiping Wen. 2023. "Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health" Sustainability 15, no. 18: 13493. https://doi.org/10.3390/su151813493
APA StyleFan, Z., Yan, Z., & Wen, S. (2023). Deep Learning and Artificial Intelligence in Sustainability: A Review of SDGs, Renewable Energy, and Environmental Health. Sustainability, 15(18), 13493. https://doi.org/10.3390/su151813493