Accumulation and Toxicity of Polycyclic Aromatic Hydrocarbons in Long-Term Soil Irrigated with Treated Wastewater
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sampling and Pretreatment
2.3. Soil Physicochemical Properties
2.4. Extraction, Clean-Up, and Assessment of PAHs
2.5. Quality Assurance
2.6. Risk Assessment
3. Results and Discussion
3.1. Soil Attributes
3.2. PAHs Concentration and Distribution in TWWI Agricultural Topsoil
3.3. Source Apportionment
3.3.1. Diagnostic Ratios (DRs)
3.3.2. Positive Matrix Factorization (PMF)
3.4. Correlation Coefficient Results
3.5. Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wiener, M.J.; Jafvert, C.T.; Nies, L.F. The assessment of water uses and reuse through reported data: A US case study. Sci. Total Environ. 2016, 539, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.F.; Wilke, B.M.; Song, X.Y.; Gong, P.; Zhou, Q.X.; Yang, G.F. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Chemosphere 2006, 65, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Mohan, D.; Sinha, S.; Dalwani, R. Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere 2004, 55, 227–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.J.; Ma, M.; Wang, C.X.; Mo, Z. Monitoring priority pollutants in a sewage treatment process by dichloromethane extraction and triolein-semipermeable membrane device (SPMD). Chemosphere 2001, 43, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.; Miller, C. Disclosure of toxic releases in the United States. Environment 2001, 43, 9–20. [Google Scholar]
- Mc Ginn, A.P. Reducing our toxic burden. In State of the World: A World Watch Institute Report on Progress toward a Sustainable, Society; Flavin, C., French, H., Gardner, G., Eds.; Norton: New York, NY, USA, 2002; pp. 75–100. [Google Scholar]
- Botwe, B.O.; Kelderman, P.; Nyarko, E.; Lens, P.N.L. Assessment of DDT, HCH and PAH contamination and associated ecotoxicological risks in surface sediments of coastal Tema Harbour (Ghana). Mar. Pollut. Bull. 2017, 115, 480–488. [Google Scholar] [CrossRef]
- Ravindra, K.; Sokhi, R.; Van, G.R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar] [CrossRef]
- IARC. IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans. Overall Eval. Carcinog. Updat. IAPC Monogr. 1987, 7, 1–42. [Google Scholar]
- Zheng, B.; Wang, L.; Lei, K.; Nan, B. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China. Chemosphere 2016, 149, 91–100. [Google Scholar] [CrossRef]
- Douben, P.E. PAHs: An Ecotoxicological Perspective; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Abdollahi, S.; Raoufi, Z.; Faghiri, I.; Savari, A.; Nikpour, Y.; Mansouri, A. Contamination levels and spatial distributions of heavy metals and PAHs in surface sediment of Imam Khomeini Port, Persian Gulf, Iran. Mar. Pollut. Bull 2013, 71, 336–345. [Google Scholar] [CrossRef]
- Tavakoly, S.S.; Hashim, R.; Salleh, A.; Rezayi, M.; Mehdinia, A.; Safari, O. Polycyclic aromatic hydrocarbons in coastal sediment of Klang Strait, Malaysia: Distribution pattern, risk assessment and sources. PLoS ONE 2014, 9, e94907. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.E.; Lehmann, J.; Rutherford, D.; Zimmerman, A.R.; Bachmann, R.T.; Shitumbanuma, V.; O’Toole, A.; Sundqvist, K.L.; Arp, H.P.H.; Cornelissen, G. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environ. Sci. Technol 2012, 46, 2830–2838. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, M.P.; Takada, H.; Tsutsumi, S.; Ohno, K.; Yamada, J.; Kouno, E.; Kumata, H. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs. Environ. Sci. Technol 2002, 36, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Okamoto, K.; Tanaka, S.; Shen, Z.X.; Han, Y.M.; Huo, Z.Q. Measurement and source identification of polycyclic aromatic hydrocarbons (PAHs) in the aerosol in Xi’an, China, by using automated column chromatography and applying positive matrix factorization (PMF). Sci. Total Environ. 2010, 408, 1909–1914. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.L.; Li, Y.F.; Qi, H.; Sun, D.Z.; Liu, L.Y.; Wang, D.G. Seasonal variations of sources of polycyclic aromatic hydrocarbons (PAHs) to a northeastern urban city, China. Chemosphere 2010, 79, 441–447. [Google Scholar] [CrossRef]
- Pérez, F.B.; Viñas, L.; Franco, M.Á.; Bargiela, J. PAHs in the Ría de Arousa (NW Spain): A consideration of PAHs sources and abundance. Mar. Pollut. Bull. 2015, 95, 155–165. [Google Scholar] [CrossRef]
- Peng, X.Z.; Tang, C.; Yu, Y.; Tan, J.; Huang, Q.; Wu, J.; Chen, S.; Mai, B. Concentrations, transport, fate, and releases of polybrominated diphenyl ethers in sewage treatment plants in the Pearl River Delta, South China. Environ. Int. 2009, 35, 303–309. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Y.; Fu, J.; Wang, P.; Li, Y.; Zhang, Q.; Jiang, G. Characteristic accumulation and soil penetration of polychlorinated biphenyls and polybrominated diphenyl ethers in wastewater irrigated farmlands. Chemosphere 2010, 81, 1045–1051. [Google Scholar] [CrossRef]
- Fenet, E.; Mathieu, M.; Mahjoub, O.; Li, Z.; Hillaire-Buys, D.; Casellas, C.; Gomez, E. Carbamazepine, carbamazepine epoxide and dihydroxycarbamazepine sorption to soil and occurrence in a wastewater reuse site in Tunisia. Chemosphere 2012, 88, 49–54. [Google Scholar] [CrossRef]
- Khadhar, S.; Charef, A.; Hidri, Y.; Higashi, T. The effect of long-term soil irrigation by wastewater on organic matter, polycyclic aromatic hydrocarbons, and heavy metals evolution: Case study of Zaouit Sousse (Tunisia). Arab. J. Geosci 2013, 6, 4337–4346. [Google Scholar]
- Graaff, R.H.; Suter, H.C.; Lawes, S.J. Long-term effects of municipal sewage on soils and pastures. J. Environ. Sci Health A 2002, 37, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Bandowe, B.A.M.; Shukurov, N.; Kersten, M.; Wilcke, W. Polycyclic aromatic hydrocarbons (PAHs) and their oxygen-containing derivatives (OPAHs) in soils from the Angren industrial area, Uzbekistan. Environ. Pollut. 2010, 158, 2888–2899. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, Y.; Luo, X.; Lin, Z.; Zhang, W.; Wang, X. PAH contamination in Beijing’s topsoil: A unique indicator of the megacity’s evolving energy consumption and overall environmental quality. Sci. Rep. 2016, 6, 33–245. [Google Scholar] [CrossRef]
- Zhao, Z.; Zeng, H.; Wu, J.; Zhang, L. Concentrations, sources and potential ecological risks of polycyclic aromatic hydrocarbons in soils of Tajikistan. Int. J. Environ. Pollut. 2017, 61, 13–28. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S.; Kumar, A.; Sankar, T.K.; Kurwadkar, S. Health Risk Assessment, Composition, and Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Drinking Water of Southern Jharkhand, East India. Arch. Environ. Contam. Toxicol. 2020, 80, 120–133. [Google Scholar] [CrossRef]
- Ambade, B.; Sethi, S.S. Health Risk Assessment and Characterization of Polycyclic Aromatic Hydrocarbon from the Hydrosphere. J. Hazard. Toxic. Radioact. Waste 2021, 25, 05020008. [Google Scholar] [CrossRef]
- Kumar, A.; Ambade, B.; Sankar, T.K.; Sethi, S.S.; Kurwadkar, S. Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustain. Cities Soc. 2020, 52, 101–801. [Google Scholar] [CrossRef]
- Walkley, A.; Black, C.A. An estimation method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–33. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Ashwortha, J.; Keyesa, D.; Kirka, R.; Lessard, R. Standard procedure in the hydrometer method for particle size analysis, Commun. Soil Sci. Plant Anal. 2001, 32, 633–642. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, H.; Lu, Y.; Yu, X.; Wang, J.; Sun, S.; Liu, M.; Li, D.; Li, Y.F.; Zhang, D. Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Sci. Rep. 2017, 7, 12165. [Google Scholar] [CrossRef] [PubMed]
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Petroleum hydrocarbon fingerprints of water and sediment samples of Buffalo River Estuary in the Eastern Cape Province, South Africa. J. Anal. Met. Chem. 2017, 2017, 2629365. [Google Scholar] [CrossRef]
- USEPA (United State Environmental Protection Agency). Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons EPA-600/R-93/089; United State Environmental Protection Agency: Research Triangle Park, NC, USA, 1993.
- Halek, F.; Nabi, G.H.; Kavousi, A. Polycyclic aromatic hydrocarbons study and toxic equivalency factor (TEFs) in Tehran, IRAN. Environ. Monit. Assess. 2008, 143, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Guo, S.; Li, X.; Wang, J. Temporal and spatial variations of polycyclic aromatic hydrocarbons (PAHs) in soils from a typical organic sewage irrigation area. Sci. Total Environ. 2018, 614, 513–520. [Google Scholar] [CrossRef]
- Peng, C.; Chen, W.P.; Liao, X.L.; Wang, M.E.; Ouyang, Z.Y.; Jiao, W.T.; Bai, Y. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef] [PubMed]
- MEP (Ministry of Environmental Protection of the Reople’s Republic of China). Technical Regulations for National Soil Pollution Assessment; Ministry of Environmental Protection of the Reople’s Republic of China: Beijing, China, 2008.
- Tong, R.; Yang, X.; Su, H.; Pan, Y.; Zhang, Q.; Wang, J.; Long, M. Levels, sources and probabilistic health risks of polycyclic aromatic hydrocarbons in the agricultural soils from sites neighboring suburban industries in Shanghai. Sci. Total Environ. 2018, 616–617, 1365–1373. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.T.; Miao, Y.; Zhang, Y.; Li, Y.C.; Wu, M.H.; Yu, G. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Sci. Total Environ. 2013, 447, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.W.; Zhang, Z.H.; Lu, S.; He, F.P. Vertical distribution and environmental significance of PAHs in soil profiles in Beijing, China. Environ. Geochem. Health 2009, 31, 119–131. [Google Scholar] [CrossRef]
- He, F.P.; Zhang, Z.H.; Wan, Y.Y.; Lu, S.; Wang, L.; Bu, Q.W. Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: Vertical distribution, correlation with TOC and transport mechanism. J. Environ. Sci. 2009, 21, 675–685. [Google Scholar] [CrossRef]
- Ding, A.F.; Pan, G.X.; Li, L.Q. Distribution profiles of polycyclic aromatic hydrocarbons in soils of Nanjing and Yixing city. Environ. Sci Technol. 2010, 33, 115–118. [Google Scholar]
- Xiao, R.; Du, X.M.; He, X.Z.; Zhang, Y.J.; Yi, Z.H.; Li, F.S. Vertical distribution of polycyclic aromatic hydrocarbons (PAHs) in Hunpu wastewater-irrigated area in northeast China under different land use patterns. Environ. Monit Assess. 2008, 142, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.F.; Chang, S.J.; Li, L.; Ma, X.J.; Sun, T.H. Accumulation and dynamic change of polycyclic aromatic hydrocarbons (PAHs) in wastewater irrigated soils. Chin. J. Appl. Ecol. 1997, 8, 93–98. (In Chinese) [Google Scholar]
- Weissenfels, W.D.; Klewer, H.J.; Langhoff, J. Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: Influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 1992, 36, 689–696. [Google Scholar] [CrossRef]
- Liu, J.J.; Liu, G.J.; Zhang, J.M.; Yin, H.; Wang, R.W. Occurrence and risk assessment of polycyclic aromatic hydrocarbons in soil from the Tiefa coal mine district, Liaoning, China. J. Environ. Monit. 2012, 14, 2634–2642. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, T.; Khillare, P.S.; Shridhar, V.; Ray, S. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India. J. Hazard. Mater. 2009, 163, 1033–1039. [Google Scholar] [CrossRef] [PubMed]
- Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 1996, 1–2, 121–127. [Google Scholar] [CrossRef]
- Cai, C.; Li, J.; Wu, D.; Wang, X.; Tsang, D.C.W.; Li, X.; Sun, J.; Zhu, L.; Shen, H.; Tao, S.; et al. Spatial distribution, emission source and health risk of parent PAHs and derivatives in surface soils from the Yangtze River Delta, eastern China. Chemosphere 2017, 178, 301–308. [Google Scholar] [CrossRef]
- Yunker, M.B.; Acdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xia, Z.H.; Liu, D.; Qiu, W.X.; Duan, X.L.; Wang, R.; Liu, W.J.; Zhang, Y.H.; Wang, D.; Tao, S.; et al. Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China. Environ. Pollut. 2013, 181, 115–121. [Google Scholar] [CrossRef]
- Callén, M.S.; Iturmendi, M.; López, J.M. Source apportionment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons by a PMF receptormodel. Assessment of potential risk for human health. Environ. Pollut. 2014, 195, 167–177. [Google Scholar] [CrossRef]
- Huang, W.; Huang, B.; Bi, X.H.; Lin, Q.H.; Liu, M.; Ren, Z.F.; Zhang, G.H.; Wang, X.M.; Sheng, G.Y.; Fu, J.M. Emission of PAHs, NPAHs and OPAHs from the residential honeycomb coal briquettes combustion. Energy Fuel 2013, 28, 636–642. [Google Scholar] [CrossRef]
- Qin, L.; Han, J.; He, X.; Lu, Q. The emission characteristic of PAHs during coal combustion in a fluidized bed combustor. Energy Source Part A 2014, 36, 212–221. [Google Scholar] [CrossRef]
- Ou, D.; Liu, M.; Cheng, S.; Hou, L.; Xu, S.; Wang, L. Identification of the sources of polycyclic aromatic hydrocarbons based on molecular and isotopic characterization from the Yangtze estuarine and nearby coastal areas. J. Geogr. Sci. 2010, 20, 283–294. [Google Scholar] [CrossRef]
- Cao, Q.; Wang, H.; Chen, G. Source apportionment of PAHs using two mathematical models for mangrove sediments in Shantou coastal zone, China. Estuar. Coast. 2011, 34, 950–960. [Google Scholar] [CrossRef]
- Nguyen, T.C.; Loganathan, P.; Nguyen, T.V.; Vigneswaran, S.; Kandasamy, J.; Slee, D.; Stevenson, G.; Naidu, R. Polycyclic aromatic hydrocarbons in road deposited sediments, water sediments, and soils in Sydney, Australia: Comparisons of concentration distribution, sources and potential toxicity. Ecotox. Environ. Safe 2014, 104, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Khalili, N.R.; Scheff, P.A.; Holsen, T.M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions. Atmos. Environ. 1995, 29, 533–542. [Google Scholar] [CrossRef]
- Yang, B.; Zhou, L.; Xue, N.; Li, F.; Li, Y.; Vogt, D.R.; Cong, X.; Yan, Y.; Liu, B. Source apportionment of polycyclic aromatic hydrocarbons in soils of Huanghuai Plain, China: Comparison of three receptor models. Sci. Total Environ. 2013, 443, 31–39. [Google Scholar] [CrossRef]
- Wang, J.Z.; Cao, J.J.; Dong, Z.B.; Guinot, B.J.M.; Gao, M.L.; Huang, R.J.; Han, Y.; Huang, Y.; Ho, H.S.S.; Shen, Z. Seasonal variation, spatial distribution and source apportionment for polycyclic aromatic hydrocarbons (PAHs) at nineteen communities in Xi’an, China: The effects of suburban scattered emissions in winter. Environ. Pollut. 2017, 231, 1330–1343. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Chu, Y.L.; Gu, J.D. Distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Mai po inner deep bay ramsar site in Hong Kong. Ecotoxicology 2012, 24, 1743–1752. [Google Scholar] [CrossRef]
Sample No. | pH | TOC (%) | Clay (%) (0–2 µm) | Slit (%) (2–50 µm) | Sand (%) (50–2000 µm) |
---|---|---|---|---|---|
S1 | 7.87 | 4.22 | 18.21 | 62.38 | 19.41 |
S2 | 8.67 | 3.15 | 16.08 | 73.27 | 10.65 |
S3 | 9.36 | 2.74 | 17.28 | 57.51 | 25.21 |
S4 | 8.68 | 5.24 | 19.53 | 62.46 | 18.01 |
S5 | 9.68 | 4.17 | 18.07 | 58.73 | 23.20 |
S6 | 8.56 | 1.04 | 16.26 | 57.08 | 26.66 |
S7 | 7.18 | 6.35 | 18.55 | 63.05 | 18.40 |
S8 | 8.62 | 3.73 | 13.27 | 65.22 | 21.51 |
S9 | 8.82 | 2.15 | 14.74 | 57.16 | 28.10 |
S10 | 7.91 | 3.06 | 16.35 | 67.33 | 16.32 |
S11 | 9.58 | 4.27 | 14.26 | 69.28 | 16.46 |
S12 | 7.84 | 1.37 | 12.75 | 52.62 | 34.63 |
S13 | 8.57 | 0.88 | 16.45 | 58.06 | 25.49 |
S14 | 7.31 | 3.14 | 18.11 | 49.73 | 32.16 |
S15 | 8.72 | 4.46 | 14.04 | 58.38 | 27.58 |
S16 | 8.82 | 2.15 | 13.21 | 63.36 | 23.43 |
S17 | 8.85 | 2.31 | 16.62 | 59.81 | 23.57 |
S18 | 9.63 | 5.26 | 12.13 | 62.38 | 25.49 |
S19 | 8.49 | 2.08 | 11.17 | 59.72 | 29.11 |
S20 | 8.82 | 3.17 | 14.52 | 62.44 | 23.04 |
S21 | 9.27 | 2.26 | 15.74 | 69.50 | 14.76 |
S22 | 9.47 | 4.62 | 13.26 | 61.03 | 25.71 |
S23 | 9.82 | 1.69 | 16.47 | 53.28 | 30.25 |
S24 | 8.49 | 3.36 | 12.33 | 58.77 | 28.90 |
S25 | 7.83 | 0.81 | 13.20 | 67.38 | 19.42 |
S26 | 8.91 | 3.04 | 17.47 | 63.26 | 19.27 |
S27 | 9.28 | 1.16 | 18.11 | 51.31 | 30.58 |
S28 | 7.63 | 3.42 | 12.74 | 48.83 | 38.43 |
S29 | 8.22 | 4.21 | 16.16 | 54.27 | 29.57 |
S30 | 8.26 | 2.14 | 18.44 | 62.33 | 19.23 |
PAHs Category | No. of Rings | PAHs | TEFn | Risk Assessment Standards (RAS) (mg/kg) | Min | Max | Mean ± SD |
---|---|---|---|---|---|---|---|
LMW PAHs | 2 | NA | 0.001 | 100 | <BDL | 284.3 | 130.5 ± 73.3 |
3 | AC | 0.001 | 100 | <BDL | 141.4 | 81.5 ± 34.7 | |
3 | ACY | 0.001 | 100 | <BDL | 631.2 | 269.6 ± 143.9 | |
3 | Fluo | 0.001 | 100 | <BDL | 335.3 | 166.4 ± 72.1 | |
3 | Phen | 0.001 | 100 | 93.5 | 523.2 | 277.9 ± 124.2 | |
3 | AN | 0.01 | 10 | <BDL | 163.4 | 95.7 ± 37.2 | |
HMW PAHs | 4 | Flur | 0.001 | 100 | <BDL | 965.3 | 478.3 ± 266.4 |
4 | Pye | 0.001 | 100 | <BDL | 953.5 | 475.7 ± 284.7 | |
4 | BaA | 0.1 | 1 | <BDL | 875.3 | 310.9 ± 193.8 | |
4 | Chry | 0.01 | 10 | <BDL | 522.3 | 240.5 ± 110 | |
5 | BbF | 0.1 | 1 | 70.4 | 645.6 | 317.7 ± 161 | |
5 | BkF | 0.1 | 1 | <BDL | 631.3 | 276.8 ± 189.4 | |
5 | BaP | 1 | 0.1 | <BDL | 545.7 | 249.4 ± 153 | |
5 | DBA | 1 | 0.1 | <BDL | 833.5 | 345.9 ± 211.5 | |
6 | IN | 0.1 | 1 | <BDL | 455.7 | 197.9 ± 106.2 | |
6 | BgP | 0.01 | 10 | <BDL | 670.4 | 264.7 ± 157.3 | |
Σ LMW PAHs | 93.5 | 2078.8 | 1021.6 ± 485.4 | ||||
Σ HMW PAHs | 70.4 | 7098.6 | 3157.8 ± 1833.3 | ||||
Σ16 PAHs | 163.9 | 9177.4 | 4179.4 ± 2318.7 |
Diagnostic Ratios | Values (Ratio Percentage) | Possible Sources | References |
---|---|---|---|
AN/(AN + Phen) | >0.1 (93%) <0.1 (7%) | Combustion source Petroleum source | [17] |
Flur/(Flur + Pye) | <0.4 (31%) 0.4–0.5 (17%) >0.5 (52%) | Petroleum source Petroleum combustion source Coal, grass, or wood burning source | [53] |
IN/(IN + BgP) | <0.2 (4%) 0.2–0.5 (62%) >0.5 (34%) | Petroleum source Petroleum combustion source Coal, grass, or wood combustion | [53] |
NA | AC | ACY | Fluo | Phen | AN | Flur | Pye | BaA | Chry | BbF | BkF | BaP | DBA | IN | BgP | pH | TOC | Clay | Slit | Sand | Σ LMW | Σ HMW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NA | 1 | ||||||||||||||||||||||
AC | 0.63 | 1 | |||||||||||||||||||||
ACY | 0.69 | 0.57 | 1 | ||||||||||||||||||||
Fluo | 0.49 | 0.48 | 0.31 | 1 | |||||||||||||||||||
Phen | 0.47 | 0.48 | 0.57 | 0.27 | 1 | ||||||||||||||||||
AN | 0.42 | 0.62 | 0.35 | 0.49 | 0.33 | 1 | |||||||||||||||||
Flur | 0.37 | 0.45 | 0.22 | 0.37 | 0.52 | 0.52 | 1 | ||||||||||||||||
Pye | 0.33 | 0.31 | 0.26 | 0.36 | 0.22 | 0.36 | 0.58 | 1 | |||||||||||||||
BaA | 0.45 | 0.39 | 0.34 | 0.40 | 0.46 | 0.49 | 0.57 | 0.53 | 1 | ||||||||||||||
Chry | 0.03 | 0.08 | 0.02 | 0.18 | 0.13 | 0.27 | 0.25 | 0.27 | 0.58 | 1 | |||||||||||||
BbF | 0.25 | 0.34 | 0.17 | 0.41 | 0.45 | 0.43 | 0.76 | 0.41 | 0.65 | 0.64 | 1 | ||||||||||||
BkF | 0.23 | 0.29 | 0.34 | 0.28 | 0.48 | 0.29 | 0.58 | 0.47 | 0.68 | 0.63 | 0.86 | 1 | |||||||||||
BaP | 0.39 | 0.21 | 0.18 | 0.46 | 0.28 | 0.29 | 0.33 | 0.31 | 0.59 | 0.49 | 0.58 | 0.66 | 1 | ||||||||||
DBA | 0.04 | 0.20 | 0.10 | 0.32 | 0.07 | 0.44 | 0.30 | 0.13 | 0.21 | 0.56 | 0.67 | 0.49 | 0.46 | 1 | |||||||||
IN | 0.20 | 0.30 | 0.38 | 0.01 | 0.50 | 0.35 | 0.42 | 0.14 | 0.35 | 0.38 | 0.55 | 0.68 | 0.40 | 0.36 | 1 | ||||||||
BgP | 0.38 | 0.34 | 0.17 | 0.51 | 0.37 | 0.37 | 0.48 | 0.30 | 0.75 | 0.53 | 0.77 | 0.73 | 0.78 | 0.42 | 0.38 | 1 | |||||||
pH | −0.44 | 0.10 | −0.18 | 0.23 | −0.07 | −0.14 | −0.08 | −0.17 | −0.19 | −0.16 | −0.05 | −0.04 | −0.12 | −0.09 | 0.33 | −0.16 | 1 | ||||||
TOC | 0.08 | 0.01 | 0.26 | 0.04 | 0.41 | 0.24 | 0.22 | 0.28 | 0.38 | 0.12 | 0.18 | 0.23 | 0.32 | 0.24 | 0.08 | 0.16 | 0.03 | 1 | |||||
Clay | −0.37 | −0.16 | −0.20 | −0.01 | −0.25 | −0.02 | −0.19 | −0.01 | −0.35 | −0.12 | −0.26 | −0.12 | −0.20 | −0.05 | 0.09 | −0.38 | −0.07 | −0.11 | 1 | ||||
Slit | −0.23 | −0.05 | −0.08 | −0.39 | −0.04 | −0.25 | −0.01 | −0.28 | −0.25 | −0.14 | −0.08 | −0.21 | −0.17 | −0.05 | 0.26 | −0.07 | −0.15 | −0.20 | −0.04 | 1 | |||
Sand | 0.08 | 0.01 | 0.15 | 0.37 | 0.13 | 0.24 | 0.07 | 0.26 | 0.11 | 0.09 | 0.17 | 0.25 | 0.09 | 0.07 | 0.28 | 0.07 | −0.12 | −0.23 | −0.33 | −0.93 | 1 | ||
Σ LMW | 0.63 | 0.62 | 0.55 | 0.56 | 0.64 | 0.62 | 0.81 | 0.76 | 0.82 | 0.43 | 0.72 | 0.70 | 0.52 | 0.28 | 0.45 | 0.62 | −0.07 | 0.07 | −0.24 | 0.20 | 0.10 | 1 | |
Σ HMW | 0.29 | 0.34 | 0.21 | 0.43 | 0.42 | 0.45 | 0.59 | 0.36 | 0.66 | 0.68 | 0.92 | 0.90 | 0.79 | 0.74 | 0.65 | 0.84 | 0.02 | 0.08 | −0.22 | −0.07 | 0.15 | 0.67 | 1 |
PAHs | Environmental Risk Index (Q) | Q ≤ 1 (Safe) | 1 < Q ≤ 3 (Low Risk) | 3 < Q ≤ 6 (Medium Risk) | Q > 6 (High Risk) |
---|---|---|---|---|---|
NA | 2.6 | - | 1 | - | - |
AC | 1.9 | - | 1 | - | - |
ACY | 3.9 | - | - | 1 | - |
Fluo | 2.8 | - | 1 | - | - |
Phen | 3.6 | - | - | 1 | - |
AN | 6.5 | - | - | - | 1 |
Flur | 4.9 | - | - | 1 | - |
Pye | 4.8 | - | - | 1 | - |
BaA | 45.4 | - | - | - | 1 |
Chry | 11.3 | - | - | - | 1 |
BbF | 40.1 | - | - | - | 1 |
BkF | 39.2 | - | - | - | 1 |
BaP | 115.7 | - | - | - | 1 |
DBA | 141.8 | - | - | - | 1 |
IN | 33.3 | - | - | - | 1 |
BgP | 12.6 | - | - | - | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethi, S.S.; Ambade, B.; Mohammad, F.; Al-Lohedan, H.A.; Soleiman, A.A. Accumulation and Toxicity of Polycyclic Aromatic Hydrocarbons in Long-Term Soil Irrigated with Treated Wastewater. Sustainability 2023, 15, 13581. https://doi.org/10.3390/su151813581
Sethi SS, Ambade B, Mohammad F, Al-Lohedan HA, Soleiman AA. Accumulation and Toxicity of Polycyclic Aromatic Hydrocarbons in Long-Term Soil Irrigated with Treated Wastewater. Sustainability. 2023; 15(18):13581. https://doi.org/10.3390/su151813581
Chicago/Turabian StyleSethi, Shrikanta Shankar, Balram Ambade, Faruq Mohammad, Hamad A. Al-Lohedan, and Ahmed A. Soleiman. 2023. "Accumulation and Toxicity of Polycyclic Aromatic Hydrocarbons in Long-Term Soil Irrigated with Treated Wastewater" Sustainability 15, no. 18: 13581. https://doi.org/10.3390/su151813581
APA StyleSethi, S. S., Ambade, B., Mohammad, F., Al-Lohedan, H. A., & Soleiman, A. A. (2023). Accumulation and Toxicity of Polycyclic Aromatic Hydrocarbons in Long-Term Soil Irrigated with Treated Wastewater. Sustainability, 15(18), 13581. https://doi.org/10.3390/su151813581